首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 619 毫秒
1.
Grape berries (Vitis vinifera L fruit) exhibit a double-sigmoid pattern of development that results from two successive periods of vacuolar swelling during which the nature of accumulated solutes changes significantly. Throughout the first period, called green or herbaceous stage, berries accumulate high levels of organic acids, mainly malate and tartrate. At the cellular level fruit acidity comprises both metabolism and vacuolar storage. Malic acid compartmentation is critical for optimal functioning of cytosolic enzymes. Therefore, the identification and characterization of the carriers involved in malate transport across sub-cellular compartments is of great importance. The decrease in acid content during grape berry ripening has been mainly associated to mitochondrial malate oxidation. However, no Vitis vinifera mitochondrial carrier involved in malate transport has been reported to date. Here we describe the identification of three V. vinifera mitochondrial dicarboxylate/tricarboxylate carriers (VvDTC1-3) putatively involved in mitochondrial malate, citrate and other di/tricarboxylates transport. The three VvDTCs are very similar, sharing a percentage of identical residues of at least 83 %. Expression analysis of the encoding VvDTC genes in grape berries shows that they are differentially regulated exhibiting a developmental pattern of expression. The simultaneous high expression of both VvDTC2 and VvDTC3 in grape berry mesocarp close to the onset of ripening suggests that these carriers might be involved in the transport of malate into mitochondria.  相似文献   

2.
Phloem unloading is thought to switch from a symplastic route to an apoplastic route at the beginning of ripening in grape berries and some other fleshy fruits. However, it is unclear whether different solutes accumulate in both the mesocarp vacuoles and the apoplast. We modified a method developed for tomato fruit to extract apoplastic sap from grape berries and measured the changes in apoplastic and vacuolar pH, soluble sugars, organic acids, and potassium in ripening berries of Vitis vinifera ‘Merlot’ and V. labruscana ‘Concord’. Solute accumulation varied by genotype, compartment, and chemical species. The apoplast pH was substantially higher than the vacuolar pH, especially in Merlot (approximately two units). However, the vacuole–apoplast proton gradient declined during ripening and in Merlot, but not in Concord, collapsed entirely at maturity. Hexoses accumulated in both the vacuoles and apoplast but at different rates. Organic acids, especially malate, declined much more in the vacuoles than in the apoplast. Potassium accumulated in the vacuoles and apoplast of Merlot. In Concord, by contrast, potassium increased in the vacuoles but decreased in the apoplast. These results suggest that solutes in the fruit apoplast are tightly regulated and under developmental control.  相似文献   

3.
In plants, malate is a central metabolite and fulfills a large number of functions. Vacuolar malate may reach very high concentrations and fluctuate rapidly, whereas cytosolic malate is kept at a constant level allowing optimal metabolism. Recently, a vacuolar malate transporter (Arabidopsis thaliana tonoplast dicarboxylate transporter, AttDT) was identified that did not correspond to the well-characterized vacuolar malate channel. We therefore hypothesized that a member of the aluminum-activated malate transporter (ALMT) gene family could code for a vacuolar malate channel. Using GFP fusion constructs, we could show that AtALMT9 (A. thaliana ALMT9) is targeted to the vacuole. Promoter-GUS fusion constructs demonstrated that this gene is expressed in all organs, but is cell-type specific as GUS activity in leaves was detected nearly exclusively in mesophyll cells. Patch-clamp analysis of an Atalmt9 T-DNA insertion mutant exhibited strongly reduced vacuolar malate channel activity. In order to functionally characterize AtALMT9 as a malate channel, we heterologously expressed this gene in tobacco and in oocytes. Overexpression of AtALMT9-GFP in Nicotiana benthamiana leaves strongly enhanced the malate current densities across the mesophyll tonoplasts. Functional expression of AtALMT9 in Xenopus oocytes induced anion currents, which were clearly distinguishable from endogenous oocyte currents. Our results demonstrate that AtALMT9 is a vacuolar malate channel. Deletion mutants for AtALMT9 exhibit only slightly reduced malate content in mesophyll protoplasts and no visible phenotype, indicating that AttDT and the residual malate channel activity are sufficient to sustain the transport activity necessary to regulate the cytosolic malate homeostasis.  相似文献   

