首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 235 毫秒
1.
Mitogen-activated protein (MAP) kinases mediate cellular responses to a wide variety of stimuli. Activation of a MAP kinase occurs after phosphorylation by an upstream dual-specificity protein kinase, known as a MAP kinase kinase or MEK. The Arabidopsis thaliana genome encodes 10 MEKs but few of these have been shown directly to activate any of the 20 Arabidopsis MAP kinases. We show here that functional complementation of the cell lysis phenotype of a mutant yeast strain depends on the co-expression of the Arabidopsis MEK AtMKK6 and the MAP kinase AtMPK13. The kinase activity of AtMPK13 is stimulated in the presence of AtMKK6 in yeast cells. RT-PCR analysis showed the co-expression of these two genes in diverse plant tissues. These data show that AtMKK6 can functionally activate the MAP kinase AtMPK13.  相似文献   

2.
3.
Mitogen-activated protein (MAP) kinases cascades mediate cellular responses to a great variety of different extracellular signals in plants. Activation of a MAP kinase occurs after phosphorylation by an upstream dual-specificity protein kinase, known as a MAP kinase kinase. However, only a few of the MAPK kinases in Arabidopsis have been investigated. An active AtMKK3, 35S:AtMPK1, 35S:AtMPK2, and 35S:AtMPK3 constructs were built and their transformed plants were generated. The kinase activity of AtMPK1 or AtMPK2 was stimulated by active AtMKK3 in transient analysis of tobacco leaves. Coimmunoprecipitation experiments indicated interaction between AtMKK3 and AtMPK1 or AtMPK2 in the coexpressed tissues of AtMKK3 and AtMPK1 or AtMKK3 and AtMPK2. RT-PCR analysis showed that AtMKK3 and AtMPK1, or AtMKK3 and AtMPK2 were co-expressed in diverse plant tissues. Plants overexpressing AtMKK3 exhibited an enhanced tolerance to salt and were more sensitive to ABA. Plants overexpressing AtMPK1 or AtMPK2 were also more sensitive to ABA. AtMPK1 or AtMPK2 can be activated by cold, salt, and ABA. AtMKK3, AtMPK1, and AtMPK2 genes were induced by ABA or stress treatments. All these data indicated that the ABA signal transmitted to a MAPK kinase signaling cascade and could be amplified through MAP kinase1 or MAP kinase2 for increasing salt stress tolerance in Arabidopsis.  相似文献   

4.
Mitogen-activated protein kinase (MAPK) pathways represent a crucial regulatory mechanism in plant development. The ability to activate and inactivate MAPK pathways rapidly in response to changing conditions helps plants to adapt to a changing environment. AtMKK1 is a stress response kinase that is capable of activating the MAPK proteins AtMPK3, AtMPK4 and AtMPK6. To elucidate its mode of action further, several tests were undertaken to examine the response of AtMKK1 to salt stress using a knockout (KO) mutant of AtMKK1. We found that AtMKK1 mutant plants tolerated elevated levels of salt during both germination and adulthood. Proteomic analysis indicated that the level of the α subunit of mitochrondrial H+-ATPase, mitochrondial NADH dehydrogenase and mitochrondrial formate dehydrogenase was enhanced in AtMKK1 knockout mutants upon high salinity stress. The level of formate dehydrogenase was further confirmed by immunoblotting and enzyme assay. The possible involvement of these enzymes in salt tolerance is discussed.  相似文献   

5.
The constitutive and drought-induced activities of the Arabidopsis thaliana RD29A and RD29B promoters were monitored in soybean (Glycine max (L.) Merr.] via fusions with the visual marker gene β-glucuronidase (GUS). Physiological responses of soybean plants were monitored over 9 days of water deprivation under greenhouse conditions. Data were used to select appropriate time points to monitor the activities of the respective promoter elements. Qualitative and quantitative assays for GUS expression were conducted in root and leaf tissues, from plants under well-watered and dry-down conditions. Both RD29A and RD29B promoters were significantly activated in soybean plants subjected to dry-down conditions. However, a low level of constitutive promoter activity was also observed in both root and leaves of plants under well-watered conditions. GUS expression was notably higher in roots than in leaves. These observations suggest that the respective drought-responsive regulatory elements present in the RD29X promoters may be useful in controlling targeted transgenes to mitigate abiotic stress in soybean, provided the transgene under control of these promoters does not invoke agronomic penalties with leaky expression when no abiotic stress is imposed.  相似文献   

