首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 380 毫秒
1.
《Matrix biology》2007,26(4):234-246
Primary cilia are highly conserved organelles found on almost all eukaryotic cells. Tg737orpk (orpk) mice carry a hypomorphic mutation in the Tg737 gene resulting in the loss of polaris, a protein essential for ciliogenesis. Orpk mice have an array of skeletal patterning defects and show stunted growth after birth, suggesting defects in appositional and endochondral development. This study investigated the association between orpk tibial long bone growth and chondrocyte primary cilia expression using histomorphometric and immunohistochemical analysis. Wild-type chondrocytes throughout the developing epiphysis and growth plate expressed primary cilia, which showed a specific orientation away from the articular surface in the first 7–10 cell layers. In orpk mice, primary cilia were identified on very few cells and were significantly shorter. Orpk chondrocytes also showed significant increases in cytoplasmic tubulin, a likely result of failed ciliary assembly. The growth plates of orpk mice were significantly smaller in length and width, with marked changes in cellular organization in the presumptive articular cartilage, proliferative and hypertrophic zones. Cell density at the articular surface and in the hypertrophic zone was significantly altered, suggesting defects in both appositional and endochondral growth. In addition, orpk hypertrophic chondrocytes showed re-organization of the F-actin network into stress fibres and failed to fully undergo hypertrophy, while there was a marked reduction in type X collagen sequestration. These data suggest that failure to form a functional primary cilium affects chondrocyte differentiation and results in delayed chondrocyte hypertrophy within the orpk growth plate.  相似文献   

2.
Intraflagellar transport proteins (IFT) play important roles in cilia formation and organ development. Partial loss of IFT80 function leads Jeune asphyxiating thoracic dystrophy (JATD) or short-rib polydactyly (SRP) syndrome type III, displaying narrow thoracic cavity and multiple cartilage anomalies. However, it is unknown how IFT80 regulates cartilage formation. To define the role and mechanism of IFT80 in chondrocyte function and cartilage formation, we generated a Col2α1; IFT80f/f mouse model by crossing IFT80f/f mice with inducible Col2α1-CreER mice, and deleted IFT80 in chondrocyte lineage by injection of tamoxifen into the mice in embryonic or postnatal stage. Loss of IFT80 in the embryonic stage resulted in short limbs at birth. Histological studies showed that IFT80-deficient mice have shortened cartilage with marked changes in cellular morphology and organization in the resting, proliferative, pre-hypertrophic, and hypertrophic zones. Moreover, deletion of IFT80 in the postnatal stage led to mouse stunted growth with shortened growth plate but thickened articular cartilage. Defects of ciliogenesis were found in the cartilage of IFT80-deficient mice and primary IFT80-deficient chondrocytes. Further study showed that chondrogenic differentiation was significantly inhibited in IFT80-deficient mice due to reduced hedgehog (Hh) signaling and increased Wnt signaling activities. These findings demonstrate that loss of IFT80 blocks chondrocyte differentiation by disruption of ciliogenesis and alteration of Hh and Wnt signaling transduction, which in turn alters epiphyseal and articular cartilage formation.  相似文献   

3.
Primary cilia are nonmotile microtubule structures that assemble from basal bodies by a process called intraflagellar transport (IFT) and are associated with several human diseases. Here, we show that the centrosome protein pericentrin (Pcnt) colocalizes with IFT proteins to the base of primary and motile cilia. Immunogold electron microscopy demonstrates that Pcnt is on or near basal bodies at the base of cilia. Pcnt depletion by RNA interference disrupts basal body localization of IFT proteins and the cation channel polycystin-2 (PC2), and inhibits primary cilia assembly in human epithelial cells. Conversely, silencing of IFT20 mislocalizes Pcnt from basal bodies and inhibits primary cilia assembly. Pcnt is found in spermatocyte IFT fractions, and IFT proteins are found in isolated centrosome fractions. Pcnt antibodies coimmunoprecipitate IFT proteins and PC2 from several cell lines and tissues. We conclude that Pcnt, IFTs, and PC2 form a complex in vertebrate cells that is required for assembly of primary cilia and possibly motile cilia and flagella.  相似文献   

