首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A-DNA conformation is favored by guanine-rich sequences, such as (dG)n x (dC)n, or under low-humidity conditions. Earlier A-DNA crystal structures revealed some conformational variations which may be the result of sequence-dependent effects and/or crystal packing forces. Here we report the high-resolution crystal structure of d(AGGGGCCCCT) in two crystal forms (either in the P212121 or the P6122 space group) to gain insights into the conformation and dynamics of the (dG)n x (dC)n sequence. The P212121 form has been analyzed using data to 1.1 A resolution by the anisotropic temperature factor refinement procedure of the SHELX97 program. Such analysis affords us with the detailed geometric, conformational and motional property of an A-DNA structure. The backbone torsional angles fall in a narrow range, except for the alpha/gamma angles which have two distinct combinations (gauche-/gauche+ or trans/trans). An A-DNA model of poly(dG) x poly(dC) has been constructed using the conformational parameters derived from the crystal structure of the P212121 form. In the crystal structure of the P6122 space group, the central eight base pairs of the decamer adopt A-DNA conformation with the two terminal nucleotides flipped out to form base pairs with the neighboring nucleotides. Comparison of the A-DNA structure of the same sequence from two different crystal forms, reinforced the conclusion that molecules crystallized in the same space group have a more similar conformation, whereas the same molecule crystallized in different space groups has different (local) conformations.  相似文献   

2.
DNA fragments crystallize in an unpredictable manner, and relationships between their crystal and solution conformations still are not known. We have studied, using circular dichroism spectroscopy, solution conformations of (G + C)-rich DNA fragments, the crystal structures of which were solved in the laboratory of one of the present authors. In aqueous trifluorethanol (TFE) solutions, all of the examined oligonucleotides adopted the same type of double helix as in the crystal. Specifically, the dodecamer d(CCCCCGCGGGGG) crystalized as A-DNA and isomerized into A-DNA at high TFE concentrations. On the other hand, the hexamer d(CCGCGG) crystallized in Z-form containing tilted base pairs, and high TFE concentrations cooperatively transformed it into the same Z-form as adopted by the RNA hexamer r(CGCGCG), although d(CCGCGG) could isomerize into Z-DNA in the NaCl + NiCl2) aqueous solution. The fragments crystallizing as B-DNA remained B-DNA, regardless of the solution conditions, unless they denatured or aggregated. Effects on the oligonucleotide conformation of 2-methyl-2,4-pentanediol and other crystallization agents were also studied. 2-Methyl-2,4-pentanediol induced the same conformational transitions as TFE but, in addition, caused an oligonucleotide condensation that was also promoted by the other crystallization agents. The present results indicate that the crystal double helices of DNA are stable in aqueous TFE rather than aqueous solution.  相似文献   

3.
The (dG)n.(dC)n-containing 34mer DNA duplex [d(A2G15C15T2)]2 can be effectively converted from the B-DNA to the A-DNA conformation by neomycin, spermine and Co(NH3)6(3+). Conversion is demonstrated by a characteristic red shift in the circular dichroism spectra and dramatic NMR spectral changes in chemical shifts. Additional support comes from the substantially stronger CH6/GH8-H3'NOE intensities of the ligand-DNA complexes than those from the native DNA duplex. Such changes are consistent with a deoxyribose pucker transition from the predominate C2'-endo (S-type) to the C3'-endo (N-type). The changes for all three ligand-DNA complexes are identical, suggesting that those three complex cations share common structural motifs for the B- to A-DNA conversion. The A-DNA structure of the 4:1 complex of Co(NH3)6(3+)/d(ACCCGCGGGT) has been analyzed by NOE-restrained refinement. The structural basis of the transition may be related to the closeness of the two negatively charged sugar-phosphate backbones along the major groove in A-DNA, which can be effectively neutralized by the multivalent positively charged amine functions of these ligands. In addition, ligands like spermine or Co(NH3)6(3+) can adhere to guanine bases in the deep major groove of the double helix, as is evident from the significant direct NOE cross-peaks from the protons of Co(NH3)6(3+) to GH8, GH1 (imino) and CH4 (amino) protons. Our results point to future directions in preparing more potent derivatives of Co(NH3)6(3+) for RNA binding or the induction of A-DNA.  相似文献   

