首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Shade structures are often considered as one method of reducing stress in feedlot cattle. Selection of a suitable shade material can be difficult without data that quantify material effectiveness for stress reduction. A summer study was conducted during 2007 using instrumented shade structures in conjunction with meteorological measurements to estimate relative effectiveness of various shade materials. Shade structures were 3.6 m by 6.0 m by 3.0 m high at the peak and 2.0 m high at the sides. Polyethylene shade cloth was used in three of the comparisons and consisted of effective coverings of 100%, 60% with a silver reflective coating, and 60% black material with no reflective coating. Additionally, one of the structures was fitted with a poly snow fence with an effective shade of about 30%. Each shade structure contained a solar radiation meter and a black globe thermometer to measure radiant energy received under the shade material. Additionally, meteorological data were collected as a non-shaded treatment and included temperature, humidity, wind speed, and solar radiation. Data analyses was conducted using a physiological model based on temperature, humidity, solar radiation and wind speed; a second model using black globe temperatures, relative humidity, and wind speed was used as well. Analyses of the data revealed that time spent in the highest stress category was reduced by all shade materials. Moreover, significant differences (P < 0.05) existed between all shade materials (compared to no-shade) for hourly summaries during peak daylight hours and for ‘full sun’ days.  相似文献   

2.
Shade structures are often considered as one method of reducing stress in feedlot cattle. Selection of a suitable shade material can be difficult without data that quantify material effectiveness for stress reduction. A summer study was conducted during 2007 using instrumented shade structures in conjunction with meteorological measurements to estimate relative effectiveness of various shade materials. Shade structures were 3.6 m × 6.0 m × 3.0 m high at the peak and 2.0 m high at the sides. Polyethylene shade cloth was used in three of the comparisons and consisted of effective coverings of 100%, 60% with a silver reflective coating, and 60% black material with no reflective coating. Additionally, one of the structures was fitted with a poly snow fence with an effective shade of about 30%. Each shade structure contained a solar radiation meter and a black globe thermometer to measure radiant energy received under the shade material. Additionally, meteorological data were collected as a non-shaded treatment and included temperature, humidity, wind speed, and solar radiation. Data analyses was conducted using a physiological model based on temperature, humidity, solar radiation and wind speed; a second model using black globe temperatures, relative humidity, and wind speed was used as well. Analyses of the data revealed that time spent in the highest stress category was reduced by all shade materials. Moreover, significant differences (P < 0.05) existed between all shade materials (compared to no-shade) for hourly summaries during peak daylight hours and for ‘full sun’ days.  相似文献   

3.
Heat stress has a significant impact on all livestock and poultry species causing economic losses and animal well-being concerns. Providing shade is one heat-abatement strategy that has been studied for years. Material selected to provide shade for animals greatly influences the overall stress reduction provided by shade. A study was conducted to quantify both the environment and animal response, when cattle had no shade access during summertime exposure or were given access to shade provided by three different materials. A total of 32 Black Angus heifers were assigned to one of the four treatment pens according to weight (eight animals per pen). Each pen was assigned a shade treatment: No Shade, Snow Fence, 60% Aluminet Shade Cloth and 100% Shade Cloth. In the shaded treatment pens, the shade structure covered ~40% of the pen (7.5 m2/animal). Animals were moved to a different treatment every 2 weeks in a 4×4 Latin square design to ensure each treatment was applied to each group of animals. Both environmental parameters and physiological responses were measured during the experiment. Environmental parameters included dry-bulb temperature, relative humidity, wind speed, black globe temperature (BGT), solar radiation (SR) and feedlot surface temperature. Animal response measurements included manual respiration rate (RRm), electronic respiration rate (RRe), vaginal temperature (body temperature (BT)), complete blood count (CBC) and plasma cortisol. The environmental data demonstrated changes proportional to the quality of shade offered. However, the animal responses did not follow this same trend. Some of the data suggest that any amount of shade was beneficial to the animals. However, Snow Fence may not offer adequate protection to reduce BT. For some of the parameters (BT, CBC and cortisol), 60% Aluminet and 100% Shade Cloth offers similar protection. The 60% Aluminet lowered RRe the most during extreme conditions. When considering all parameters, environmental and physiological, 60% Aluminet Shade Cloth offered reductions of BGT, SR, feedlot surface temperature and the best (or equal to the best) overall protection for the animals (RRe, RRm, BT, blood parameters).  相似文献   