4.
While cilia are present on most cells in the mammalian body, their functional importance has only recently been discovered. Cilia formation requires intraflagellar transport (IFT), and mutations disrupting the IFT process result in loss of cilia and mid-gestation lethality with developmental defects that include polydactyly and abnormal neural tube patterning. The early lethality in IFT mutants has hindered research efforts to study the role of this organelle at later developmental stages. Thus, to investigate the role of cilia during limb development, we generated a conditional allele of the IFT protein Ift88 (polaris). Using the Cre-lox system, we disrupted cilia on different cell populations within the developing limb. While deleting cilia in regions of the limb ectoderm had no overt effect on patterning, disruption in the mesenchyme resulted in extensive polydactyly with loss of anteroposterior digit patterning and shortening of the proximodistal axis. The digit patterning abnormalities were associated with aberrant Shh pathway activity, whereas defects in limb outgrowth were due in part to disruption of Ihh signaling during endochondral bone formation. In addition, the limbs of mesenchymal cilia mutants have ectopic domains of cells that resemble chondrocytes derived from the perichondrium, which is not typical of Indian hedgehog mutants. Overall these data provide evidence that IFT is essential for normal formation of the appendicular skeleton through disruption of multiple signaling pathways.  相似文献   

5.
We investigated the role of the chondrocyte primary cilium in mechanotransduction events related to cartilage extracellular matrix synthesis. We generated conditionally immortalized wild-type (WT) and IFT88(orpk) (ORPK) mutant chondrocytes that lack primary cilia and assessed intracellular Ca(2+) signaling, extracellular matrix synthesis, and ATP release in response to physiologically relevant compressive strains in a 3-dimensional chondrocyte culture system. All conditions were compared to unloaded controls. We found that cilia were required for compression-induced Ca(2+) signaling mediated by ATP release, and an associated up-regulation of aggrecan mRNA and sulfated glycosaminosglycan secretion. However, chondrocyte cilia were not the initial mechanoreceptors, since both WT and ORPK cells showed mechanically induced ATP release. Rather, we found that primary cilia were required for downstream ATP reception, since ORPK cells did not elicit a Ca(2+) response to exogenous ATP even though WT and ORPK cells express similar levels of purine receptors. We suggest that purinergic Ca(2+) signaling may be regulated by polycystin-1, since ORPK cells only expressed the C-terminal tail. This is the first study to demonstrate that primary cilia are essential organelles for cartilage mechanotransduction, as well as identifying a novel role for primary cilia not previously reported in any other cell type, namely cilia-mediated control of ATP reception.  相似文献   

6.
A single primary cilium is found in chondrocytes and other connective tissue cells. We have previously shown that extracellular matrix (ECM) macromolecules such as collagen fibers closely associate with chondrocyte primary cilia, and their points of contact are characterized by electron-opaque plaques suggesting a direct link between the ECM and the cilium. This study examines the expression of receptors for ECM molecules on chondrocyte primary cilia. Embryonic chick sterna were fluorescently labeled with antibodies against alpha and beta integrins, NG2, CD44, and annexin V. Primary cilia were labeled using acetylated alpha-tubulin antibody. Expression of ECM receptors was examined on chondrocyte plasma membranes and their primary cilia using immunofluorescence and confocal microscopy. All receptors examined showed a punctate distribution on the plasma membrane. alpha2, alpha3, and beta1 integrins and NG2 were also present on primary cilia, whereas annexin V and CD44 were excluded. The number of receptor-positive cilia varied from 8/50 for NG2 to 43/50 for beta1 integrin. This is the first study to demonstrate the expression of integrins and NG2 on chondrocyte primary cilia. The data strongly suggest that chondrocyte primary cilia have the necessary machinery to act as mechanosensors, linking the ECM to cytoplasmic organelles responsible for matrix production and secretion.  相似文献   

7.
Intraflagellar transport   总被引:2,自引:0,他引:2  
Eukaryotic cilia and flagella, including primary cilia and sensory cilia, are highly conserved organelles that project from the surfaces of many cells. The assembly and maintenance of these nearly ubiquitous structures are dependent on a transport system--known as 'intraflagellar transport' (IFT)--which moves non-membrane-bound particles from the cell body out to the tip of the cilium or flagellum, and then returns them to the cell body. Recent results indicate that defects in IFT might be a primary cause of some human diseases.  相似文献   

