首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Homogeneous alpha and beta subunits were isolated for the first time in preparative amounts in the presence of sodium dodecyl sulfate. Analysis by analytical polyacrylamide electrophoresis, sedimentation velocity, and immunoprecipitation with monospecific antibodies indicated homogeneity. The apparent molecular masses of the purified subunits as determined electrophoretically in the presence of dodecyl sulfate are: alpha = 140.2 +/- 2.1 kDa and beta = 123 +/- 1.8 kDa. Amino acid analyses show that per 100 mol amino acid the alpha-subunit has a higher serine content (Ser alpha/Ser beta = 1.32, Ser alpha/Ser gamma = 1.42) and a lower aspartic acid/asparagine (Asx) content (AsX alpha/Asx beta = 0.76, Asx alpha/Asx gamma = 0.90) than the beta and gamma subunits. Monospecific antibodies against the purified alpha, beta and gamma subunits were produced in sheep [J. Immunol. Methods (1984) 70, 193-209] and their action on the catalytic activity of non-activated phosphorylase kinase assayed. It can be shown that certain antibody fractions of anti-alpha, anti-beta and anti-gamma inhibit the Ca2+-dependent and Ca2+-independent activity at pH 6.8 as well as at pH 8.2. Other antibody fractions against the beta and gamma subunits however activate the Ca2+-dependent activity at pH 6.8 threefold to fourfold, although they inhibit the activity at pH 8.2. These antibodies lead to a ca. five fold increase in the pH 6.8/8.2 activity ratio. Activating anti-beta can even overcome the inhibitory action of anti-alpha at pH 6.8. A kinetic analysis shows that inhibition is the result of a mixed type mechanism whereas activation is due to a fivefold to tenfold increase in V for phosphorylase b. The results illustrate the importance of possibly large, concerted conformational changes of phosphorylase kinase. It appears that activation or inhibition can be triggered by the antibody binding to conformational determinants of a single subunit type leading to a structural alteration of the holoenzyme.  相似文献   

2.
Monoclonal antibodies to rabbit skeletal muscle phosphorylase kinase were produced by the conventional hybridoma cell technique. 90 out of 600 hybridomas were found to produce phosphorylase kinase binding antibodies from which only five secreted also phosphorylase kinase activity affecting antibodies. Three of them were cloned; two hybridomas resisted all cloning efforts. Employing immunoblot technique all monoclonal antibodies show cross-reactivity with the alpha, beta, and gamma subunits of phosphorylase kinase indicating that similar, if not identical, epitopes are present on these three subunits. No cross-reactivity with delta is observed. Monoclonal antibodies secreted by two clones which bind to the alpha subunit stimulate the Ca2+-independent A0 activity of phosphorylase kinase more than 30-fold, whereas all other monoclonal antibodies obtained are ineffective in this respect. Monoclonal antibodies binding to the beta subunit inhibit the Ca2+-dependent activities significantly. Antibody produced by one hybridoma binds to the alpha, beta, and gamma subunits with approximately the same affinity. Based on the dual function of calmodulin in phosphorylase kinase (Hessová, Z., Varsányi, M., and Heilmeyer, L.M.G., Jr. (1985) Eur. J. Biochem. 146, 107-115) we conclude that binding of anti-alpha monoclonal antibodies to a regulatory domain in the alpha subunit results in an uncoupling of the inhibitory function of the Ca2+-free delta from the holoenzyme which leads to a concomitant increase in A0 activity. Furthermore, binding of anti-beta monoclonal antibodies to the beta subunit prevents a signal transfer from the Ca2+-saturated delta to the catalytic site of the holoenzyme which inhibits the Ca2+-dependent activities.  相似文献   

