首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 415 毫秒
1.
At present, there is no doubt that the signal transduction pathway P13K/Akt/PTEN/mTOR, controlled by phosphatidylinositol-3-kinase, is involved in tumor cell resistance to a number of drugs. Another well-known mechanism determining drug resistance in tumors is associated with the activity of drug transporters of the ABC superfamily (first of all, P-glycoprotein (Pgp), MRP1, BCRP, and LRP). Several mechanisms of cell defense can simultaneously operate in one cell. The interplay of different mechanisms involved in drug resistance is poorly understood. The PC3 and DU145 human prostate cell lines were used to show that the PTEN functional status determined the cell resistance to some drugs and that correlated with the levels of MRP1 and BCRP. Pgp was not involved in drug resistance of these cells. Introduction of PTEN into PTEN-deficient PC3 cells, as well as rapamycin treatment, inhibited Akt and mTOR and sensitized cells to doxorubicin and vinblastine. Exogenous PTEN altered the MRP1 and BCRP expression. The results indicate that at least two mechanisms of drug resistance operate in prostate cancer cells: the PI3K/Akt/PTEN/mTOR pathway and an elevated MRP1 expression. The mechanisms are interconnected: PTEN and mTOR signaling is involved in MRP1 and BCRP expression regulation.  相似文献   

2.
In this review we analyze the data supporting the notion that vault-related MDR, as reflected by LRP/MVP overexpression, represents a marker of drug resistance in vitro and in the clinic. Vaults, besides playing a fundamental biological role, may be involved in a novel mechanism of MDR. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

3.
Li L  Pan Q  Sun M  Lu Q  Hu X 《Life sciences》2007,80(8):741-748
We recently reported that dibenzocyclooctadiene lignans were a novel class of P-glycoprotein (P-gp) inhibitors. In this study, we demonstrated that the lignans of this class were also effective inhibitors of multidrug resistance-associated protein 1 (MRP1). The activities of 5 dibenzocyclooctadiene lignans (schisandrin A, schisandrin B, schisantherin A, schisandrol A, and schisandrol B) to reverse MRP1-mediated drug resistance were tested using HL60/Adriamycin (ADR) and HL60/Multidrug resistance-associated protein (MRP), two human promyelocytic leukemia cell lines with overexpression of MRP1 but not P-gp. The five lignans could effectively reverse drug resistance of the two cell lines to vincristine, daunorubicin, and VP-16. This study, together with our previous reports, proves that dibenzocyclooctadiene lignans have multiple activities against cancer multidrug resistance, including inhibition of P-gp and MRP1, and enhancement of apoptosis. Considering that cancer multidrug resistance (MDR) is multifactorial, agents with broad activities are preferable to the use of combination of several specific modulators to prevent drug-drug interaction and cumulative toxicity.  相似文献   

4.
Cullen K  Davey R  Davey M 《Cytometry》2001,43(3):189-194
BACKGROUND: Multidrug resistance (MDR) is mediated by the drug resistance proteins, the multidrug resistance-associated protein (MRP) and P-glycoprotein, both of which confer resistance by the active efflux of chemotherapeutic drugs from the cell. Reduced Fas (CD95/APO-1) expression and resistance to Fas-mediated apoptosis have also been correlated with P-glycoprotein-mediated MDR. METHODS: We investigated cell surface Fas expression (using anti-Fas monoclonal antibody DX2.1) in a series of MRP-expressing drug-resistant leukemia sublines, and P-glycoprotein-expressing leukemia sublines, and their susceptibility to apoptosis induced by anti-Fas treatment (CH-11 monoclonal antibody). Caspase-3 activation was detected by Western blot and apoptosis was determined by flow cytometry with 7-aminoactinomycin D (7-AAD) staining of cells. RESULTS: Fas expression was not reduced in either the MRP- or P-glycoprotein-expressing drug-resistant cell lines, although expression was reduced by 15% in one low-level drug-resistant subline. Expression of MRP or P-glycoprotein did not confer resistance to caspase-3 activation or to anti-Fas-induced cell death. CONCLUSIONS: MDR mediated by the drug transport proteins MRP and P-glycoprotein does not correlate with resistance to Fas-mediated cell death or resistance to caspase-3 activation.  相似文献   