6.
The mitogen-activated protein (MAP) kinase cascades are important signaling components that mediate various biological pathways in all eukaryotic cells. In our recent publication,1 we identified AtMPK4 as one of the downstream targets of AtMKK6 that is required for executing male-specific meiotic cytokinesis. Here we provide evidence that another target, AtMPK13, is developmentally co-expressed with AtMKK6 in Arabidopsis, and both AtMPK13 and AtMKK6 display high Promoter::GUS activity in the primary root tips and at the lateral root primordia. Partial suppression of either AtMKK6 or AtMPK13 expression significantly reduces the number of lateral roots in the transgenic lines, suggesting that the AtMKK6-AtMPK13 module positively regulates lateral root formation.Key words: MAP kinase modules, lateral root, RNAi, developmental specificity, pericycle  相似文献   

7.
Mitogen-activated protein kinases (MAPKs) are key enzymes that mediate adaptive responses to various abiotic and biotic stresses, including pathogen challenge. The proteinaceous bacterial elicitor harpin (secreted by Pseudomonas syringae pv syringae) activates two MAPKs in suspension cultures of Arabidopsis var. Landsberg erecta. In this study, we show that harpin and exogenous hydrogen peroxide (H(2)O(2)) activate myelin basic protein kinases in Arabidopsis leaves. Using anti-AtMPK4 and anti-AtMPK6 antibodies, we identify the harpin-activated MAPKs in both leaves and suspension cultures as AtMPK4 and AtMPK6, and show that H(2)O(2), generated by Arabidopsis cells in response to challenge with harpin, activates only AtMPK6. However, treatments with catalase, which removes H(2)O(2), or diphenylene iodonium, which inhibits superoxide and H(2)O(2) production, do not inhibit harpin-induced activation of AtMPK4 or AtMPK6. In addition, activation of AtMPK4 but not AtMPK6 is inhibited by the MAPK kinase inhibitor PD98059. Neither harpin nor H(2)O(2) has any effect on AtMPK4 or AtMPK6 gene expression. In addition, the expression of AtMEKK1, AtMEK1, or AtMKK2, previously shown to be potential functional partners of AtMPK4, were not affected by either harpin or H(2)O(2) treatments. These data suggest that harpin activates several signaling pathways, one leading to stimulation of the oxidative burst and others leading to the activation of AtMPK4 or AtMPK6.  相似文献   

8.
Protein kinases related to the family of mitogen-activated kinases (MAPKs) have been established as signal transduction components in a variety of processes in plants. For Arabidopsis thaliana, however, although one of the genetically best studied plant species, biochemical data on activation of mitogen-activated protein kinases are lacking. A. thaliana MAPK 6 (AtMPK6) is the Arabidopsis orthologue of a tobacco MAPK termed salicylate-induced protein kinase, which is activated by general and race-specific elicitors as well as by physical stress. Using a C terminus-specific antibody, we show that AtMPK6 is activated in elicitor-treated cell cultures of A. thaliana. Four different elicitors from bacteria, fungi, and plants lead to a rapid and transient activation of AtMPK6, indicating a conserved signaling pathway. The induction was equally rapid as medium alkalinization, one of the earliest elicitor response observed in cell cultures. A similarly rapid activation of AtMPK6 was observed in elicitor-treated leaf strips, demonstrating that recognition of the elicitors and activation of the MAPK pathway occurs also in intact plants. We demonstrate by in vivo labeling that AtMPK6 is phosphorylated on threonine and tyrosine residues in elicited cells.  相似文献   

9.
In Arabidopsis thaliana, oxidant-induced signalling has been shown to utilize the mitogen-activated protein kinase (MAPK), AtMPK6. To identify proteins whose accumulation is altered by ozone in an AtMPK6-dependent manner we employed isotope-coded affinity tagging (ICAT) technology to investigate the impact of AtMPK6-suppression on the protein profiles in Arabidopsis both before (air control) and during continuous ozone (O3) fumigation (500 nL L−1 for 8 h). Among the 150 proteins positively identified and quantified in the O3-treated plants, we identified thirteen proteins whose abundance was greater in the AtMPK6-suppressed genotype than in wild-type (WT). These include the antioxidant proteins, monodehydroascorbate reductase, peroxiredoxin Q, and glutathione reductase. A further eighteen proteins were identified whose abundance was lower in the ozone-treated AtMPK6-suppressed line relative to ozone-exposed WT plants. These predominantly comprised proteins involved in carbohydrate-, energy-, and amino acid metabolism, and tetrapyrrole biosynthesis. In control plants, five proteins increased, and nine proteins decreased in abundance in the AtMPK6-suppressed genotype compared to that of the WT, reflecting changes in the protein composition of plants that have AtMPK6 constitutively suppressed. Since a number of these proteins are part of the redox response pathway, and loss of AtMPK6 renders Arabidopsis more susceptible to oxidative stress, we propose that AtMPK6 plays a key role in the plant''s overall ability to manage oxidative stress.Key words: Arabidopsis thaliana, AtMPK6, isotope-coded affinity tag (ICAT), ozone, MAPK, signalling  相似文献   