4.
All crystal structures of A-DNA duplexes exhibit a typical crystal packing, with the termini of one molecule abutting the shallow grooves of symmetry related neighbors, while all other forms (B, Z, and RNA) tend to form infinitely stacked helices. The A-DNA arrangement leads to the formation of shallow groove base multiples that have implications for the structure of DNA in compacted states. The characteristic packing leaves big solvent channels, which can be sometimes occupied by B-DNA duplexes. Comparisons of the structures of the same oligomer crystallizing in two different space groups and of different sequences crystallizing in the same space group show that the lattice forces dominate the A-DNA conformation in the crystals, complicating the effort to elucidate the influence of the base sequence on the structures. Nevertheless, in both alternating and nonalternating fragments some sequence effects can still be uncovered. Furthermore, several studies have started to define the minimal sequence changes or chemical modifications that can interconvert the oligomers between different double-helical conformers (A-, B-, and Z-form). Overall, it is seen that the rigid nucleotide principle applies to the oligomeric fragments. Besides the structures of the naked DNAs, their interactions with water, polyamines, and metal ions have attracted considerable attention. There are conserved patterns in the hydration, involving both the grooves and the backbone, which are different from those of B-DNA or Z-DNA. Overall, A-DNA seems to be more economically hydrated than B-DNA, particularly around the sugar-phosphate backbone. Spermine was found to be able to bind exclusively to either of the grooves or to the phosphate groups of the backbone, or exhibit a mixed binding mode. The located metal cations prefer binding to guanine bases and phosphate groups. The only mispairs investigated in A-DNA are the wobble pairs, yielding structural insight into their effects on helix stabilities and hydration. G · T wobble pairs have been determined in various sequence contexts, where they differentially affect the conformations and stableness of the duplexes. The structure of a G · m5C base pair, which surprisingly also adopted the wobble conformation, suggests that a similar geometry may transiently exist for G · C pairs. These results from the crystalline state will be compared to the solution state and discussed in relation to their relevance in biology. © 1997 John Wiley & Sons, Inc. Biopoly 44: 45–63, 1997  相似文献   

5.
Molecular structure of an A-DNA decamer d(ACCGGCCGGT)   总被引:3,自引:0,他引:3  
The molecular structure of the DNA decamer d(ACCGGCCGGT) has been solved and refined by single-crystal X-ray-diffraction analysis at 0.20 nm to a final R-factor of 18.0%. The decamer crystallizes as an A-DNA double helical fragment with unit-cell dimensions of a = b = 3.923 nm and c = 7.80 nm in the space group P6(1)22. The overall conformation of this A-DNA decamer is very similar to that of the fiber model for A-DNA which has a large average base-pair tilt and hence a wide and shallow minor groove. This structure is in contrast to that of several A-DNA octamers in which the molecules all have low base-pair-tilt angles (8-12 degrees) resulting in an appearance intermediate between B-DNA and A-DNA. The average helical parameters of this decamer are typical of A-DNA with 10.9 base pairs/turn of helix, an average helical twist angle of 33.1 degrees, and a base-pair-tilt angle of 18.2 degrees. However, the CpG step in this molecule has a low local-twist angle of 24.5 degrees, similar to that seen in other A-DNA oligomers, and therefore appears to be an intrinsic stacking pattern for this step. The molecules pack in the crystal using a recurring binding motif, namely, the terminal base pair of one helix abuts the surface of the shallow minor groove of another helix. In addition, the GC base pairs have large propeller-twist angles, unlike those found most other A-DNA structures.  相似文献   

6.
The structure of the octamer d(G-T-G-T-A-C-A-C) was determined in two different crystal forms, tetragonal P4(3)2(1)2 and hexagonal P6(1)22. Although in both forms the octamer adopts an A-DNA structure, there are significant conformational differences between them. In particular, the P-05' and the C5'-C4' bonds of the middle adenine (A5) residue exhibit a distorted trans-trans conformation in the tetragonal form, while they adopt the standard gauche-, gauche+ conformation in the hexagonal form. These differences can be correlated with certain features of the crystal packing interactions in the two forms. Furthermore, a comparison of the structures of various A-DNA octamers reveals that the A-form can be divided into two subclasses such that the hexagonal structures have helical and base pair parameters that fall closer to fiber A-DNA values, while in the tetragonal structures these parameters deviate more from fiber A-DNA. These results indicate that environment plays a major role in determining DNA conformation.  相似文献   