3.
Phosphorylase kinase has been purified from white and red chicken skeletal muscle to near homogeneity, as judged by sodium dodecyl sulphate (SDS) gel electrophoresis. The molecular mass of the native enzyme, estimated by chromatography on Sepharose 4B, is similar to that of rabbit skeletal muscle phosphorylase kinase, i.e. 1320 kDa. The purified enzyme both from white and red muscles showed four subunits upon polyacrylamide gel electrophoresis in the presence of SDS, corresponding to alpha', beta, gamma' and delta with molecular masses of 140 kDa, 129 kDa, 44 kDa and 17 kDa respectively. Based on the molecular mass of 1320 kDa for the native enzyme and on the molar ratio of subunits as estimated from densitometric tracings of the polyacrylamide gels, a subunit formula (alpha' beta gamma' delta)4 has been proposed. The antiserum against the mixture of the alpha' and beta subunits of chicken phosphorylase kinase gave a single precipitin line with the chicken enzyme but did not cross-react with the rabbit skeletal muscle phosphorylase kinase. The pH 6.8/8.2 activity ratio of phosphorylase kinase from chicken skeletal muscle varied from 0.3 to 0.5 for different preparations of the enzyme. Chicken phosphorylase kinase could utilize rabbit phosphorylase b as a substrate with an apparent Km value of 0.02 mM at pH 8.2. The apparent V (18 mumol min-1 mg-1) and Km values for ATP at pH 8.2 (0.20 mM) were of the same order of magnitude as that of the purified rabbit phosphorylase kinase b. The activity of chicken phosphorylase kinase was largely dependent on Ca2+. The chicken enzyme was activated 2-4-fold by calmodulin and troponin C, with concentrations for half-maximal activation of 2 nM and 0.1 microM respectively. Phosphorylation with the catalytic subunit of cAMP-dependent protein kinase (up to 2 mol 32P/mol alpha beta gamma delta monomer) and autophosphorylation (up to 8 mol 32P/mol alpha beta gamma delta monomer) increased the activity 1.5-fold and 2-fold respectively. Limited tryptic and chymotryptic hydrolysis of chicken phosphorylase kinase stimulated its activity 2-fold. Electrophoretic analysis of the products of proteolytic attack suggests some differences in the structure of the rabbit and chicken gamma subunits and some similarities in the structure of the rabbit red muscle and chicken alpha'.  相似文献   

4.
When phosphorylase kinase from rabbit skeletal muscle was activated by phosphorylation and then cross-linked with 1,5-difluoro-2,4-dinitrobenzene at pH 6.8, dimers of beta subunits were formed that were not observed during cross-linking of nonphosphorylated enzyme under the same conditions. The ability to form these dimers was due to phosphorylation of the beta subunit because when enzyme phosphorylated in the alpha and beta subunits was incubated with a protein phosphatase relatively specific for the beta subunit (Ganapathi, M.K., Silberman, S.R., Paris, H., and Lee, E.Y.C. (1981) J. Biol. Chem. 256, 3213-3217), the ability to form the cross-linked beta dimers was lost. Significant amounts of two complexes also judged to be dimers of beta subunits were observed when nonphosphorylated phosphorylase kinase was cross-linked after preincubation with Ca2+ plus Mg2+ ions, after proteolysis by chymotrypsin, or when it was cross-linked at pH 8.2, three conditions known to stimulate the activity of the nonphosphorylated enzyme. From these results, we conclude that 1,5-difluoro-2,4-dinitrobenzene can serve as a structural probe for activated states of phosphorylase kinase. The activation is associated with a conformational change in which two beta subunits either move closer together or have a reactive group on one, or both, of them unmasked. Our results suggest that the diverse mechanisms listed above for stimulating phosphorylase kinase activity cause a common conformational change to occur.  相似文献   