10.
从拟南芥基因组中分别克隆AtCKX1基因和RD29B基因5′-侧翼1705bp启动子区域序列,生物信息学表明,AtCKX1含有黄素腺嘌呤二核苷酸(FAD)和细胞分裂素的结合位点;RD29B启动子片段中存在ABA响应元件(ABA response element;ABRE)、Myb结合位点、TATA-盒、CAAT-盒等顺式作用元件。分别将AtCKX1和RD29B插入载体pCAMBIA1390,构建了由RD29B驱动的AtCKX1的植物双元表达载体p1390RD29BAtCKX1。  相似文献   

11.
12.
Mitogen-activated protein kinase (MAPK) cascades have been implicated in regulating various aspects of plant development, including somatic cytokinesis. The evolution of expanded plant MAPK gene families has enabled the diversification of potential MAPK cascades, but functionally overlapping components are also well documented. Here we report that Arabidopsis MPK4, an MAPK that was previously described as a regulator of disease resistance, can interact with and be phosphorylated by the cytokinesis-related MAP kinase kinase, AtMKK6. In mpk4 mutant plants, anthers can develop normal microspore mother cells (MMCs) and peripheral supporting tissues, but the MMCs fail to form a normal intersporal callose wall after male meiosis, and thus cannot complete meiotic cytokinesis. Nevertheless, the multinucleate mpk4 microspores subsequently proceed through mitotic cytokinesis, resulting in enlarged mature pollen grains that possess increased sets of the tricellular structure. This pollen development phenotype is reminiscent of those observed in both atnack2/tes/stud and anq1/mkk6 mutants, and protein-protein interaction analysis defines a putative signalling module linking AtNACK2/TES/STUD, AtANP3, AtMKK6 and AtMPK4 together as a cascade that facilitates male-specific meiotic cytokinesis in Arabidopsis.  相似文献   

13.
Diverse stress signals activate the C1 subgroup MAP kinases of Arabidopsis   总被引:1,自引:0,他引:1  
Mitogen-activated protein kinase (MAPK) cascades play an important role in mediating stress responses in plants. In Arabidopsis, 20 MAPKs have been identified and classified into four major groups (A-D). Little is known about the role of group C MAPKs. We have studied the activation of Arabidopsis subgroup C1 MAPKs (AtMPK1/AtMPK2) in response to mechanical injury. An increase in their kinase activity was detected in response to wounding that was blocked by cycloheximide. Jasmonic acid (JA) activated AtMPK1/AtMPK2 in the absence of wounding. Wound and JA-induction of AtMPK1/2 kinase activity was not prevented in the JA-insensitive coi1 mutant. Other stress signals, such as abscisic acid (ABA) and hydrogen peroxide, activated AtMPK1/2. This report shows for the first time that regulation of AtMPK1/2 kinase activity in Arabidopsis might be under the control of signals involved in different kinds of stress.  相似文献   

14.
15.
16.
17.
促分裂原活化蛋白激酶(MAPK)级联途径主要MAPKKK、MAPKK和MAPK三个组分构成,彼此逐级磷酸化进而传递细胞信号。这些激酶可以将信息从感应器传递到效应器,并在胞内外信号传递中起多种作用。同时,MAPK级联途径通过相互“交谈”形成复杂的信号传递网络,从而有效地传递各种特异信号。迄今为止,拟南芥AtMPK3、AtMPK4和AtMPK6是研究最多的MAPKs。本文综述AtMPK6参与调控植物对逆境胁迫的响应,以及在生长发育过程中的作用,并介绍AtMPK6与蛋白磷酸酶之间的关系。  相似文献   

18.
In plants, mitogen-activated protein kinases (MAPK) have been implicated in signalling associated with many processes, including cellular differentiation, organ development, cell death and stress/hormone signalling. While MAPK cascades are known to act in the cytosol and the nucleus, sequence analysis of the Arabidopsis MAPK cascade proteins predicts the presence of import signals that would target some of them to other organelles. In vitro uptake experiments confirm the predicted import of an oxidant-responsive MAPKK, AtMKK4, into the chloroplast. Unexpectedly, the imported MKK4 protein was not processed through stromal peptidase-dependent cleavage of the N-terminal signal peptide, thus leaving the pre-protein intact. Nevertheless, the N-terminal region was shown to be essential both for the import process and for the ability of MKK4 to activate its cognate MAPK targets in vivo. MKK4 import also occurred irrespective of the activation status of the kinase. The import of this primarily cytosolic oxidant-stimulated AtMKK4 into the chloroplasts, organelles with high redox fluxes, suggests that one of the functions of MKK4 might be to help coordinate intercompartment responses to cellular redox imbalances.Key words: cell death, chloroplast, compartmentation, MAPK, MAPK kinase, MPK6, MPK3, signal transduction, stroma, transit peptide  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号