8.
During embryogenesis, the expression of mammalian stanniocalcin (STC1) in the appendicular skeleton suggests its involvement in the regulation of longitudinal bone growth. Such a role is further supported by the presence of dwarfism in mice overexpressing STC1. Yet, the STC 1 inhibitory effect on growth may be related to both postnatal metabolic abnormalities and prenatal defective bone formation. In our study, we used an organ culture system to evaluate the effects of STC on growth plate chondrogenesis, which is the primary determinant of longitudinal bone growth. Fetal rat metatarsal bones were cultured in the presence of recombinant human STC (rhSTC). After 3 days, rhSTC suppressed metatarsal growth, growth plate chondrocyte proliferation and hypertrophy/differentiation, and extracellular matrix synthesis. In addition, rhSTC increased the number of apoptotic chondrocytes in the growth plate. In cultured chondrocytes, rhSTC increased phosphate uptake, reduced chondrocyte proliferation and matrix synthesis, and induced apoptosis. All these effects were reversed by culturing chondrocytes with rhSTC and phosphonoformic acid, an inhibitor of phosphate transport. The rhSTC-mediated inhibition of metatarsal growth and growth plate chondrocyte proliferation and hypertrophy/differentiation was abolished by culturing metatarsals with rhSTC and phosphonoformic acid. Taken together, our findings indicate that STC1 inhibits longitudinal bone growth directly at the growth plate. Such growth inhibition, likely mediated by an increased chondrocyte phosphate uptake, results from suppressed chondrocyte proliferation, hypertrophy/differentiation, and matrix synthesis and by increased apoptosis. Last, the expression of both STC1 and its binding site in the growth plate would support an autocrine/paracrine role for this growth factor in the regulation of growth plate chondrogenesis.  相似文献   

9.
10.
The diversity of sensory cilia on Caenorhabditis elegans neurons allows the animal to detect a variety of sensory stimuli. Sensory cilia are assembled by intraflagellar transport (IFT) kinesins, which transport ciliary precursors, bound to IFT particles, along the ciliary axoneme for incorporation into ciliary structures. Using fluorescence microscopy of living animals and serial section electron microscopy of high pressure-frozen, freeze-substituted IFT motor mutants, we found that two IFT kinesins, homodimeric OSM-3 kinesin and heterotrimeric kinesin II, function in a partially redundant manner to build full-length amphid channel cilia but are completely redundant for building full-length amphid wing (AWC) cilia. This difference reflects cilia-specific differences in OSM-3 activity, which serves to extend distal singlets in channel cilia but not in AWC cilia, which lack such singlets. Moreover, AWC-specific chemotaxis assays reveal novel sensory functions for kinesin II in these wing cilia. We propose that kinesin II is a "canonical" IFT motor, whereas OSM-3 is an "accessory" IFT motor, and that subtle changes in the deployment or actions of these IFT kinesins can contribute to differences in cilia morphology, cilia function, and sensory perception.  相似文献   

11.
12.
Wang Q  Pan J  Snell WJ 《Cell》2006,125(3):549-562
Primary cilia are widely used for signal transduction during development and in homeostasis and are assembled and maintained by intraflagellar transport (IFT). Here, we have dissected the role of IFT in signaling within the flagella (structural and functional counterparts of cilia) of the biflagellated green alga Chlamydomonas. Using a conditional IFT mutant enables us to deplete the IFT machinery from intact, existing flagella. We identify a cGMP-dependent protein kinase (CrPKG) within flagella as the substrate of a protein tyrosine kinase activated by flagellar adhesion during fertilization. We demonstrate that flagellar adhesion stimulates association of CrPKG with a new flagellar compartment. Moreover, formation of the compartment requires IFT, and IFT particles themselves are part of the compartment. Our results lead to a model in which the IFT machinery is required not only for assembling cilia and flagella but also for organizing a signaling pathway within the organelles during cilium-generated signaling.  相似文献   

13.
14.
Convergent extension driven by mediolateral intercalation of chondrocytes is a key process that contributes to skeletal growth and morphogenesis. While progress has been made in deciphering the molecular mechanism that underlies this process, the involvement of mechanical load exerted by muscle contraction in its regulation has not been studied. Using the zebrafish as a model system, we found abnormal pharyngeal cartilage morphology in both chemically and genetically paralyzed embryos, demonstrating the importance of muscle contraction for zebrafish skeletal development. The shortening of skeletal elements was accompanied by prominent changes in cell morphology and organization. While in control the cells were elongated, chondrocytes in paralyzed zebrafish were smaller and exhibited a more rounded shape, confirmed by a reduction in their length-to-width ratio. The typical columnar organization of cells was affected too, as chondrocytes in various skeletal elements exhibited abnormal stacking patterns, indicating aberrant intercalation. Finally, we demonstrate impaired chondrocyte intercalation in growth plates of muscle-less Sp(d) mouse embryos, implying the evolutionary conservation of muscle force regulation of this essential morphogenetic process.Our findings provide a new perspective on the regulatory interaction between muscle contraction and skeletal morphogenesis by uncovering the role of muscle-induced mechanical loads in regulating chondrocyte intercalation in two different vertebrate models.  相似文献   