5.
6.
Previous studies have indicated a role for glucosylceramide synthase (GCS) in multidrug resistance (MDR), either related to turnover of ceramide (Cer) or generation of gangliosides, which modulate apoptosis and/or the activity of ABC transporters. This study challenges the hypothesis that gangliosides modulate the activity of ABC transporters and was performed in two human neuroblastoma cell lines, expressing either functional P-glycoprotein (Pgp) or multidrug resistance-related protein 1 (MRP1). Two inhibitors of GCS, D,L-threo-1-phenyl-2-hexadecanoylamino-3-pyrrolidino-1-propanol (t-PPPP) and N-butyldeoxynojirimycin (NB-dNJ), very efficiently depleted ganglioside content in two human neuroblastoma cell lines. This was established by three different assays: equilibrium radiolabeling, cholera toxin binding, and mass analysis. Fluorescence-activated cell sorting (FACS) analysis showed that ganglioside depletion only slightly and in the opposite direction affected Pgp- and MRP1-mediated efflux activity. Moreover, both effects were marginal compared with those of well-established inhibitors of either MRP1 (i.e., MK571) or Pgp (i.e., GF120918). t-PPPP slightly enhanced cellular sensitivity to vincristine, as determined by 3-[4,5-dimethylthiazol-2-yl]2,5-diphenyl tetrazolium bromide analysis, in both neuroblastoma cell lines, whereas NB-dNJ was without effect. MRP1 expression and its localization in detergent-resistant membranes were not affected by ganglioside depletion. Together, these results show that gangliosides are not relevant to ABC transporter-mediated MDR in neuroblastoma cells.  相似文献   

7.
The occurrence of the multidrug resistance phenotype still represents a limiting factor for successful cancer chemotherapy. Numerous efforts have been made to develop strategies for reversal and/or modulation of this major therapy obstacle through targeting at different levels of intervention. The phenomenon of MDR is often associated with overexpression of resistance-associated genes. Since the classical type of MDR in human cancers is mainly mediated by the P-glycoprotein encoded by the multidrug resistance gene 1, mdr1, the majority of reversal approaches target the expression and/or function of the mdr1 gene/P-glycoprotein. Due to the fact that the multidrug phenotype always represents the net effect of a panel of resistance-associated genes/gene products, other resistance genes, e.g. those encoding the multidrug resistance-associated protein MRP or the lung resistance protein LRP, were included in the studies. Cytokines such as tumor necrosis factor α and interleukin-2 have been shown to modulate the MDR phenotype in different experimental settings in vitro and in vivo. Several studies have been performed to evaluate their potential as chemosensitizers of tumor cells in the context of a combined application of MDR-associated anticancer drugs like doxorubicin and vincristine with cytokines. Moreover, the capability of cytokines to modulate the expression of MDR-associated genes was demonstrated, either by external addition or by transduction of the respective cytokine gene. Knowledge of the combination effects of cytokines and cytostatics and its link to their MDR-modulating capacity may contribute to a more efficient and to a more individualized immuno-chemotherapy of human malignancies. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

8.
Germ cell testicular cancers are well-curable neoplasms, because total remission can be achieved in about 80% of the cases. However, 15-20% of the patients die due to drug resistance (DR). A number of mechanisms of the multidrug resistance phenotype are known, including MDR/P-glycoprotein (P-gp) and the so-called multidrug resistance associated protein (MRP). Lung Resistance Protein (LRP) is an ATP dependent membrane transporter protein associated with MDR. In our present work we studied the expression of LRP in testicular cancers. LRP expression was determined by immunohistochemistry (IH), Western blot (WB) and RT-PCR techniques. Clinical resistance was defined in accordance with the clinical oncologic rules. In 29 (41%) of 70 primary testicular tumours and in 22 (63%) of 35 cases, elevated LRP levels were established by IH and WB, respectively. In the latter 63%, the LRP mRNA levels were elevated as well. Six cases of the 15 seminomas and 23 cases of the nonseminomatous germ cell tumours (NSGCT) proved to be positive. No relationship was demonstrated between LRP expression and the stage of the disease. Despite the LRP positivity of 6 tumour samples, all of the seminomas proved sensitive. Of the 39 sensitive NSGCT, 27 cases were LRP-negative, whereas 11 tumour samples of 16 patients belonging to the resistant group proved LRP-positive (p=0.04). The authors concluded that the expression of LRP is responsible for clinical drug resistance in non-seminomatous testicular cancer patients.  相似文献   