4.
Using behavioural indicators of thermal discomfort, that is, shade seeking, panting scores (PS) and respiration rate (RR), we evaluated the effect of hot summer conditions and shade, for a herd of adult Holstein dairy cows and a herd of Belgian Blue beef cows kept on pasture in a temperate area (Belgium). During the summer of 2012, both herds were kept on pasture without access to shade (NS). During the summers of 2011 and 2013 each herd was divided into one group with (S) and one without (NS) access to shade. Shade was provided by young trees with shade cloth (80% reduction in solar radiation) hung between them. For S cows, we investigated how shade use was related to hot conditions as quantified by six climatic indices. The heat load index (HLI), which incorporates air temperature and humidity, solar radiation and wind speed, was the best predictor of the six indices tested. In 2011, there was a relatively high threshold for use of shade. When HLI=90, shade use probability reached 17% for dairy cows and 27% for beef cows. In 2013, however, at HLI=90, shade use probability reached 48% for dairy cows and 41% for beef cows. For animals from the NS treatment we determined the effect of hot summer conditions on RR and PS (with 0=no panting and 4.5=extreme panting). In both types of cattle, an increase in black globe temperature was the best predictor for increasing RR and PS. Furthermore, we determined how the effect of hot summer conditions on RR and PS was affected by the use of shade. Under hot conditions (black globe temperature ⩾30°C), >50% of the animals under shade retained normal PS and RR (PS<1 and RR<90 breaths per minute), whereas normal RR and PS were significantly less prevalent for animals outside shade. Our findings suggest that, even in temperate summers, heat can induce thermal discomfort in cattle, as evidenced by increases in shade use, RR and PS, and that shade increases thermal comfort.  相似文献   

5.
This paper presents the findings of an outdoor thermal comfort study conducted in Hong Kong using longitudinal experiments—an alternative approach to conventional transverse surveys. In a longitudinal experiment, the thermal sensations of a relatively small number of subjects over different environmental conditions are followed and evaluated. This allows an exploration of the effects of changing climatic conditions on thermal sensation, and thus can provide information that is not possible to acquire through the conventional transverse survey. The paper addresses the effects of changing wind and solar radiation conditions on thermal sensation. It examines the use of predicted mean vote (PMV) in the outdoor context and illustrates the use of an alternative thermal index—physiological equivalent temperature (PET). The paper supports the conventional assumption that thermal neutrality corresponds to thermal comfort. Finally, predictive formulas for estimating outdoor thermal sensation are presented as functions of air temperature, wind speed, solar radiation intensity and absolute humidity. According to the formulas, for a person in light clothing sitting under shade on a typical summer day in Hong Kong where the air temperature is about 28°C and relative humidity about 80%, a wind speed of about 1.6 m/s is needed to achieve neutral thermal sensation.  相似文献   

6.
The present paper describes a physical model that estimates the globe and the natural wet bulb temperatures from the main parameters generally recorded at meteorological weather stations, in order to predict the wet bulb globe temperature (WBGT) heat stress index for outdoor environments. The model is supported by a thermal analysis of the globe and the natural wet bulb temperature sensors. The results of simultaneous measurements of the WBGT and climatological parameters (solar radiation, wind velocity, humidity, etc.) are presented and used to validate the model. The final comparison between calculated and measured values shows a good agreement with the experimental data, with a maximum absolute deviation of 2.8% for the globe temperature and 2.6% for the natural wet bulb temperature and the WBGT index. The model is applied to the design reference year for Coimbra, Portugal, in order to illustrate its preventative capabilities from a practical point of view. The results clearly show that during the summer there is a critical daily period (1200–1600 hours, local standard time) during which people working outdoors should not be allowed to perform their normal activities.  相似文献   

