首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 152 毫秒
1.
Smac(second mitochondria-derived activator of Caspase)是一种内源性促进细胞凋亡的蛋白,主要通过拮抗凋亡抑制因子(inhibitor of apoptosis proteins,IAPs)对Caspase的抑制,以及促进Caspase的催化活性从而促进凋亡,并可通过与IAPs的作用参与NF-кB的调控。IAPs在肿瘤的发生、迁移以及耐药、辐射抗性的形成中发挥重要的作用。肿瘤细胞中IAPs的高表达与其抵抗凋亡的作用相关。因此,探究Smac对IAPs的拮抗作用和对Caspase的激活机制,能够进一步阐明肿瘤细胞抗凋亡机制和其他死亡途径的逃逸机制。阐述了Smac蛋白的结构、与IAPs的相互作用以及Smac模拟物作为肿瘤放化疗增敏剂的研究。  相似文献   

2.
NF-κB信号转导途径与肿瘤抗凋亡关系的研究进展   总被引:1,自引:0,他引:1  
细胞核因子κB(NF—κB)家族及其介导的细胞信号转导通路广泛调控着人类免疫和炎症反应中一系列基因的表达,同时也发现它对肿瘤的发生发展有着重要作用,特别是它可以调控一些细胞凋亡相关基因如TRAF家族、IAPs家族、Bcl-2家族及FLIP基因、p53基因、COX-2基因的转录表达,从而大大提高肿瘤细胞的抗凋亡能力。本文就近年来对NF—κB通路与肿瘤抗凋亡关系的研究进展作一综述。  相似文献   

3.
正凋亡蛋白抑制因子(inhibitor of apoptosis proteins,IAPs)是一类高度保守的内源性抗细胞凋亡因子家族,主要通过抑制Caspase活性和参与调节核因子NF-κB等而抑制细胞凋亡。为了验证家蚕Bombyx mori凋亡蛋白抑制因子(BmI AP)在家蚕细胞内的功能特征及在家蚕细胞凋亡中的作用,西南  相似文献   

4.
肿瘤坏死因子相关凋亡诱导配体(TRAIL)可激活胱天蛋白酶(caspase)家族蛋白系列级联反应,最终诱导细胞凋亡. TRAIL选择性地诱导肿瘤细胞凋亡而不损伤正常细胞,使其成为治疗癌症的潜在药物靶点. 目前已知,细胞型FADD样白介素-1-β转换酶抑制蛋白(c FLIP)和凋亡抑制蛋白(IAPs)是肿瘤细胞对TRAIL耐受的主要原因.胱天蛋白酶原-8(procaspase-8)是TRAIL凋亡信号途径中的凋亡起始蛋白. 然而近年发现,在某些肿瘤细胞中procaspase-8功能失调常会阻碍凋亡信号传导,使肿瘤细胞对TRAIL诱导的凋亡产生耐受. 本文就其机制进行概述.  相似文献   

5.
XIAP(X链锁凋亡抑制蛋白,X-linked inhibitor-of-apoptosis protain)是凋亡抑制蛋白(IAPs)家族中最有效力的caspase抑制物,具有抑制细胞凋亡,参与肿瘤的发生、发展。本文就XIAP在肿瘤中的作用机制、表达及治疗情况做一综述,有望为肿瘤的诊断及治疗提供一个新方法。  相似文献   

6.
凋亡抑制因子是一类重要的抗细胞凋亡因子,在肿瘤的发病机制中起着重要的作用.Livin是新近发现的一个IAP家族成员.在大多数成人组织中不表达或低表达,但在多种恶性肿瘤中高表达,提示该基因可能在肿瘤发生发展中起重要作用.研究其结构与功能及其作用机制对于肿瘤的发生和发展、抗肿瘤药物筛选、癌症的诊断、治疗和预后有重要意义.Livin需通过一系列的凋亡刺激物的作用来表现凋亡的抑制,其抑制凋亡的信号通路包括外在途径、内在途径和化疗药物途径等多条途径.目前对Livin抗凋亡的作用机理了解得还不是很多.本文就其相关进展进行综述.  相似文献   

7.
8.
核因子-κB(nuclear factor-κB,NF-κB)是一种重要的转录因子,它广泛存在于各类细胞,参与多种生理、病理过程的基因调控。NF-κB系统由NF-κB家族及其抑制物核因子-κB抑制子(nuclear factor-κB inhibitor,IκB)家族共同组成。NF-κB的抗凋亡机制可诱发肾肿瘤、前列腺癌、胃癌、大肠癌、胰腺癌和乳腺癌的发生。通过抑制IκB的降解来抑制NF-κB的激活可以导致肿瘤细胞的大量凋亡。因此通过基因治疗来抑制NF-κB的活性,再辅以常规的化疗将有望成为一种有效的肿瘤治疗方法。本文就国内外最新研究成果,对NF-κB在恶性肿瘤中的作用进行了综合评述,并对其未来研究方向进行了展望。  相似文献   