9.
Multidrug resistance (MDR) mediated by overexpression of MDR1 P-glycoprotein (Pgp) is one of the best characterized barriers to chemotherapy in cancer patients. Furthermore, the protective function of Pgp-mediated efflux of xenobiotics in various organs has a profound effect on the bioavailability of drugs in general. Thus, there is an expanding requirement to noninvasively interrogate Pgp transport activity in vivo. We herein report the Pgp recognition properties of a novel 99mTc(I)-tricarbonyl complex, [99mTc(CO)3(MIBI)3]+ (Tc-CO-MIBI). Tc-CO-MIBI showed 60-fold higher accumulation in drug-sensitive KB 3-1 cells compared to colchicine-selected drug-resistant KB 8-5 cells. In KB 8-5 cells, tracer enhancement was observed with the potent MDR modulator LY335979 (EC50 = 62 nM). Similar behavior was observed using drug-sensitive MCF-7 breast adenocarcinoma cells and MCF-7/MDR1 stable transfectants, confirming that Tc-CO-MIBI is specifically excluded by overexpression of MDR1 Pgp. By comparison, net accumulation in control H69 lung tumor cells was 9-fold higher than in MDR-associated protein (MRP1)-expressing H69AR cells, indicating only modest transport by MRP1. Biodistribution analysis following tail vein injection of Tc-CO-MIBI showed delayed liver clearance as well as enhanced brain uptake and retention in mdr1a/1b(-/-) gene deleted mice versus wild-type mice, directly demonstrating that Tc-CO-MIBI is a functional probe of Pgp transport activity in vivo.  相似文献   

10.
Genes of multidrug resistance in haematological malignancies   总被引:2,自引:1,他引:1  
Since the early 1970s, multiple drug resistance has been known to exist in cancer cells and is thought to be attributable to a membrane-bound, energy-dependent pump protein (P-glycoprotein [P-gp]) capable of extruding various related and unrelated chemotherapeutic drugs. The development of refractory disease in haematological malignancies is frequently associated with the expression of one or several multidrug resistance (MDR) genes. MDR1, multidrug resistance-associated protein (MRP) and lung-resistance protein (LRP) have been identified as important adverse prognostic factors. Recently it has become possible to reverse clinical MDR by blocking P-gp-mediated drug efflux. The potential relevance of these reversal agents of MDR as well as the potential new approaches to treat the refractory disease are discussed in this article. In addition, an array of different molecules and mechanisms by which resistant cells can escape the cytotoxic effect of anticancer drugs has now been identified. These molecules and mechanisms include apoptosis-related proteins and drug inactivation enzymes. Resistance to chemotherapy is believed to cause treatment failure in more than 50% patients. Clearly, if drug resistance could be overcome, the impact on survival would be highly significant. This review focuses on molecular mechanism of drug resistance in haematological malignancies with emphasis on molecules involved in MDR. In addition, it brings the survey of methods involved in determination of MDR, in particular P-gp/MDR1, MRP and LRP.  相似文献   