7.
S Jain  G Zon  M Sundaralingam 《Biochemistry》1989,28(6):2360-2364
The crystal structure of a complex of spermine with the DNA octamer d(GTGTACAC) has been determined at 2.0-A resolution. The alternating sequence adopts an A-DNA conformation with a novel purine-purine extra-Watson-Crick hydrogen bond involving the central guanine G3 (G11) and adenine A13 (A5) in the deep groove. The oligocation spermine binds in the floor of the deep groove by interacting with the bases and assumes an S-shape. Its dyad is coincident with that of the DNA, reminiscent of repressor binding to B-DNA. The terminal and central ammonium groups of the top half of spermine form hydrogen-bonding interactions to the 5'-bases, GTG, of one strand; then the spermine winds across the groove to interact with the corresponding set of bases on the other strand. The methylene groups of spermine form a hydrophobic cluster with the methyl groups of the thymines and the O6 atoms of the guanines of the TGT sequences on either side of the dyad. The observed mode of binding of spermine to A-DNA can serve as a model for deep groove binding in RNA and DNA-RNA hybrids that show a propensity also for the A-conformation. It will be of interest to see if base binding of spermine to DNA is involved in the regulation of gene expression, since spermine and other oligocations are ubiquitous in cells and their concentration is coupled to stages in cell cycle.  相似文献   

8.
The complex between cobalt hexammine and decadeoxyoligomer d(CGTACGTACG) crystallizes into the space group P65 with unit cell constants a = b = 17.93A, and c = 43.41A. The molecules have the helix axis coincident with the crystal c-axis. The decamers stack on top of each other and form a quasi-continuous helix. The structure is disordered. The asymmetric unit is a dimer (pPyr-pPur)2 with each base pair 60% of the time a C-G and 40% of the time a T-A. Restrainted least-squares refinement led to an R-factor of 25.5% for 506 observed reflections above the two-sigma level. The structure was found to have one strand in the ZI-conformation and the other in the ZII-conformation. The cobalt hexammine binds to two ZII-chains of symmetrically related molecules. On one ZII chain, two ammonia molecules of the cobalt hexammine bind to the N7 nitrogen and 06 oxygen atoms of the guanine bases and a third ammonia to the phosphate anionic oxygen atom of the preceding pyrimidine base, resulting in an "external" binding mode. On the other ZII chain, one ammonia molecule of the cobalt hexammine binds only to the anionic oxygens of the phosphate group of the guanine bases, leading to an "internal" binding mode. Thus, the basis of the stabilization of Z-DNA by [Co(NH3)6]3+ is its binding to only guanine nucleotides. It is surmised that statistical disordering of deoxyoligonucleotide structures which take a Z conformation, depends on the length of the oligomer. That is to say, octamers and decamers (which cannot use an integral number of molecules for a 12 base pair repeat) form disordered structures whereas tetramers and hexamers form well ordered structures.  相似文献   

9.
The crystal structure of the DNA dodecamer duplex CATGGGCCCATG lies on a structural continuum along the transition between A- and B-DNA. The dodecamer possesses the normal vector plot and inclination values typical of B-DNA, but has the crystal packing, helical twist, groove width, sugar pucker, slide and x-displacement values typical of A-DNA. The structure shows highly ordered water structures, such as a double spine of water molecules against each side of the major groove, stabilizing the GC base pairs in an A-like conformation. The different hydration of GC and AT base pairs provides a physical basis for solvent-dependent facilitation of the A↔B helix transition by GC base pairs. Crystal structures of CATGGGCCCATG and other A/B-DNA intermediates support a ‘slide first, roll later’ mechanism for the B→A helix transition. In the distribution of helical parameters in protein–DNA crystal structures, GpG base steps show A-like properties, reflecting their innate predisposition for the A conformation.  相似文献   