9.
Bcl—2家族与结直肠癌   总被引:1,自引:0,他引:1  
bcl-2基因家族包括抑制细胞凋亡的基因和促进细胞凋亡的基因,其表达的蛋白在细胞凋亡:的调节中发挥重要作用。Bcl-2家族蛋白对肿瘤细胞凋亡的调节作用是当前肿瘤研究的热点之一。有关Bcl—2家族蛋白在结直肠癌方面的研究已不少。本文结合近年来国外的研究进展,对Bcl-2家族蛋白的主要结构、功能及其与结直肠癌的发生、发展、治疗、复发及预后的关系作一综述。  相似文献   

10.
细胞凋亡与肿瘤   总被引:6,自引:0,他引:6  
一、细胞凋亡的机制 (一)凋亡过程中关键的生化事件 (二)Bcl-2家族蛋白 (三)凋亡抑制蛋白家族(IAPs) (四)p53 (五)相关证据 (六)基因敲除和转基因鼠体内实验结果 二、抗癌药物能诱导细胞凋亡,也能直接杀伤细胞 (一)直接毒性作用与诱导细胞凋亡的应激反应 (二)治疗指数与正常细胞的凋亡  相似文献   

11.
We have previously demonstrated that protein kinase CK2 is a potent suppressor of apoptosis in cells subjected to diverse mediators of apoptosis. The process of apoptosis involves a complex series of molecules localized in various cellular compartments. Among the various proteins that modulate apoptotic activity are inhibitors of apoptosis proteins (IAPs) which are elevated in cancers and have been proposed to block caspase activity. We have examined the impact of CK2 signal on these proteins in prostate cancer cells. Cellular IAPs demonstrate distinct localization and responsiveness to altered CK2 expression or activity in the cytoplasmic and nuclear matrix fractions. Modulation of cellular CK2 by various approaches impacts on cellular IAPs such that inhibition or downregulation of CK2 results in reduction in these proteins. Further, IAPs are also reduced when cells are treated with sub-optimal concentrations of chemical inhibitors of CK2 combined with low or sub-optimal levels of apoptosis-inducing agents (such as etoposide) suggesting that downregulation of CK2 sensitizes cells to induction of apoptosis which may be related to attenuation of IAPs. Decreased IAP protein levels in response to apoptotic agents such as TNFalpha or TRAIL were potently blocked upon forced overexpression of CK2 in cells. Together, our results suggest that one of the modes of CK2-mediated modulation of apoptotic activity is via its impact on cellular IAPs.  相似文献   

12.
A family of baculovirus inhibitor-of-apoptosis (IAP) genes is present in mammals, insects, and baculoviruses, but the mechanism by which they block apoptosis is unknown. We have identified a protein encoded by the Drosophila mod(mdg4) gene which bound to the baculovirus IAPs. This protein induced rapid apoptosis in insect cells, and consequently we have named it Doom. Baculovirus IAPs and P35, an inhibitor of aspartate-specific cysteine proteases, blocked Doom-induced apoptosis. The carboxyl terminus encoded by the 3' exon of the doom cDNA, which distinguishes it from other mod(mdg4) cDNAs, was responsible for induction of apoptosis and engagement of the IAPs. Doom localized to the nucleus, while the IAPs localized to the cytoplasm, but when expressed together, Doom and the IAPs both localized in the nucleus. Thus, IAPs might block apoptosis by interacting with and modifying the behavior of Doom-like proteins that reside in cellular apoptotic pathways.  相似文献   

13.
Despite the efficiency of fludarabine in the induction of clinical responses in B-cell chronic lymphocytic leukemia (B-CLL) patients, resistance to this drug has been documented. The present study tested whether resistance to fludarabine is related to the expression of inhibitor of apoptosis proteins (IAPs) family members. We analyzed the expression of c-IAP1, c-IAP2 and XIAP, by immunocytochemistry, in 30 blood samples from B-CLL patients and correlated protein expression to fludarabine-induced apoptosis estimated by an annexin-V assay. Expression of c-IAP1, c-IAP2 and XIAP were found predominantly in the cytoplasm, and a wide range of staining intensities was observed among distinct samples. No correlation was found between the levels of IAPs expression and prognostic factors such as age, gender, lymphocyte doubling time, white blood cell count or previous treatment. The expression of IAPs also failed to predict the sensitivity to fludarabine-induced apoptosis. Alternative pathways of cell death may explain the independence of fludarabine-induced apoptosis from the high expression of IAPs.  相似文献   