11.
为寻找能有效逆转肿瘤细胞多药耐药性的药物,通过体外细胞实验对Ams-11、Fw-13、Tul-17三种中药制剂逆转肿瘤细胞多药耐药性的作用进行了分析。并用流式细胞仪测定了Tul-17处理细胞后药物累积程度的变化及细胞P糖蛋白表达情况。为进一步研究体外细胞实验筛选出的多药耐药逆转剂在体内的药效学,将其中Fw13用于人白血病K562/ADR裸鼠移植瘤逆转试验。结果:在无细胞毒性的剂量范围内,该三种中药制剂均能明显增强多药耐药细胞对抗癌药物的敏感性,而且其逆转作用呈剂量依赖关系。Tu-17处理后,K562耐药细胞表达的P糖蛋白较对照降低1.5倍,对罗丹明123的累积量是对照的2.5倍。用Fw13治疗人白血病K562/ADR裸鼠移植瘤,可将硫酸长春新碱(VCR)对K562/ADR的抑瘤率从19.79%提高到86.59%,与单独VCR治疗疗效有显著性差异(P<0.05)。结果表明,这三种中药制剂可望成为肿瘤多药耐药逆转剂,在肿瘤化疗中发挥作用。  相似文献   

12.
MDR results from overexpression of P-glycoprotein (Pgp) and multidrug resistance protein (MRP or MRP1) that function as ATP-dependent efflux pumps. Lung resistance related protein (LRP) is also supposed to be involved in MDR. The human canalicular multispecific organic anion transporter (cMOAT) gene that is responsible for the defects in Dubin-Johnson syndrome was isolated. cMOAT is homologous to MRP1 and supposed to be involved in drug resistance. Human cMOAT cDNA transfected LLC-PK1 cells, LLC/cMOAT-1, have increased resistance to vincristine (VCR), 7-ethyl-10-hydroxycamptothecin (SN-38), and cisplatin. The multidrug resistance (MDR)-reversing agents, cyclosporin A (CsA) and PAK-104P, almost completely reversed the resistance to VCR, SN-38 and cisplatin of LLC/cMOAT-1 cells by interacting with the substrate binding site of cMOAT. Treatment of human colorectal carcinoma SW-620 cells with sodium butyrate(NaB) induced LRP in the cells and conferred resistance to Adrianycin(ADM), VCR, VP-16, gramicidin D and taxol. Two LRP-specific ribozymes inhibited the NaB-induced expression of LRP in SW-620 cells and almost completely abolished their acquisition of the MDR phenotype. The accumulation of ADM, VCR and taxol was not decreased in NaB-treated cells, suggesting that ATP-binding cassette transporters are not involved in the MDR of NaB-treated cells. ADM was mainly located in the nuclei of untreated and the cytoplasm of NaB-treated cells. The accumulation level of ADM in the nuclei isolated from untreated cells or those from treated cells in the presence of anti-LRP polyclonal antibody was higher than that from treated cells in the absence of the antibody. Efflux of ADM from nuclei isolated from NaB-treated cells was enhanced compared with those from untreated cells and NaB-treated cells transfected with a LRP-specific ribozyme. The polyclonal antibody against LRP inhibited the enhanced efflux of ADM from nuclei isolated from NaB-treated cells. These findings indicate that LRP is involved in resistance to ADM, VCR, VP-16, taxol and gramicidin D, and has an important role in the transport of ADM from the nucleus to the cytoplasm.  相似文献   

13.
Multidrug resistance (MDR) phenotype of L1210/VCR cell line, acquired by selection for vincristine (VCR), is predominantly mediated by P-glycoprotein (Pgp). Calcein/AM (Cal) was recently described as a fluorescent substrate for Pgp and may be used for measuring of transport activity of Pgp. Expression of Pgp in the cells prevents them to be loaded with the fluorescent marker. To detect the activity of Pgp, verapamil (Ver) or cyclosporine A (CsA) has to be used as Pgp inhibitors. Multidrug resistance protein (MRP), another drug efflux pump, may be inhibited by probenecid (Pro), i.e, the inhibitor of a wide variety of anion transporters. Ver, but not Pro, is able to induce the loading of L1210/CR cells by Cal that is measurable by fluorescence-activated cell sorter (FACS). Another dye, fluo-3/AM (F-3), has a similar behaviour like Cal. Using confocal microscopy we have proved that L1210/VCR cells, in contrast to parental sensitive cells, are not loaded with F-3. Marking of cells with the dye can be achieved using inhibitors of Pgp like Ver or CsA but not by Pro. These results indicate that F-3 is usable for detection of Pgp function in various MDR tissue cells.  相似文献   