7.
As people become better informed about the harmful effects of prolonged exposure to solar ultraviolet radiation (UVR, 280–400 nm) they will seek the protection of shade, particularly in tropical locations such as Townsville (19° south). Using broad-band radiation sensors for solar ultraviolet-B (280–315 nm), ultraviolet-A (315–400 nm) and daylight (400–800 nm) radiation, the exposure levels were measured in both the horizontal (shaded and unshaded) and vertical (shaded and unshaded) directions. The measurements were conducted at eight locations (shade settings) in Townsville during the period between December 1997 (summer) and May 1998 (beginning of winter). The quality of protection was assessed by the ratio of unshaded to shaded radiation exposure, the UVB/shade protection ratio (UVB-SPR). The UVB-SPR varies considerably between the different shade settings, with a beach umbrella showing the least protection and dense foliage the highest protection. The roof of a house verandah can provide only little protection if the verandah catches the afternoon sun. Increasing cloud cover decreases the UVB-SPR for all settings because of the increase in the diffuse fraction of the radiation. Only one setting provided a UVB-SPR of 15 or higher, as suggested for protective shading against solar UVB radiation. Shade from direct sunlight alone does not provide enough protection against high levels of solar UVR. Apart from the transmission qualities of the shading material, it is the construction of the whole shade setting that determines the exposure levels underneath. A shade structure with enough overhang is recommended so that high levels of scattered radiation do not reach the skin. Received: 26 February 1999 / Accepted: 9 June 1999  相似文献   

8.
Many problems in pure and applied ecology require the quantification of above‐ and below‐ground microclimates. Here I describe a data set of hourly microclimates for the Australian continent, simulated from the years 1990 to 2017 across a grid of 1893 locations approx. 60 km apart. The data were generated with the NicheMapR microclimate model, driven by 0.05° gridded daily meteorological forcing data (air temperature, wind speed, humidity, cloud cover, rainfall), 0.025° elevation and 0.008° soil texture data. The above‐ground microclimate variables include horizontal plane solar radiation, solar zenith angle, sky temperature (from which down‐welling longwave radiation can be computed), air temperature, relative humidity and wind speed at 1 and 120 cm height, and snow depth. The below‐ground variables include soil temperature, pore humidity, soil moisture and soil water potential for 0, 2.5, 5, 10, 15, 20, 30, 50, 100 and 200 cm below‐ground. The computations are for four shade levels (0%, 50%, 70% and 90%). The data set can be used for a wide variety of applications, including the computation of heat and water budgets of organisms, the potential for vegetation growth, and the computation of stress and growth indices. The use of daily forcing data also allows assessments of the consequences of extreme events including heat waves. Example applications are provided for computing plant growth potential, grasshopper egg development, lizard body temperature and mammalian energy and water requirements.  相似文献   

9.
The concept of physiologically equivalent temperature (PET) has been applied to the analysis of thermal bioclimatic conditions in Freiburg, Germany, to show if days with extreme bioclimatic conditions will change and how extreme thermal conditions can be modified by changes in mean radiant temperature and wind speed. The results show that there will be an increase of days with heat stress (PET > 35°C) in the order of 5% (from 9.2% for 1961–1990) and a decrease of days with cold stress (PET < 0°C) from 16.4% to 3.8% per year. The conditions can be modified by measures modifying radiation and wind speed in the order of more than 10% of days per year by reducing global radiation in complex structures or urban areas.  相似文献   

10.
The aim of this work was to evaluate the thermal comfort of sows in a free-range system in the Brazilian Savanna, based on behavior observation, availability of shading resources, meteorological and physiological variables. The sows were analyzed in the gestation sector at Água Limpa Farm from University of Brasília; the sows were housed in paddocks of 1000 m2 each containing artificial and natural shading structures, where air temperature (Tair, °C), wind speed, relative humidity (RH, %) and black globe temperatures (TG, °C) were collected for the environment characterization in 20-min-intervals. From the black globe temperature, the Mean Radiant Temperature (TMR, °C) and the Radiant Heat Load (RHL, W m−2) were calculated in the sun and under the shade structures. The total short-wave irradiance was calculated through the sum of direct, diffuse and reflected radiations. For the behavioral evaluation, an ethogram was elaborated, taking in consideration where the animals were in the paddocks, body posture, and the activity performed. The physiological variables such as respiratory rate (breaths.min−1), surface and rectal temperatures (°C) were measured during the experiment. The data was statistically analyzed through analysis of variance and frequency analysis. There was a difference at 11a.m., 2 and 3p.m., with values above 40 °C under the shade and above 70 °C in the sun for the TMR. The preferential choice was for natural shading by the sows, due to the lower TMR and RHL throughout the day and resting activity had been predominated. The rectal temperature did not differ between the animals and the days evaluated, respiratory rate varied according to air temperature, and surface temperature only among the evaluated animals. It was concluded that even when there is a greater radiation incidence and meteorological variables above the condition of comfort for sows, they did not express any abnormal behavior that could indicate discomfort.  相似文献   