14.
Yang YL  Li XM 《Cell research》2000,10(3):169-177
IAPs (inhibitors of apoptosis) are a family of proteins containing one or more characteristic BIR domains.These proteins have multiple biological activities that include binding and inhibiting caspases,regulating cell cycle progression,and modulating receptor-mediated signal transduction.Our recent studies found the IAP family members XIAP and c-IAP1 are ubiquitinated and degraded in proteasomes in response to apoptotic stimuli in T cells,and their degradation appears to be important for T cells to commit to death.In addition to three BIR domains,each of these IAPs also contains a RING finger domain. We found this region confers ubiquitin protease ligase(E3) activity to IAPs,and is responsible for the auto-ubiquitination and degradation of IAPs after an apoptotic stimulus.Given the fact that IAPs can bind a variety of proteins,such as caspases and TRAFs,it will be of interest to characterize potential substrates of the E3 activity of IAPs and the effects of ubiquitination by IAPs on signal transduction,cell cycle,and apoptosis.  相似文献   

15.
16.
IAPs were identified as baculoviral proteins that could inhibit the apoptotic response of insect cells to infection. Of the viral IAPs, OpIAP and CpIAP can inhibit apoptosis, whereas AcIAP cannot. OpIAP and some mammalian homologues can inhibit mammalian cell death. Two mammalian IAPs bind to TNFRII associated factors (TRAFs), but the significance of this is unclear. Here we show that Drosophila cellular IAPs and two baculoviral IAPs (OpIAP and CpIAP) can inhibit mammalian cell death induced by overexpression of Caspases 1 and 2. IAPs must act on conserved components of the apoptotic mechanism, but as none of these IAPs could bind TRAF proteins, TRAFs are not likely to be important for IAP mediated apoptosis inhibition. As OpIAP protected against death induced by ligation of TNF receptor family members, but not by factor nor serum withdrawal from dependent cells, it can inhibit certain apoptotic pathways without affecting others.  相似文献   

17.
Inhibitors of apoptosis (IAPs) inhibit caspases, thereby preventing proteolysis of apoptotic substrates. IAPs occlude the active sites of caspases to which they are bound and can function as ubiquitin ligases. IAPs are also reported to ubiquitinate themselves and caspases. Several proteins induce apoptosis, at least in part, by binding and inhibiting IAPs. Among these are the Drosophila melanogaster proteins Reaper (Rpr), Grim, and HID, and the mammalian proteins Smac/Diablo and Omi/HtrA2, all of which share a conserved amino-terminal IAP-binding motif. We report here that Rpr not only inhibits IAP function, but also greatly decreases IAP abundance. This decrease in IAP levels results from a combination of increased IAP degradation and a previously unrecognized ability of Rpr to repress total protein translation. Rpr-stimulated IAP degradation required both IAP ubiquitin ligase activity and an unblocked Rpr N terminus. In contrast, Rpr lacking a free N terminus still inhibited protein translation. As the abundance of short-lived proteins are severely affected after translational inhibition, the coordinated dampening of protein synthesis and the ubiquitin-mediated destruction of IAPs can effectively reduce IAP levels to lower the threshold for apoptosis.  相似文献   

18.
Inhibitor of apoptosis proteins (IAPs) are critical regulators of apoptosis. Recent evidence suggests that in some situations, induction of apoptosis initiates general repression of translation, as well as the targeted ubiquitination and degradation of IAPs.  相似文献   

19.

Background  

Inhibitors-of-Apoptosis-Proteins (IAPs) are an evolutionarily conserved family of proteins capable of regulating several facets of apoptosis. IAPs are frequently dysregulated in cancer, but their role in the regulation of apoptosis during developmental processes is not fully understood. Here we examined the expression of IAPs during the post-natal development of the mouse mammary gland, which is a tissue that exhibits a profound induction of apoptosis during involution.  相似文献   

20.
IAPs are a group of regulatory proteins that are structurally related. Their conserved homologues have been identified in various organisms. In human, eight IAP members have been recognized based on baculoviral IAP repeat (BIR) domains. IAPs are key regulators of apoptosis, cytokinesis and signal transduction. The antiapoptotic property of IAPs depends on their professional role for caspases. IAPs are functionally non-equivalent and regulate effector caspases through distinct mechanisms. IAPs impede apoptotic process via membrane receptor-dependent (extrinsic) cascade and mitochondrial dependent (intrinsic) pathway. IAP-mediated apoptosis affects the progression of liver diseases. Therapeutic options of liver diseases may depend on the understanding toward mechanisms of the IAP-mediated apoptosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号