10.
The three-dimensional structure of the self-complementary DNA octamer d(GCCCGpGGC) has been determined in the crystalline state using X-ray diffraction data to a nominal resolutoin of 2.12 measured from a very small crystal at DESY, Hamburg. The structure was refined with stereochemical restraints to an R value of 17.1%. d(GCCCGpGGC), containing one single 3'-methylene phosphonate linkage (denoted p), forms an A-DNA double helix with strict dyad symmetry, that is distinct from canonical A-DNA by a wide open major groove and a small average base-pair inclination against the helix axis. The conformation of the unmodified control d(GCCCGGGC) is known from an X-ray analysis of isomorphous crystals (Heinemann et al. (1987) Nucleic Acids Res. 15, 9531-9550). Comparison of the two structures reveals only minor conformational differences, most notably in the pucker of the reduced deoxyribose. It is suggested that oligonucleotides with charged 3'-methylene phosphonate groups may form stable duplexes with complementary DNA or RNA strands rendering them candidates for use as gene-regulatory antisense probes.  相似文献   

11.
We report the 2.6 Å resolution crystal structure of the tetra-decamer d(CGCGGGTACCCGCG) in the tetragonal space group P43. This sequence contains the KpnI restriction site GGTACC in the centre which is flanked by alternating ‘CG’ sequences, and has a ‘TA’ step at the centre. These are features could favour the left-handed Z type helix. Despite this, overall the molecule has the A form. This is the first tetra-decamer crystallized in the A-DNA conformation, i.e. more than one full turn of the A helix. The crystallographic asymmetric unit consists of one tetra-decamer duplex. The helical twist and slide, as well as the base pair–base pair stacking interactions show alternations at the alternating pyrimidine–purine and purine–pyrimidine base steps. This variation is reminiscent of the dinucleotide repeat in left-handed Z-DNA helices. The crystal packing is unlike other A-DNA crystal structures, with each helix having a large number of contacts of many different types with symmetry-related neighbours.  相似文献   

12.
The effect of spermine on the A-DNA to B-DNA transition in d(CGCGAATTCGCG)(2) has been investigated by five A-start molecular dynamics simulations, using the Cornell et al. potential. In the absence of spermine an A-->B transition is initiated immediately and the DNA becomes equidistant from the A- and B-forms at 200ps. In three DNA-spermine simulations, when a spermine is located across the major groove of A-DNA in one of three different initial locations, the time taken to reach equidistance from the A- and B-forms is delayed until 800, 950 or 1000ps. In each case the A-form appears to be temporarily stabilized by spermine's electrostatic interactions with phosphates on both sides of the major groove. The onset of the A-->B transition can be correlated with the spermine losing contact with phosphates on one side of the groove and with A-like --> B-like sugar pucker transitions in the vicinity of the spermine bridge. However in the fifth trajectory, in which the spermine initially threads from the major groove via the backbone into the minor groove, the B-->A transition occurs rapidly once again and the DNA is equidistant between the A- and B-forms within 300ps. This indicates that the mere presence of spermine is insufficient to delay the transition and that major groove binding stabilizes A-DNA.  相似文献   

13.
Deoxyribonuclease I (DNase I) footprinting methodology was used to analyze oligodeoxyribonucleotide duplexes containing unique and single, site-specific adducts of trinuclear bifunctional platinum compound, [{trans-PtCl(NH3)2}2 mu-trans-Pt(NH3)2{H2N(CH2)6NH2}2]4+ (BBR3464) and the results were compared with DNase I footprints of some adducts of conventional mononuclear cis-diamminedichloroplatinum(II) (cisplatin). These examinations took into account the fact that the local conformation of the DNA at the sites of the contacts of DNase I with DNA phosphates, such as the minor groove width and depth, sequence-dependent flexibility and bendability of the double helix, are important determinants of sequence-dependent binding to and cutting of DNA by DNase I. It was shown that various conformational perturbations induced by platinum binding in the major groove translated into the minor groove, allowing their detection by DNase I probing. The results also demonstrate the very high sensitivity of DNase I to DNA conformational alterations induced by platinum complexes so that the platinum adducts which induce specific local conformational alterations in DNA are differently recognized by DNase I.  相似文献   