11.
Heat stress in feedlot cattle is known to reduce their performance. The challenge comes in determining reliable predictors of current and near-future changes in thermal status and performance. A 42-d study, using crossbred (Bos taurus) steers was conducted during summer months (July through August) to identify best environmental determinants of rumen temperature (Trumen) and feed intake (FI) in feedlot cattle with access to shade. A further goal was to define the relationship between Trumen and FI. Shade coverage was approximately 50%, and all animals were provided standard feedlot diets and water ad libitum. Intraruminal telemetric boluses recorded Trumen several times each hour. Ear tags, telemetrically connected to a feed monitoring system, provided FI data using RFID technology. Data loggers recorded ambient conditions in sun and shade, along with black globe temperature. Regression analyses identified daylight black globe and air temperatures in shade, with one hour delays, as the best predictors of Trumen. Prediction of FI was much less reliable. Unexpectedly, Trumen was not superior to ambient variables in predicting FI. Maximum daily temperature humidity index, calculated using BG in sun with a 5-d lag, was the best significant predictor of FI. These results indicate for feedlot cattle that although air temperature alone in the shade may be the best predictor of Trumen in the heat, black globe temperature in the sun may be a better determinant of feed intake over time. Additional studies are needed to verify the delayed FI response which seems unusually long.  相似文献   

12.
Cattle production plays a significant role in terms of world food production. Nearly 82% of the world’s 1.2 billion cattle can be found in developing countries. An increasing demand for meat in developing countries has seen an increase in intensification of animal industries, and a move to cross-bred animals. Heat tolerance is considered to be one of the most important adaptive aspects for cattle, and the lack of thermally-tolerant breeds is a major constraint on cattle production in many countries. There is a need to not only identify heat tolerant breeds, but also heat tolerant animals within a non-tolerant breed. Identification of heat tolerant animals is not easy under field conditions. In this study, panting score (0 to 4.5 scale where 0 = no stress and 4.5 = extreme stress) and the heat load index (HLI) [HLIBG<25°C = 10.66 + 0.28 × rh + 1.30 × BG – WS; and, HLI BG> 25°C = 8.62 + 0.38 × rh + 1.55 × BG – 0.5 × WS + e(2.4 – WS), where BG = black globe temperature (oC), rh = relative humidity (decimal form), WS = wind speed (m/s) and e is the base of the natural logarithm] were used to assess the heat tolerance of 17 genotypes (12,757 steers) within 13 Australian feedlots over three summers. The cattle were assessed under natural climatic conditions in which HLI ranged from thermonuetral (HLI < 70) to extreme (HLI > 96; black globe temperature = 40.2°C, relative humidity = 64%, wind speed = 1.58 m/s). When HLI > 96 a greater number (P < 0.001) of pure bred Bos taurus and crosses of Bos taurus cattle had a panting score ≥ 2 compared to Brahman cattle, and Brahman-cross cattle. The heat tolerance of the assessed breeds was verified using panting scores and the HLI. Heat tolerance of cattle can be assessed under field conditions by using panting score and HLI.  相似文献   

13.
Agroforestry systems can minimize heat stress and improve cattle welfare, but the influence of the forest component in microclimatic changes in the southern Amazon remains unclear. This study aimed to compare the thermal comfort indices in grass monoculture and integrated systems. The three systems were pasture under full sunlight (PFS), integrated (triple-row) livestock-forestry (ILFT), and integrated (single-row) livestock-forestry (ILFs), across four seasons, for two years, from June 2017 to June 2019. We assessed photosynthetically active radiation (PAR), air temperature, relative humidity, black globe temperature, and wind speed. Thermal comfort indices such as temperature-humidity index (THI), black globe temperature-humidity index (BGHI), and radiant thermal load (RTL) were calculated based on microclimate data daily-collected from 8:00 to 16:00. The ILFT mean THI (76.8) was slightly lower than ILFS and PFS. The BGHI and RTL values decreased as shading increased (PFS > ILFs > ILFT). The most challenging heat stress conditions for grazing animals occurred predominately during winter and autumn. In conclusion, the presence of trees in pastures of the southern Amazon improved the microclimate and, consequently, the thermal comfort indices. Agroforestry systems can foster an environment with a more suitable thermal comfort or less restrictive to animal performance, which contribute to mitigating global climate change for forage-livestock systems in Brazilian Amazon.  相似文献   