15.
Alkaptonuria (AKU) is a rare inherited disease resulting from a deficiency of the enzyme homogentisate 1,2‐dioxygenase which leads to the accumulation of homogentisic acid (HGA). AKU is characterized by severe cartilage degeneration, similar to that observed in osteoarthritis. Previous studies suggest that AKU is associated with alterations in cytoskeletal organization which could modulate primary cilia structure/function. This study investigated whether AKU is associated with changes in chondrocyte primary cilia and associated Hedgehog signaling which mediates cartilage degradation in osteoarthritis. Human articular chondrocytes were obtained from healthy and AKU donors. Additionally, healthy chondrocytes were treated with HGA to replicate AKU pathology (+HGA). Diseased cells exhibited shorter cilia with length reductions of 36% and 16% in AKU and +HGA chondrocytes respectively, when compared to healthy controls. Both AKU and +HGA chondrocytes demonstrated disruption of the usual cilia length regulation by actin contractility. Furthermore, the proportion of cilia with axoneme breaks and bulbous tips was increased in AKU chondrocytes consistent with defective regulation of ciliary trafficking. Distribution of the Hedgehog‐related protein Arl13b along the ciliary axoneme was altered such that its localization was increased at the distal tip in AKU and +HGA chondrocytes. These changes in cilia structure/trafficking in AKU and +HGA chondrocytes were associated with a complete inability to activate Hedgehog signaling in response to exogenous ligand. Thus, we suggest that altered responsiveness to Hedgehog, as a consequence of cilia dysfunction, may be a contributing factor in the development of arthropathy highlighting the cilium as a novel target in AKU.  相似文献   

16.
Loss of PTPN11/SHP2 in mice or in human metachondromatosis (MC) patients causes benign cartilage tumors on the bone surface (exostoses) and within bones (enchondromas). To elucidate the mechanisms underlying cartilage tumor formation, we investigated the role of SHP2 in the specification, maturation and organization of chondrocytes. Firstly, we studied chondrocyte maturation by performing RNA-seq on primary chondrocyte pellet cultures. We found that SHP2 depletion, or inhibition of the ERK1/2 pathway, delays the terminal differentiation of chondrocytes from the early-hypertrophic to the late-hypertrophic stage. Secondly, we studied chondrocyte maturation and organization in mice with a mosaic postnatal inactivation of Ptpn11 in chondrocytes. We found that the vertebral growth plates of these mice have expanded domains of early-hypertrophic chondrocytes that have not yet terminally differentiated, and their enchondroma-like lesions arise from chondrocytes displaced from the growth plate due to a disruption in the organization of maturation and ossification zones. Furthermore, we observed that lesions from human MC patients also display disorganized chondrocyte maturation zones. Next, we found that inactivation of Ptpn11 in Fsp1-Cre-expressing fibroblasts induces exostosis-like outgrowths, suggesting that loss of SHP2 in cells on the bone surface and at bone-ligament attachment sites induces ectopic chondrogenesis. Finally, we performed lineage tracing to show that exostoses and enchondromas in mice likely contain mixtures of wild-type and SHP2-deficient chondrocytes. Together, these data indicate that in patients with MC, who are heterozygous for inherited PTPN11 loss-of-function mutations, second-hit mutations in PTPN11 can induce enchondromas by disrupting the organization and delaying the terminal differentiation of growth plate chondrocytes, and can induce exostoses by causing ectopic chondrogenesis of cells on the bone surface. Furthermore, the data are consistent with paracrine signaling from SHP2-deficient cells causing SHP2-sufficient cells to be incorporated into the lesions.  相似文献   

17.