14.
Multidrug resistance (MDR) is a major problem in cancer chemotherapy. As P-glycoprotein is the key molecule in MDR, many investigators have constructed anti-P-glycoprotein monoclonal antibodies (MAbs). Those antibodies, including MRK16 and C219, were used for elucidation of the mechanism of MDR and for overcoming of MDR. This article describes the characterization of the antibodies against the P-glycoprotein and other proteins of multidrug-resistant tumor cells, and discusses the therapeutic implication of the antibodies.Abbreviation ADCC antibody-dependent cell-mediated cytotoxicity  相似文献   

15.
Triple-negative breast cancer (TNBC) is a group of breast cancers which neither express hormonal receptors nor human epidermal growth factor receptor. Hence, there is a lack of currently known targeted therapies and the only available line of systemic treatment option is chemotherapy or more recently immune therapy. However, in patients with relapsed disease after adjuvant or neoadjuvant therapy, resistance to chemotherapeutic agents has often developed, which results in poor treatment response. Multidrug resistance (MDR) has emerged as an important mechanism by which TNBCs mediate drug resistance and occurs primarily due to overexpression of ATP-binding cassette (ABC) transporter proteins such as P-glycoprotein (Pgp). Pgp overexpression had been linked to poor outcome, reduced survival rates and chemoresistance in patients. The aim of this mini-review is to provide a topical overview of the recent studies and to generate further interest in this critical research area, with the aim to develop an effective and safe approach for overcoming Pgp-mediated chemoresistance in TNBC.  相似文献   

16.
While P-glycoprotein (Pgp) is the most studied protein involved in resistance to anti-cancer drugs, its mechanism of action is still under debate. Studies of Pgp have used cell lines selected with chemotherapeutics which may have developed many mechanisms of resistance. To eliminate the confounding effects of drug selection on understanding the action of Pgp, we studied cells transiently transfected with a Pgp-green fluorescent protein (GFP) fusion protein. This method generated a mixed population of unselected cells with a wide range of Pgp-GFP expression levels and allowed simultaneous measurements of Pgp level and drug accumulation in living cells. The results showed that Pgp-GFP expression was inversely related to the accumulation of chemotherapeutic drugs. The reduction in drug concentration was reversed by agents that block multiple drug resistance (MDR) and by the UIC2 anti-Pgp antibody. Quantitative analysis revealed an inverse linear relationship between the fluorescence of Pgp-GFP and MDR dyes. This suggests that Pgp levels alone limit drug accumulation by active efflux; cooperativity between enzyme, substrate, or inhibitor molecules is not required. Additionally, Pgp-GFP expression did not change cellular pH. Our study demonstrates the value of using GFP fusion proteins for quantitative biochemistry in living cells.  相似文献   

17.
Multidrug resistance (MDR) in model systems is known to be conferred by two different integral proteins, the 170-kDa P-glycoprotein (Pgp) and the 190-kDa multidrug resistance-associated protein (MRP1). One possible pharmacological approach to overcome drug resistance is the use of specific inhibitors, which enhance the cytotoxicity of known antineoplastic agents. However, while many compounds have been proven to be very efficient in inhibiting Pgp activity only some of them are able to inhibit MRP1. The other likely approach is based on the design and synthesis of new non-cross-resistant drugs with physicochemical properties favoring the uptake of the drug by the resistant cells. The intracellular drug retention influences its cytotoxic effect. The level of the intracellular drug content is a function of the amount of drug transported inside the cell (influx) and the amount of drug expelled from the cell (efflux). In this work, the kinetics of drug uptake and the kinetics of active efflux of several anthracycline derivatives in both Pgp expressing K562/Adr cells and MRP1 expressing GLC4/Adr cells was determined. Our data have shown that in both cell lines there is no correlation between the resistance factor and the kinetics of drug efflux by these pumping systems. However, a very good correlation between the resistance factor and the kinetics of drug uptake has been established in both cell lines: the resistance factor decreases when the kinetics of drug uptake increases. This work has clearly shown that when the rate of transmembrane transport of anthracycline is high enough, the efflux mediated by the protein transporter is not able to pace with it. The protein transporter essentially operates in a futile cycle and the resistance factor is tending to one. It does not mean, however, that when the resistance factor is close to one the anthracycline is not transported by the pump.  相似文献   