5.
Phosphorylase kinase activity is renatured and detected in situ following electrophoresis of the denatured holoenzyme in a sodium dodecyl sulfate-polyacrylamide gel containing phosphorylase b that has been included in the gel polymerization according to the method of R. L. Geahlen et al. [(1986) Anal. Biochem. 153, 151-158]. Among the enzyme's four subunits, only gamma is catalytically active. When extract of rabbit muscle is electrophoresed and renatured in a similar manner, the phosphorylase-conversion activity is also associated only with a protein band that comigrates with the gamma subunit of phosphorylase kinase. This suggests that the gamma subunit of phosphorylase kinase may be the sole activity in rabbit muscle responsible for the phosphorylation of phosphorylase b. In an alternative method for the renaturation of activity from conventional sodium dodecyl sulfate-polyacrylamide gels, the subunits of the enzyme are visualized using 2.5 M KCl, excised from the gel, and eluted by diffusion into buffer containing sodium dodecyl sulfate, which is subsequently removed by acetone precipitation of the eluted subunits. Catalytic activity is recovered when the acetone precipitate of the extracted gamma subunit is dissolved in 6 M guanidine hydrochloride and diluted 50-fold into an activity assay. Inclusion of eluted alpha and beta subunits in the assay inhibits the activity of the gamma subunit, which supports our previous finding that the alpha and/or beta subunits suppress the activity of the catalytic gamma subunit [H. K. Paudel and G. M. Carlson (1987) J. Biol. Chem. 262, 11912-11915].  相似文献   

6.
Two type 2A protein phosphatases, phosphatases I (Mr = 180,000) and III (Mr = 177,000), were purified to near homogeneity from human erythrocyte cytosol. Phosphatase I was composed of alpha (34 kDa), beta (63 kDa), and delta (74 kDa) subunits in a ratio of 1:1:1. Phosphatase III comprised alpha, beta, and gamma (53 kDa) subunits in the same ratio. Heparin-Sepharose column chromatography converted most of phosphatase I and 20% of phosphatase III into alpha 1 beta 1 which were indistinguishable from phosphatase IV (Usui, H., Kinohara, N., Yoshikawa, K., Imazu, M., Imaoka, T., and Takeda, M. (1983) J. Biol. Chem. 258, 10455-10463). The catalytic subunit alpha and the beta subunit of phosphatases I, III, and IV displayed identical V8 and papain peptide maps, respectively, while the peptide maps of the alpha, beta, gamma, and delta subunits were clearly distinct. The molar ratio of phosphatases I, III, and IV in erythrocyte cytosol was estimated to be 6:1:14. Comparison of molecular activities of alpha, alpha 1 beta 1, alpha 1 beta 1 delta 1, and alpha 1 beta 1 gamma 1 revealed that beta suppressed phosphorylase and P-H2B histone phosphatase activities of alpha but stimulated the P-H1 histone phosphatase activity, and delta suppressed all the phosphatase activities of alpha 1 beta 1. The gamma subunit stimulated the P-histone phosphatase activity of alpha 1 beta 1 but inhibited the phosphorylase and P-spectrin phosphatase activities. The beta subunit increased the Mg2+ or Mn2+ requirement for P-H2B histone phosphatase activity of alpha, an effect which was counteracted by delta. The effects of heparin, H1 histone, protamine, and polylysine on the phosphorylase phosphatase activity of phosphatases I, III, IV, and alpha were described and discussed in connection with the functions of the subunits.  相似文献   

7.
We have previously reported that rabbit skeletal muscle phosphorylase kinase is phosphorylated by glycogen synthase (casein) kinase-1 (CK-1) primarily on the beta subunit (beta = 1 mol of PO4; alpha = 0.2 mol of PO4) when the reaction was carried out in beta-glycerophosphate. The resultant enzyme activation was 16-fold (Singh, T. J., Akatsuka, A., and Huang, K.-P. (1982) J. Biol. Chem. 257, 13379-13384). In the present study we found that in Tris-Cl buffer CK-1 catalyzes the incorporation of greater than 2 mol of PO4/monomer into each of the alpha and beta subunits. Phosphorylase kinase activation resulting from the higher level of phosphorylation remained 16-fold. 32P-Labeled tryptic peptides from the alpha and beta subunits were analyzed by isoelectric focusing. Cyclic AMP-dependent protein kinase (A-kinase) phosphorylates a single major site in each of the alpha and beta subunits at 1.5 mM Mg2+. In addition to these two sites, A-kinase phosphorylates at least three other sites in the alpha subunit at 10 mM Mg2+. CK-1 also catalyzes the phosphorylation of multiple sites in both the alpha and beta subunits. Of the two major sites phosphorylated by CK-1 in the beta subunit, one of these sites is also recognized by A-kinase. At least three sites are phosphorylated by CK-1 in the alpha subunit. One of these sites is recognized by CK-1 only after a prior phosphorylation of phosphorylase kinase by A-kinase at a single site in each of the alpha and beta subunits at 1.5 mM Mg2+. The roles of the different phosphorylation sites in phosphorylase kinase activation are discussed.  相似文献   