4.
Climate is a strong modulator of berry composition. Accordingly, the projected change in climate is expected to impact on the composition of berries and of the resultant wines. However, the direction and extent of climate change impact on fruit composition of winegrape cultivars are not fully known. This study utilised a climate gradient along a 700 km transect, covering all wine regions of Western Australia, to explore and empirically describe influences of climate on anthocyanins, pH and titratable acidity (TA) levels in two or three cultivars of Vitis vinifera (Cabernet Sauvignon, Chardonnay and Shiraz). The results showed that, at a common maturity of 22° Brix total soluble solids, berries from the warmer regions had low levels of anthocyanins and TA as well as high pH compared to berries from the cooler regions. Most of these regional variations in berry composition reflected the prevailing climatic conditions of the regions. Thus, depending on cultivar, 82–87 % of TA, 83 % of anthocyanins and about half of the pH variations across the gradient were explained by climate-variable-based empirical models. Some of the variables that were relevant in describing the variations in berry attributes included: diurnal ranges and ripening period temperature (TA), vapour pressure deficit in October and growing degree days (pH), and ripening period temperatures (anthocyanins). Further, the rates of change in these berry attributes in response to climate variables were cultivar dependent. Based on the observed patterns along the climate gradient, it is concluded that: (1) in a warming climate, all other things being equal, berry anthocyanins and TA levels will decline whereas pH levels will rise; and (2) despite variations in non-climatic factors (e.g. soil type and management) along the sampling transect, variations in TA and anthocyanins were satisfactorily described using climate-variable-based empirical models, indicating the overriding impact of climate on berry composition. The models presented here are useful tools for assessing likely changes in berry TA and anthocyanins in response to changing climate for the wine regions and cultivars covered in this study.  相似文献   

5.
Wine grapes are usually harvested in vineyards when they ripen. However, not all of the berries in a vineyard ripen homogeneously because of different microclimates around the clusters and berries. In this study, the influence of berry heterogeneity on the phenolic content and antioxidant capacity of grapes and wines under a continental monsoon climate was evaluated for a new wine grape cultivar Meili (Vitis vinifera L.). The total phenolic, flavonoid, flavanol, and monomeric anthocyanin contents in the skin and wine significantly increased with grape density; however, there was no significant difference in the seeds between the two lower densities. The highest values of DPPH free radical-scavenging activity, cupric-reducing antioxidant capacity, and hydroxyl radical-scavenging activity in the skin, seed and wine were detected for the densest berries. The sum of individual phenolic compounds in skin, seed and wine increased with berry density, though no significant difference for skin was observed between the two higher density classes. Hence, the chemical components of Meili grapes and wines were positively associated with the berry density at harvest under the continental monsoon climate.  相似文献   

6.
Leaf removal (LR) treatments improve the photosynthetic capacity of the remaining leaves and induce flavonoid synthesis as a stress response in the common grapevine (Vitis vinifera L.). However, excessive exposure of grape berries to UV-B radiation as a result of cultural practices in the Mediterranean climate may have negative effects on berry composition. This 2-year study determined the effects of defoliation on the autochthonous red grape variety ‘Babica’ in a Mediterranean climate (wine-growing region Dalmatia, Croatia). Six leaves were removed before flowering (FLR) and at the end of véraison (the onset of grape ripening; VerLR) and were compared to the untreated control. Yield parameters, sugar content, grape must pH, total polyphenols (TP), total anthocyanin (TA) content, and individual anthocyanin compounds were measured in grape skin extracts and wines. However, the greater mean daily temperature during the vegetation period and lesser rainfall before harvest in 2018 increased yield per vine, average cluster weights, density, and total acidity, compared to 2017. Both defoliation treatments significantly reduced TP in grape extracts, but these differences were not observed in wine. Compared to the control (NLR), VerLR treatment significantly reduced TA in grape skin extracts and wine. Significantly lesser TP concentrations, in grape skin extracts and wine, as well as TA were noticed during the 2017 season. VerLR treatment reduced the concentration of nine individual anthocyanins compared to the control in grape skin extracts, while this effect was not observed in wine. Season year was a statistically significant source of variability of the individual anthocyanin contents in wine. Under specific environmental conditions LR can decrease polyphenols, especially anthocyanins, and negatively impact grape and wine quality.  相似文献   

7.
8.
9.
Sugars and Organic Acids of Vitis vinifera   总被引:5,自引:5,他引:0       下载免费PDF全文
Glucose, fructose, galactose, sucrose, maltose, melibiose, raffinose, and stachyose were identified in the leaves, bark, roots, and berries of Vitis vinifera L. var. Thompson Seedless. In addition to these sugars, verbascose and manninotriose were found in the leaves and bark.

Malic, tartaric, citric, isocitric, ascorbic, cis-aconitic, oxalic, glycolic, glyoxylic, succinic, lactic, glutaric, fumaric, pyrrolidone carboxylic, α-ketoglutaric, pyruvic, oxaloacetic, galacturonic, glucuronic, shikimic, quinic, chlorogenic, and caffeic acids were identified in the leaves, bark, roots, and berries.

Glucose, fructose, sucrose, malate, tartrate, and citrate were determined quantitatively in the leaf, petiole, xylem, bark, tendril, bud, puduncle pedicel, berry, lateral roots, and main roots at 4 separate physiological stages of growth. In addition, changes in the concentrations of fructose, glucose, malate, and tartrate in leaves were measured during a 36-day period starting from budburst.