14.
The goal of the present paper was to assess a method for estimating the thermal radiation absorbed by dairy cows (0.875 Holstein–0.125 Guzerath) on pasture. A field test was conducted with 472 crossbred dairy cows in three locations of a tropical region. The following environmental data were collected: air temperature, partial vapour pressure, wind speed, black globe temperature, ground surface temperature and solar radiation. Average total radiation absorbed by animals was calculated as Rabs = 640.0 ±3.1 W.m - 2 {R_{abs}} = 640.0 \pm 3.1\, W.{m^{ - 2}} . Absorbed short-wave radiation (solar direct, diffuse and reflected) averaged 297.9 ± 2.7 W m−2; long wave (from the sky and from terrestrial surfaces) averaged 342.1 ± 1.5 W m−2. It was suggested that a new environmental measurement, the effective radiant heat load (ERHL), could be used to assess the effective mean radiant temperature ( T\textmr* ) \left( {T_{\text{mr}}^* } \right) . Average T\textmr* T_{\text{mr}}^* was 101.4 ± 1.2°C, in contrast to the usual mean radiant temperature, Tmr = 65.1 ±0.5° C {T_{mr}} = 65.1 \pm 0.5^\circ C . Estimates of T\textmr* T_{\text{mr}}^* were considered as more reliable than those of T mr in evaluating the thermal environment in the open field, because T mr is almost totally associated only with long wave radiation.  相似文献   

15.
The effects of air temperature, relative and specific humidity, wind speed, solar shortwave radiation, thermal longwave radiation, and rain on the performance of participants in the annual Stockholm Marathon from 1980 to 2008 were analysed statistically. The objective was to validate and extend previous studies by including data on finishing times of slower male and female runners and on the percentage of non-finishers. Due to decadal trends in the finishing time not related to weather, the finishing time anomaly (FTA) was calculated as the deviation of the annual finishing time from the linear trend of the finishing time. In all categories of runners, the single weather parameter with highest correlation with the FTA was the air temperature (correlation coefficient r = 0.66–0.73, with the highest values for slowest runners). Also, the solar shortwave radiation (r = 0.41–0.71), air relative humidity (r = −0.57 to −0.44) and, for male runners, the occurrence of rain (r = −0.51 to −0.42) reached a statistically significant correlation with the FTA, but the effects of the relative humidity and rain only arose from their negative correlation with the air temperature. The percentage of non-finishers (PNF) was significantly affected by the air temperature and specific humidity (r = 0.72 for multiple regression), which is a new result. Compared to faster runners, the results of slower runners were more affected by unfavourable weather conditions; this was previously known for runners with finishing times of 2.1–3 h, and now extended to finishing times of 4.7 h. Effects of warm weather were less evident for female than male runners, which was probably partly due to female runners’ larger ratio of surface area to body mass and slower running speed.  相似文献   

16.
Evapotranspiration, defined as the total flux of water from the land surface to the atmosphere, is a major component of the hydrologic cycle and surface energy balance. Although evapotranspiration is expected to intensify with increasing temperatures, long‐term, regional trends in evapotranspiration remain uncertain due to spatially and temporally limited direct measurements. In this study, we utilize an emergent relation between the land surface and atmospheric boundary layer to infer daily evapotranspiration from historical meteorological data collected at 236 weather stations across the United States. Our results suggest a statistically significant (α = 0.05) decrease in evapotranspiration of approximately 6% from 1961 to 2014, with a significant (α = 0.05) sharp decline of 13% from 1998 to 2014. We attribute the decrease in evapotranspiration mostly to declines in surface conductance, but also to offsetting changes in longwave radiation, wind speed, and incoming solar radiation. Using an established stomatal conductance model, we explain the changes in inferred surface conductance as a response to increases in carbon dioxide and, more recently, to an abrupt decrease in atmospheric humidity.  相似文献   