8.
Phosphorylase kinase, a regulatory enzyme of glycogenolysis in skeletal muscle, is a hexadecameric oligomer consisting of four copies each of a catalytic subunit (gamma) and three regulatory subunits (alpha, beta, and delta, the last being endogenous calmodulin). The enzyme is activated by a variety of effectors acting through its regulatory subunits. To probe the quaternary structure of nonactivated and activated forms of the kinase, we used the heterobifunctional, photoreactive cross-linker N-5-azido-2-nitrobenzoyloxysuccinimide. Mono-derivatization of the holoenzyme with the succinimidyl group, followed by photoactivation of the covalently attached azido group, resulted in intramolecular cross-linking to form two distinct heterodimers: a major (alphagamma) and a minor (betadelta) conjugate. Formation of both conjugates was significantly altered in activated conformations of the enzyme induced by phosphorylation, alkaline pH, and several allosteric activators (ADP, exogenous calmodulin/Ca2+, and Ca2+ alone). Of these activating mechanisms, all increased formation of alphagamma, except Ca2+ alone, which inhibited its formation. When cross-linking was carried out at alkaline pH or in the presence of ADP or exogenous calmodulin/Ca2+, the cross-linked enzyme remained activated following removal of the activators; however, cross-linking in the presence of Ca2+ resulted in sustained inhibition. The results indicate that perturbations in the subunit cross-linking forming the alphagamma dimer reflect the subsequent extent of sustained activation of the holoenzyme that is measured. The region cross-linked to the catalytic gamma subunit was confined to the C-terminal 1/6th of the alpha subunit, which contains known regulatory regions. These results suggest that activators of the phosphorylase kinase holoenzyme perturb interactions between the C-terminal region of the inhibitory alpha subunit and the catalytic gamma subunit, ultimately leading to activation of the latter.  相似文献   

9.
In native nonactivated phosphorylase kinase [14C] iodacetamide interacts with 50 cysteinyl residues per enzyme molecule (alpha beta gamma delta)4. According to their reactivity towards iodacetamide these residues can be classified into 3 groups. The most reactive cysteinyl residues are involved in the enzyme activation caused by modification of SH-groups. The enzyme inhibition is biphasic. The fast and slow inactivation reactions follow the pseudo-first order kinetics. The rate of inactivation is increased by Ca2+. Mg-ATP effectively protects the enzyme against the inactivation and chemical modification of three SH-groups per protomer (apha beta gamma delta). The kinetics of inactivation and of the [14C] iodacetamide label incorporation demonstrate that two cysteinyl residues per enzyme protomer (alpha beta gamma delta) are essential for the enzyme activity. These residues are located near the ATP-binding site of the beta and gamma subunits of phosphorylase kinase.  相似文献   