Mechanical stimulation is commonly used in cartilage tissue engineering for enhancing tissue formation and improving the mechanical properties of resulting engineered tissues. However, expanded chondrocytes tend to dedifferentiate and lose expression of their primary cilia, which is necessary for chondrocyte mechanotransduction. As treatment with lithium chloride (LiCl) can restore passaged chondrocytes in monolayer, in this study, we investigated whether this approach would be effective in 3D culture and restore chondrocyte mechanosensitivity. Chondrocytes at different passages (P0 to P2) were treated with 0–50 mM LiCl for 24 h, with different pre-culture durations (0 to 4 days). The primary cilia incidence and length were measured in α-tubulin-stained images. Treated chondrocytes were cultured with or without dynamic compression to evaluate the effect of LiCl-induced primary cilia expression on matrix synthesis by mechanically stimulated chondrocytes. LiCl treatment of chondrocytes in 3D agarose culture increased primary cilia incidence and length, with significant increases in incidence and length using 50 mM LiCl compared to other concentrations (P?<?0.05). This effect was further optimized by including a 4-day pre-culture prior to the 24-h 50 mM LiCl treatment. Importantly, LiCl-induced primary cilia expression increased chondrocyte mechanosensitivity. When stimulated with dynamic compression, LiCl-treated P1 chondrocytes increased collagen (1.4-fold, P?<?0.1) and proteoglycan (1.5-fold, P?<?0.05) synthesis compared to untreated, unstimulated cells. The LiCl treatment method described here can be used to restore primary cilia in passaged chondrocytes, transforming them into a mechanosensitive cell source for cartilage tissue engineering.

  相似文献   

18.
Certain ciliary transmembrane and membrane-associated signaling proteins export from cilia as intraflagellar transport (IFT) cargoes in a BBSome-dependent manner. Upon reaching the ciliary tip via anterograde IFT, the BBSome disassembles before being reassembled to form an intact entity for cargo phospholipase D (PLD) coupling. During this BBSome remodeling process, Chlamydomonas Rab-like 4 GTPase IFT27, by binding its partner IFT25 to form the heterodimeric IFT25/27, is indispensable for BBSome reassembly. Here, we show that IFT27 binds IFT25 in an IFT27 nucleotide-independent manner. IFT25/27 and the IFT subcomplexes IFT-A and -B are irrelevant for maintaining the stability of one another. GTP-loading onto IFT27 enhances the IFT25/27 affinity for binding to the IFT-B subcomplex core IFT-B1 entity in cytoplasm, while GDP-bound IFT27 does not prevent IFT25/27 from entering and cycling through cilia by integrating into IFT-B1. Upon at the ciliary tip, IFT25/27 cycles on and off IFT-B1 and this process is irrelevant with the nucleotide state of IFT27. During BBSome remodeling at the ciliary tip, IFT25/27 promotes BBSome reassembly independent of IFT27 nucleotide state, making postremodeled BBSomes available for PLD to interact with. Thus, IFT25/27 facilitates BBSome-dependent PLD export from cilia via controlling availability of intact BBSomes at the ciliary tip, while IFT27 nucleotide state does not participate in this regulatory event.  相似文献   

19.
The assembly of the axoneme, the structural scaffold of cilia and flagella, requires translocation of a vast quantity of tubulin into the growing cilium, but the mechanisms that regulate the targeting, quantity, and timing of tubulin transport are largely unknown. In Chlamydomonas, GFP-tagged α-tubulin enters cilia as an intraflagellar transport (IFT) cargo and by diffusion. IFT-based transport of GFP-tubulin is elevated in growing cilia and IFT trains carry more tubulin. Cells possessing both nongrowing and growing cilia selectively target GFP-tubulin into the latter. The preferential delivery of tubulin boosts the concentration of soluble tubulin in the matrix of growing versus steady-state cilia. Cilia length mutants show abnormal kinetics of tubulin transport. We propose that cells regulate the extent of occupancy of IFT trains by tubulin cargoes. During ciliary growth, IFT concentrates soluble tubulin in cilia and thereby promotes elongation of the axonemal microtubules.  相似文献   

20.
We have developed a useful approach to examine the pattern of gene expression in comparison to cell proliferation, using double in situ hybridization and immunofluorescence. Using this system, we examined the expression of Indian hedgehog (Ihh) and PTH/PTHrP receptor (PPR) mRNA in relation to chondrocyte proliferation during embryonic mouse bone development. Both genes are expressed strongly in prehypertrophic and early hypertrophic chondrocytes, and there is a strong correlation between upregulation of both Ihh and PPR expression and chondrocyte cell cycle arrest. At embryonic day (E14.5), PPR mRNA upregulation begins in the columnar chondrocytes just prior to cell cycle exit, but at later time points expression is only observed in the postproliferative region. In contrast, Ihh mRNA expression overlaps slightly with the region of columnar proliferating chondrocytes at all stages. This study provides further evidence that in the developing growth plate, cell cycle exit and upregulation of Ihh and PPR mRNA expression are coupled.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号