17.
Studies on the thermal comfort of humans in urban areas require meteorological data such as air temperature, air humidity, wind speed, and short- and long-wave fluxes. In such studies radiation fluxes can be expressed by the mean radiant temperature—a parameter with high variability in urban areas due to variability in global radiation. Wind speed in urban areas is influenced by urban obstacles and their orientation. Both mean radiant temperature and wind speed can be modified or changed by different height-to-width ratios or orientation of urban structures. Modifications to these parameters by typical urban structures (represented by the height-to-width ratio) can result in variation of mean radiant temperature over a range of more than 30°C, which can correspond to three levels of thermal stress. The results presented here provide a possible means of comparing different urban configurations in different climate regions.  相似文献   

18.
As small arid-zone mammals, Cape ground squirrels (Xerus inauris) are unusual in being diurnally active. It is postulated that they remain active during the day by using their parasol-like tails to shade their bodies whilst foraging. However, no studies have continuously measured body temperature to determine the effect of using the tail as a parasol, relative to other thermoregulatory behaviours, such as burrow retreat. We caught four free-ranging Cape ground squirrels (673 ± 36 g) and surgically implanted miniature temperature-sensitive data loggers into their abdomens, to record body temperature every 5 min to an accuracy of 0.04 °C, before they were released back into their home range and observed for two weeks. Mean daily peak black globe temperature was 41 °C, and daily peak body temperature reached 40 °C. Ground squirrels raised their tails significantly more often at globe temperatures above 30 °C, but raising the tail did not decrease body temperature, nor prevent body temperature rising. Ground squirrels retreated to burrows, at 18 °C, significantly more often at high body temperatures and body temperature dropped 1–2 °C before re-emergence. We believe that the tail was raised to provide thermal comfort during high solar radiation exposure, and that burrow retreat was employed to dissipate a heat load and remain active diurnally.  相似文献   

19.
Escontria chiotilla, Polaskia chichipe, and Stenocereus pruinosus are species of Mexican columnar cacti that are economically important because of their edible fruits. These species are managed by gathering fruits from the wild, silvicultural management in agroforestry systems, and cultivation in home gardens. Previous studies reported that artificial selection favored individuals that produced larger fruits, which indirectly led to the production of larger seeds and seedlings, with possible effects on survival. We hypothesized that seedlings from managed populations would be larger but more susceptible to xeric conditions than those from wild populations. We evaluated the effects of artificial and natural selection on seedling survival of the three species in wild and managed populations, which were managed with low and high intensity, respectively. We tested seedling performance in gradients of shade (0, 40, and 80%) and humidity (low and high). A GLM of seedling survival showed significant differences among species, shade, and humidity treatments, with each species having environmental requirements associated with their particular adaptations. High humidity decreased seedling survival of all species, and high solar radiation decreased survival of S. pruinosus and P. chichipe. The effect of management type was significant only in S. pruinosus. Significant differences in the initial growth of seedlings among species were detected with ANOVA. In optimal conditions, the hypocotyl and the cotyledons decreased in size and the epicotyl grew, whereas under stress, these structures remained unchanged. The optimum conditions of shade and humidity varied among species and management types. The seedlings of S. pruinosus were the largest and the most susceptible, but in all species, seedlings from managed populations were more susceptible to environmental conditions. Thus, artificial selection influenced the susceptibility of these cacti to xeric environments.  相似文献   

20.
This study aimed to analyze the impact of winter weather conditions on young children’s behavior and affective states by examining a group of 61 children attending day-care centers in Florence (Italy). Participants were 33 males, 28 females and their 11 teachers. The mean age of the children at the beginning of the observation period was 24.1 months. The day-care teachers observed the children’s behavioral and emotional states during the morning before their sleeping time and filled in a questionnaire for each baby five times over a winter period of 3 weeks. Air temperature, relative humidity, air pressure and solar radiation data were collected every 15 min from a weather station located in the city center of Florence. At the same time, air temperature and relative humidity data were collected in the classroom and in the garden of each day-care center. We used multilevel linear models to evaluate the extent to which children’s emotional and behavioral states could be predicted by weather conditions, controlling for child characteristics (gender and age). The data showed that relative humidity and solar radiation were the main predictors of the children’s emotional and behavioral states. The outdoor humidity had a significant positive effect on frustration, sadness and aggression; solar radiation had a significant negative effect only on sadness, suggesting that a sunny winter day makes children more cheerful. The results are discussed in term of implications for parents and teachers to improve children’s ecological environment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号