10.
Phosphorylase kinase is a calcium-regulated multimeric enzyme of composition (alpha beta gamma delta)4, which contains calmodulin as the integral delta subunit and also is activated further by addition of extrinsic calmodulin. Previous studies by Dasgupta, M., Honeycutt, T., and Blumenthal, D.K. ((1989) J. Biol. Chem. 264, 17156-17163) have identified gamma 302-326 and gamma 342-366 as two calmodulin binding regions. Using peptides that were synthesized based on alpha and beta primary structure and that were predicted to contain the basic amphiphilic alpha-helix motif thought important for calmodulin binding, four additional potential calmodulin binding domains have now been identified: one of high affinity, beta 770-794; two of intermediate affinity, beta 5-28 and beta 920-946; and one with marginally low affinity, alpha 1070-1093. Peptide beta 770-794 was of higher calmodulin affinity than either gamma 302-326 or gamma 342-366; it was of higher affinity than the model synthetic peptide IV defined by O'Neil, K.T., and DeGrado, W.F. ((1990) Trends Biochem. Sci. 15, 59-64); and it is currently the most potent calmodulin-binding peptide so far described. Correlated with their affinity for calmodulin, all six phosphorylase kinase-derived peptides and several other established calmodulin-binding peptides inhibited phosphorylase kinase previously activated by cAMP-dependent phosphorylation, reducing its activity to the level of the nonactivated enzyme. However, these peptides did not inhibit (and some peptides slightly activated) the nonphosphorylated enzyme. Even in the presence of these peptides both activated and nonactivated enzyme remained fully Ca(2+)-dependent. The beta 770-794 peptide has at least a 5-fold greater calmodulin binding affinity than the holo-phosphorylase kinase. This, and its higher affinity for calmodulin than either of the sites on the gamma subunit, raises the possibility that in the native enzyme it may be involved in binding the intrinsic delta subunit. Further, inhibition of activated but not nonactivated enzyme by calmodulin-binding peptides would suggest that the phosphorylation-dependent activation of phosphorylase kinase may be mediated by changes in the binding interactions of the intrinsic calmodulin delta subunit.  相似文献   

11.
Glycogen phosphorylase, a dimer of identical subunits, is activated by phosphorylase kinase-catalyzed phosphorylation of one serine residue in each subunit. In this paper, the effect of the phosphorylation of one subunit on the phosphorylation of the other subunit was examined. The three forms of phosphorylase, phosphorylase b (nonphosphorylated), phosphorylase ab (one subunit phosphorylated), and phosphorylase a (both subunits phosphorylated), were separated by anion-exchange high-performance liquid chromatography (HPLC). Purified phosphorylase ab was found to be stable under the conditions of the phosphorylase kinase assay. Initial rate kinetics showed that phosphorylase kinase had a lower KM for phosphorylase ab (3.9 +/- 0.24 microM) than for phosphorylase b (14.9 +/- 2.6 microM). Using the HPLC separation as a simultaneous assay for the three forms of phosphorylase during the phosphorylase kinase reaction, it was found that the pseudo-first-order rate constant for the second phosphorylation step (k2) was 3.7 times greater than that for the first step (k1). The activator AMP reduced the ratio k2/k1 from 3.7 without AMP to 1.4. When the monomeric gamma delta complex of phosphorylase kinase subunits was used as the enzyme, the ratio k2/k1 was 2.1, compared to 3.7 with the multimeric holophosphorylase kinase. One explanation for these data is that phosphorylation of one subunit of phosphorylase b causes conformational changes that make the other subunit a better substrate for the kinase. In this context, the effect of AMP is to reduce the conformational differences between phosphorylases b and ab, and the gamma delta complex is less sensitive to the conformational differences between the two forms of phosphorylase.  相似文献   

12.
Mouse BC3H1 myocytes were incubated with 32Pi before acetylcholine receptors were solubilized, immunoprecipitated, and subjected to sodium dodecyl sulfate-polyacrylamide gel electrophoresis. More than 90% of the 32P found in the receptor was bound to the delta subunit. Two phosphorylation sites in this subunit were resolved by reverse phase high performance liquid chromatography after exhaustive proteolysis of the protein with trypsin. Sites 1 and 2 were phosphorylated to approximately the same level in control cells. The divalent cation ionophore, A23187, increased 32P in site 1 by 40%, but did not affect the 32P content of site 2. In contrast, isoproterenol increased 32P in site 2 by more than 60%, while increasing 32P in site 1 by only 20%. When dephosphorylated receptor was incubated with [gamma-32P]ATP and the catalytic subunit of cAMP-dependent protein kinase, the delta subunit was phosphorylated to a maximal level of 1.6 phosphates/subunit. Approximately half of the phosphate went into site 2, with the remainder going into a site not phosphorylated in cells. The alpha subunit was phosphorylated more slowly, but phosphorylation of both alpha and delta subunits was blocked by the heat-stable protein inhibitor of cAMP-dependent protein kinase. Phosphorylation of the receptor was also observed with preparations of phosphorylase kinase. In this case phosphorylation occurred in the beta subunit and site 1 of the delta subunit, neither of which were phosphorylated by cAMP-dependent protein kinase. The rate of receptor phosphorylation by phosphorylase kinase was slow relative to that catalyzed by cAMP-dependent protein kinase. Therefore, it can not yet be concluded that phosphorylase kinase phosphorylates the beta subunit and the delta subunit site 1 in cells. However, the results strongly support the hypothesis that phosphorylation by cAMP-dependent protein kinase accounts for phosphorylation of the alpha subunit and the delta subunit site 2 in response to elevations in cAMP.  相似文献   