  相似文献   

10.
11.
Background and AimsThe necrotrophic fungus Botrytis cinerea infects a broad range of fruit crops including domesticated grapevine Vitis vinifera cultivars. Damage caused by this pathogen is severely detrimental to the table and wine grape industries and results in substantial crop losses worldwide. The apoplast and cell wall interface is an important setting where many plant–pathogen interactions take place and where some defence-related messenger molecules are generated. Limited studies have investigated changes in grape cell wall composition upon infection with B. cinerea, with much being inferred from studies on other fruit crops.MethodsIn this study, comprehensive microarray polymer profiling in combination with monosaccharide compositional analysis was applied for the first time to investigate cell wall compositional changes in the berries of wine (Sauvignon Blanc and Cabernet Sauvignon) and table (Dauphine and Barlinka) grape cultivars during Botrytis infection and tissue maceration. This was used in conjunction with scanning electron microscopy (SEM) and X-ray computed tomography (CT) to characterize infection progression.Key ResultsGrapes infected at veraison did not develop visible infection symptoms, whereas grapes inoculated at the post-veraison and ripe stages showed evidence of significant tissue degradation. The latter was characterized by a reduction in signals for pectin epitopes in the berry cell walls, implying the degradation of pectin polymers. The table grape cultivars showed more severe infection symptoms, and corresponding pectin depolymerization, compared with wine grape cultivars. In both grape types, hemicellulose layers were largely unaffected, as was the arabinogalactan protein content, whereas in moderate to severely infected table grape cultivars, evidence of extensin epitope deposition was present.ConclusionsSpecific changes in the grape cell wall compositional profiles appear to correlate with fungal disease susceptibility. Cell wall factors important in influencing resistance may include pectin methylesterification profiles, as well as extensin reorganization.  相似文献   

12.
13.
The physiological role of malic enzyme in grape ripening   总被引:5,自引:0,他引:5  
The high specificity of malic enzyme (ME; EC 1.1.1.40) from grape berries (Vitis vinifera L.) for the naturally occurring l-enantiomer of malic acid, its very selective C4-decarboxylation, and certain allosteric properties, reported previously, favour the conjecture of a regulatory function of ME in fruit malic acid degradation. On the other hand, high ME activity was detected even during the acid-accumulating phase of berry development. Also, the in vitro reversibility of the reaction supports the possibility of malate formation under conditions facilitating carboxylation of pyruvate, notably high CO2/HCO 3 - and NADPH/NADP ratios. However, a very limited incorporation of 14C into malate and the uniform labeling pattern of the dicarboxylic acid after administration of [U-14C] alanine to grape berries before and after the onset of ripening, indicate that the reverse reaction does not contribute essentially to grape malate synthesis. A regulatory mechanism mediating malic acid remetabolization on the basis of cosubstrate availability, comparable to the control of the hexose monophosphate shunt, is discussed.Abbreviation ME Malic enzyme (l-malate: NADP oxidoreductase)  相似文献   

14.
During grape berry (Vitis vinifera L.) ripening, sucrose transported from the leaves is accumulated in the berry vacuoles as glucose and fructose. To study the involvement of invertase in grape berry ripening, we have cloned two cDNAs (GIN1 and GIN2) from berries. The cDNAs encode translation products that are 62% identical to each other and both appear to be vacuolar forms of invertase. Both genes are expressed in a variety of tissues, including berries, leaves, roots, seeds, and flowers, but the two genes have distinct patterns of expression. In grape berries, hexose accumulation began 8 weeks postflowering and continued until the fruit was ripe at 16 weeks. Invertase activity increased from flowering, was maximal 8 weeks postflowering, and remained constant on a per berry basis throughout ripening. Expression of GIN1 and GIN2 in berries, which was high early in berry development, declined greatly at the commencement of hexose accumulation. The results suggest that although vacuolar invertases are involved in hexose accumulation in grape berries, the expression of the genes and the synthesis of the enzymes precedes the onset of hexose accumulation by some weeks, so other mechanisms must be involved in regulating this process.  相似文献   