18.
Lung resistance-related protein (LRP) is an integral part of the multidrug resistance (MDR) phenotype involved in cell resistance toward xenobiotics or chemotherapy. The aim of this study was to compare the intracellular localization and cell expression of LRP in normal bronchial cells and their tumoral counterparts from non-small cell lung cancer (NSCLC). LRP expression was also investigated concurrently with DNA ploidy and chromosome 16 (lrp gene locus) aberrations. Confocal microscopy showed that LRP localization was exclusively intracytoplasmic regardless of the cell type and was never observed in the nuclear pore complex. Flow cytometry demonstrated a similar level of LRP expression in normal bronchial cells and in cancer cells from NSCLC samples. FISH analysis, performed to evaluate the number of chromosome 16 and lrp loci, demonstrated a significant gain of chromosome 16 in DNA aneuploid tumors. Furthermore, we did not find any link between LRP expression and DNA ploidy status or chromosome 16 number. These results suggest that LRP expression observed in NSCLC, maintained through the carcinogenesis process of respiratory cells, is not altered by the increased number of copies of chromosome 16 and probably controlled by mechanisms different from those of MRP1 expression, whereas both proteins are associated with the MDR phenotype.  相似文献   

19.
Dihydro-beta-agarofuran sesquiterpenes from Celastraceae have been recently shown to bind to human P-glycoprotein (Pgp), functioning as specific, mixed-type inhibitors of its drug transport activity, as well as multidrug resistance (MDR) modulators in vitro. However, nothing is known about whether such compounds are themselves transported by Pgp, or whether they affect Pgp expression as well as its activity, or about the location of their binding site within the protein. We performed transport experiments with a newly synthesized fluorescent sesquiterpene derivative, which retains the anti-Pgp activity of its natural precursor. This probe was poorly transported by Pgp, MRP1, MRP2 and BCRP transporters, compared with classical MDR substrates. Moreover, Pgp did not confer cross-resistance to the most potent dihydro-beta-agarofurans, which did not affect Pgp expression levels in several MDR cell lines. Finally, we observed competitive and non-competitive interactions between one of such dihydro-beta-agarofurans (Mama12) and classical Pgp modulators such as cyclosporin A, verapamil, progesterone, vinblastine and GF120918. These findings suggest that multidrug ABC transporters do not confer resistance to dihydro-beta-agarofurans and could not affect their absorption and biodistribution in the body. Moreover, we mapped their binding site(s) within Pgp, which may prove useful for the rational design of improved modulators based on the structure of dihydro-beta-agarofurans.  相似文献   

20.
P-glycoprotein (pgp) is a membrane transport protein that causes multidrug resistance (MDR) by actively extruding a wide variety of cytotoxic agents out of cells. It may also function as a peptide transporter, a volume-regulated chloride channel, and an ATP channel. Previously, it has been shown that hamster pgp1 Pgp is expressed in more than one topological form and that the generation of these structures is modulated by charged amino acids flanking the predicted transmembrane (TM) segments 3 and 4 and by soluble cytoplasmic factors. Different topological structures of Pgp may be related to its different functions. In this study, we examined the effects of translation temperature on the membrane insertion process and the topologies of Pgp. Using the rabbit reticulocyte lysate expression system, we showed that translation at different temperatures affects the membrane insertion and orientation of the putative TM3 and TM4 of hamster pgp1 Pgp in a co-translational manner. This observation suggests that the membrane insertion process of TM3 and TM4 of Pgp molecules may involve a protein conducting channel and/or the interaction between TM3 and TM4, which act in a temperature sensitive manner. We speculate that manipulating temperature may provide a way to understand the structure-function relationship of Pgp and help overcome Pgp-related multidrug resistance of cancer cells.Abbreviations Pgp P-glycoprotein - MDR multidrug resistance - ABC ATP-binding cassette - RRL rabbit reticulocyte lysate - TM transmembrane - RM rough microsomes - ER endoplasmic reticulum  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号