13.
Phosphorylase kinase (PhK) is a large hexadecameric complex that catalyzes the phosphorylation and activation of glycogen phosphorylase (GP). It consists in four copies each of a catalytic subunit (gamma) and three regulatory subunits (alpha beta delta). Delta corresponds to endogenous calmodulin, whereas little is known on the molecular architecture of the large alpha and beta subunits, which probably arose from gene duplication. Here, using sensitive methods of sequence analysis, we show that the C-terminal domain (named domain D) of these alpha and beta subunits can be significantly related to calcineurin B-like (CBL) proteins. CBL are members of the EF-hand family that are involved in the regulation of plant-specific kinases of the CIPK/PKS family, and relieve autoinhibition of their target kinases by binding to their regulatory region. The relationship highlighted here suggests that PhK alpha and/or beta domain D may be involved in a similar regulation mechanism, a hypothesis which is supported by the experimental observation of a direct interaction between domain D of PhKalpha and the regulatory region of the Gamma subunit. This finding, together the identification of significant similarities of domain D with the preceding domain C, may help to understand the molecular mechanism by which PhK alpha and/or beta domain D might regulate PhK activity.  相似文献   

14.
Skeletal-muscle phosphorylase kinase is a hexadecameric oligomer composed of equivalent amounts of four different subunits, (alpha beta gamma delta)4. The delta-subunit, which is calmodulin, functions as an integral subunit of the oligomer, and the gamma-subunit is catalytic. To learn more about intersubunit contacts within the hexadecamer and about the roles of individual subunits, we induced partial dissociation of the holoenzyme with low concentrations of urea. In the absence of Ca2+ the quaternary structure of phosphorylase kinase is very sensitive to urea over a narrow concentration range. Gel-filtration chromatography in the presence of progressively increasing concentrations of urea indicates that between 1.15 M- and 1.35 M-urea the delta-subunit dissociates, allowing extensive formation of complexes larger than the native enzyme that contain equivalent amounts of alpha-, beta- and gamma-subunits. As the urea concentration is increased to 2 M and 3 M, nearly all of the enzyme aggregates to the heavy species devoid of delta-subunit. Addition of Ca2+, which is known to block dissociation of the delta-subunit [Shenolikar, Cohen, Cohen, Nairn & Perry (1979) Eur. J. Biochem. 100, 329-337], also blocks aggregation of the enzyme induced by the low concentrations of urea. These results suggest that in native phosphorylase kinase the delta-subunit, in addition to activating the catalytic subunit and conferring upon it Ca2(+)-sensitivity, may also serve a structural role in preventing aggregation of the alpha-, beta- and gamma-subunits, thus limiting to four the number of alpha beta gamma delta protomers that associate under standard conditions. In gel-filtration chromatography with urea a protein peak containing equivalent amounts of alpha- and gamma-subunits is also observed, as is a peak containing only beta-subunits. Increasing concentrations of urea have a biphasic effect on the activity of the holoenzyme, being stimulatory up to 1 M and then inhibitory. The concentration-dependence of urea in the inhibitory phase parallels its ability to induce dissociation of the delta-subunit.  相似文献   