15.
Fluorescein diacetate (FDA) was used as a vital stain to assaymembrane integrity (cell viability) in mesocarp tissue of thedeveloping grape (Vitis vinifera L.) berry in order to testthe hypothesis that there is a substantial loss of compartmentationin these cells during ripening. This technique was also usedto determine whether loss of viability was associated with symptomsof a ripening disorder known as berry shrivel. FDA fluorescenceof berry cells was rapid, bright, and stable for over 1 h atroom temperature. Confocal microscopy detected FDA stainingthrough two to three intact surface cell layers (300–400µm) of bisected berries, and showed that the fluorescencewas confined to the cytoplasm, indicating the maintenance ofintegrity in both cytoplasmic as well as vacuolar membranes,and the presence of active cytoplasmic esterases. FDA clearlydiscriminated between living cells and freeze-killed cells,and exhibited little, if any, non-specific staining. Propidiumiodide and DAPI, both widely used to assess cell viability,were unable to discriminate between living and freeze-killedcells, and did not specifically stain the nuclei of dead cells.For normally developing berries under field conditions therewas no evidence of viability loss until about 40 d after veraison,and the majority (80%) of mesocarp cells remained viable pastcommercial harvest (26 °Brix). These results are inconsistentwith current models of grape berry development which hypothesizethat veraison is associated with a general loss of compartmentationin mesocarp cells. The observed viability loss was primarilyin the locule area around the seeds, suggesting that a localizedloss of viability and compartmentation may occur as part ofnormal fruit development. The cell viability of berry shrivel-affectedberries was similar to that of normally developing berries untilthe onset of visible symptoms (i.e. shrivelling), at which timeviability declined in visibly shrivelled berries. Berries withextensive shrivelling exhibited very low cell viability (15%). Key words: Apoplast, berry shrivel, compartmentation, DAPI, FDA, fluorescence, fruit ripening, locule, propidium iodide Received 19 September 2007; Revised 16 December 2007 Accepted 26 December 2007  相似文献   

16.
The grape berry provides a model for investigating the physiology of non‐climacteric fruits. Increased K+ accumulation in the berry has a strong negative impact on fruit acidity (and quality). In maturing berries, we identified a K+ channel from the Shaker family, VvK1.2, and two CBL‐interacting protein kinase (CIPK)/calcineurin B‐like calcium sensor (CBL) pairs, VvCIPK04–VvCBL01 and VvCIPK03–VvCBL02, that may control the activity of this channel. VvCBL01 and VvCIPK04 are homologues of Arabidopsis AtCBL1 and AtCIPK23, respectively, which form a complex that controls the activity of the Shaker K+ channel AKT1 in Arabidopsis roots. VvK1.2 remained electrically silent when expressed alone in Xenopus oocytes, but gave rise to K+ currents when co‐expressed with the pairs VvCIPK03–VvCBL02 or VvCIPK04–VvCBL01, the second pair inducing much larger currents than the first one. Other tested CIPK–CBL pairs expressed in maturing berries were found to be unable to activate VvK1.2. When activated by its CIPK–CBL partners, VvK1.2 acts as a voltage‐gated inwardly rectifying K+ channel that is activated at voltages more negative than –100 mV and is stimulated upon external acidification. This channel is specifically expressed in the berry, where it displays a very strong induction at veraison (the inception of ripening) in flesh cells, phloem tissues and perivascular cells surrounding vascular bundles. Its expression in these tissues is further greatly increased upon mild drought stress. VvK1.2 is thus likely to mediate rapid K+ transport in the berry and to contribute to the extensive re‐organization of the translocation pathways and transport mechanisms that occurs at veraison.  相似文献   

17.
18.
19.
Mature fruit of grapevine (Vitis vinifera) contains unusually high levels of free proline (Pro; up to 24 μmol or 2.8 mg/g fresh weight). Pro accumulation does not occur uniformly throughout berry development but only during the last 4 to 6 weeks of ripening when both berry growth and net protein accumulation have ceased. In contrast, the steady-state levels of both the mRNA encoding V. vinifera Δ1-pyrroline-5-carboxylate synthetase (VVP5CS), a key regulatory enzyme in Pro biosynthesis, and its protein product remain relatively uniform throughout fruit development. In addition, the steady-state protein levels of Pro dehydrogenase, the first enzyme in Pro degradation, increased throughout early fruit development but thereafter remained relatively constant. The developmental accumulation of free Pro late in grape berry ripening is thus clearly distinct from the osmotic stress-induced accumulation of Pro in plants. It is not associated with either sustained increases in steady-state levels of P5CS mRNA or protein or a decrease in steady-state levels of Pro dehydrogenase protein, suggesting that other physiological factors are important for its regulation.  相似文献   

20.
AtALMT1 (Arabidopsis thaliana ALuminum activated Malate Transporter 1) encodes an Arabidopsis thaliana malate transporter that has a pleiotropic role in Arabidopsis stress tolerance. Malate released through AtALMT1 protects the root tip from Al rhizotoxicity, and recruits beneficial rhizobacteria that induce plant immunity. To examine whether the overexpression of AtALMT1 can improve these traits, the gene, driven by the cauliflower mosaic virus 35S promoter, was introduced into the Arabidopsis ecotype Columbia. Overexpression of the gene enhanced both Al-activated malate excretion and the recruitment of beneficial bacteria Bacillus subtilis strain FB17. These findings suggest that overexpression of AtALMT1 can be used as an approach to enhance a plant's ability to release malate into the rhizosphere, which can enhance plant tolerance to some environmental stress factors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号