15.
A variety of proteases have been evaluated as potential structural and conformational probes of nonphosphorylated and phosphorylated phosphorylase kinase. In general, the enzyme's alpha subunit is rapidly degraded, followed in most cases by hydrolysis of the beta subunit; the gamma subunit is resistant to most proteases. Trypsin clearly distinguishes between the nonactivated and activated conformers of phosphorylase kinase, in that the beta subunit in phosphorylated enzyme, as opposed to nonphosphorylated enzyme, is markedly protected from tryptic attack. In contrast, only a small difference in the rates of proteolysis of the alpha subunit in phosphorylated and nonphosphorylated enzyme is seen, even when a protease is used that is highly selective for the alpha subunit, such as chymotrypsin or endoproteinase Arg C. Incubation of nonphosphorylated phosphorylase kinase with either Mg2+ or Ca2+, which are activating cations, also protects the beta subunit from tryptic hydrolysis, whereas Mn2+, which inhibits the kinase activity, has little effect on proteolysis. The allosteric activator ADP also causes the beta subunit to become refractory to trypsin and mimics the effects of phosphorylation. Similar effector-induced conformational changes in the beta subunit are also observed with enzyme in which the alpha subunit has previously been selectively destroyed. These data indicate that activation of phosphorylase kinase by dissimilar mechanisms is associated with a conformational change in the enzyme's beta subunit that is detectable by trypsin and confirm earlier studies from this laboratory employing a chemical cross-linker as a conformational probe for activated and nonactivated conformers of the enzyme (Fitzgerald, T. J., and Carlson, G. M. (1984) J. Biol. Chem. 259, 3266-3274).  相似文献   

16.
W N Green  A F Ross  T Claudio 《Neuron》1991,7(4):659-666
Different combinations of Torpedo acetylcholine receptor (AChR) subunits stably expressed in mouse fibroblasts were used to establish a role for phosphorylation in AChR biogenesis. When cell lines expressing fully functional AChR complexes (alpha 2 beta gamma delta) were labeled with 32P, only gamma and delta subunits were phosphorylated. Forskolin, which causes a 2- to 3-fold increase in AChR expression by stimulating subunit assembly, increased unassembled gamma phosphorylation, but had little effect on unassembled delta. The forskolin effect on subunit phosphorylation was rapid, significantly preceding its effect on expression. The pivotal role of the gamma subunit was established by treating alpha beta gamma and alpha beta delta cell lines with forskolin and observing increased expression of only alpha beta gamma complexes. This effect was also observed in alpha gamma, but not alpha delta cells. We conclude that the cAMP-induced increase in expression of cell surface AChRs is due to phosphorylation of unassembled gamma subunits, which leads to increased efficiency of assembly of all four subunits.  相似文献   

17.
18.
Gamma-aminobutyric acid Type A (GABAA) receptors are the major sites of synaptic inhibition in the central nervous system. These receptors are thought to be pentameric complexes of homologous transmembrane glycoproteins. Molecular cloning has revealed a multiplicity of different GABAA receptor subunits divided into five classes, alpha, beta, gamma, delta, and rho, based on sequence homology. Within the proposed major intracellular domain of these subunits, there are numerous potential consensus sites for protein phosphorylation by a variety of protein kinases. We have used purified fusion proteins of the major intracellular domain of GABAA receptor subunits produced in Escherichia coli to examine the phosphorylation of these subunits by cAMP-dependent protein kinase (PKA) and protein kinase C (PKC). The purified fusion protein of the intracellular domain of the beta 1 subunit was an excellent substrate for both PKA and PKC. PKA and PKC phosphorylated the beta 1 subunit fusion protein on serine residues on a single tryptic phosphopeptide. Site-directed mutagenesis of serine 409 in the intracellular domain of the beta 1 subunit to an alanine residue eliminated the phosphorylation of the beta 1 subunit fusion protein by both protein kinases. The purified fusion proteins of the major intracellular domain of the gamma 2S and gamma 2L subunits of the GABAA receptor were rapidly and stoichiometrically phosphorylated by PKC but not by PKA. The phosphorylation of the gamma 2S subunit occurred on serine residues on a single tryptic phosphopeptide. Site-directed mutagenesis of serine 327 of the gamma 2S subunit fusion protein to an alanine residue eliminated the phosphorylation of the gamma 2S fusion protein by PKC. The gamma 2L subunit is an alternatively spliced form of the gamma 2S subunit that differs by the insertion of 8 amino acids (LLRMFSFK) within the major intracellular domain of the gamma 2S subunit. The PKC phosphorylation of the gamma 2L subunit occurred on serine residues on two tryptic phosphopeptides. Site-specific mutagenesis of serine 343 within the 8-amino acid insert to an alanine residue eliminated the PKC phosphorylation of the novel site in the gamma 2L subunit. No phosphorylation of a purified fusion protein of the major intracellular loop of the alpha 1 subunit was observed with either PKA or PKC. These results identify the specific amino acid residues within GABAA receptor subunits that are phosphorylated by PKA and PKC and suggest that protein phosphorylation of these sites may be important in regulating GABAA receptor function.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

19.
The potential correlations between phosphorylase kinase subunit phosphorylation and activation have been examined using 32P-perfused rat hearts exposed to a variety of hormonal stimuli. Phosphate incorporation was measured after isolation of the enzyme by immunoprecipitation from heart extracts. Time courses of catecholamine or glucagon treatment produced a rapid rise in both the activity and the beta subunit phosphorylation of the enzyme, and a slightly slower increase in alpha' subunit phosphorylation. For short durations of catecholamine stimulation, the ratio of phosphate in the alpha' versus beta subunit was dependent upon hormone dose. After removal of hormone, both inactivation and alpha' subunit dephosphorylation were fairly slow, while the beta subunit was dephosphorylated more rapidly. For all of the above conditions, activation correlated with both alpha' and beta subunit phosphorylation. The maximum level of phosphate incorporation observed in response to hormonal stimulation is estimated to be approximately 1.3-1.7 mol of [32P]phosphate/mol of (alpha' beta gamma delta)4, divided about equally between the alpha' and beta subunits. When hearts were treated with hormone either in the absence of added calcium or in the presence of a calcium channel blocker, the time courses of subunit phosphorylation and activation were similar to those seen with standard perfusion conditions, suggesting that if any Ca2+-dependent autophosphorylation of phosphorylase kinase were occurring it does not make a major contribution to the observed hormonal responses. The complicated relationships observed here between phosphorylase kinase subunit phosphorylation and activation for the most part provide physiological affirmation of the patterns observed in vitro, but they also show some possible differences of potential interest.  相似文献   

20.
Bovine heart phosphorylase kinase has been isolated by a procedure involving precipitation with polyethylene glycol, DEAE-Sephacel chromatography and calmodulin-Sepharose affinity chromatography. The isolated enzyme had a specific activity of 8.3 IU/mg of protein at pH 8.2 at 30 degrees C in the presence of 1% glycogen. The native enzyme had a sedimentation coefficient of 23 S and the Mr of the alpha', beta, gamma, and delta subunits, were 140,000, 130,000, 46,000, and 18,000, respectively. Activation of the phosphorylase kinase by the catalytic subunit of bovine heart cAMP-dependent protein kinase increases the pH 6.8/8.2 activity ratio from 0.01 to 0.32-0.38. Glycogen (1%) decreased the Km of the activated phosphorylase kinase at pH 6.8 for phosphorylase b from 5.5 to 1.25 mg/ml. Trypsin treatment increased the pH 6.8 activity but decreased the pH 8.2 activity. During this process the alpha' subunit was converted to a Mr 110,000 polypeptide and the enzyme activity was converted essentially to a 5.9 S species having an apparent Mr of 100,000 as determined by gel filtration. On extended trypsin treatment only one major polypeptide corresponding to the beta subunit remained. The same polypeptide was present in the active fractions following gel filtration of the trypsinized kinase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号