14.
In this paper we explore the application of Ni2+to the crystallization of oligonucleotides. We have determined in this way the structure of a fully alternating (Y-R) decanucleotide d(CGTATATACG) by single crystal X-ray diffraction. This is the first oligonucleotide crystal structure with an alternating 5'-(TA)3-3' central part. Alternating oligonucleotides have a particular interest since they often have a unique structure. In this case the general conformation is B-like with an alternating twist and an end-to-end interaction which involves terminal guanines. The crystal belongs to space group P41212 with a = b = 52.46, c = 101.49 A. This packing imposes a 90 degrees crossing of the symmetry related helices. This is a new way of packing for decamers.The oligonucleotide structure is characterized by the specific association with seven nickel ions, involving the N7 atom of every guanine. One of the Ni2+ions is shared between two guanines of symmetry related molecules. Until now no oligonucleotide has been crystallized in the presence of this metal ion. A novel C.A.T triplet structure has also been tentatively identified.  相似文献   

15.
The left-handed Z-DNA structure of an araC-containing (where araC stands for arabinosylcytosine) hexamer, (araC-dG)3, has been solved by x-ray diffraction analysis at 1.3 A resolution. This hexamer was crystallized in the hexagonal P6(5)22 (a = b = 17.96 A, c = 43.22 A) space group in which the hexamers have statistically disordered packing arrangement along the 6(5) screw axis, yet the crystals diffract x-rays to high resolution. Its structure has been refined by the constrained least square refinement to a final R factor of 0.287 using 737 [> 3.0 sigma(F)] observed reflections. The asymmetric unit of the unit cell contains only a dinucleotide, 5'-p (araC)p(dG). The overall conformation resembles that of the canonical Z-DNA, but with some differences in details. The O2' hydroxyl groups of the araC residues form intramolecular hydrogen bonds with N2 of the 5'-guanine residues. In the deep groove of Z-DNA, these hydroxy groups replace the bridging water molecules that stabilize the guanine in the syn conformation. The results reinforce the earlier observation made by the structural analysis of another hexamer, d(CG[araC]GCG), with a mono-substitution of araC [M.-K. Teng, Y.-C. Liaw, G. A. van der Marel, J. H. van Boom, and A. H.-J. Wang (1989) Biochemistry, vol. 28, pp. 4923-4928]. These two structures show that araC residue can be incorporated readily into the Z structure and probably facilitates the B to Z transition, as supported by uv absorption spectroscopic studies in a number of araC-containing oligonucleotides. The potential biological roles of the araC-modified Z-DNA are discussed.  相似文献   

16.
Abstract

The effect of spermine on the A-DNA to B-DNA transition in d(CGCGAATTCGCG)2 has been investigated by five A-start molecular dynamics simulations, using the Cornell et al. potential. In the absence of spermine an A→B transition is initiated immediately and the DNA becomes equidistant from the A- and B-forms at 200ps. In three DNA-spermine simulations, when a spermine is located across the major groove of A-DNA in one of three different initial locations, the time taken to reach equidistance from the A- and B-forms is delayed until 800, 950 or 1000ps. In each case the A-form appears to be temporarily stabilized by spermine's electrostatic interactions with phosphates on both sides of the major groove. The onset of the A→B transition can be correlated with the spermine losing contact with phosphates on one side of the groove and with A-like → B-like sugar pucker transitions in the vicinity of the spermine bridge. However in the fifth trajectory, in which the spermine initially threads from the major groove via the backbone into the minor groove, the B→A transition occurs rapidly once again and the DNA is equidistant between the A- and B-forms within 300ps. This indicates that the mere presence of spermine is insufficient to delay the transition and that major groove binding stabilizes A-DNA.  相似文献   

17.
In the equilibrium between B-DNA and Z-DNA in poly(dC-dG), the [Co(NH3)6]3+ ion stabilizes the Z form 4 orders of magnitude more effectively than the Mg2+ ion. The structural basis of this difference is revealed in Z-DNA crystal structures of d(CpGpCpGpCpG) stabilized by either Na+/Mg2+ or Na+/Mg2+ plus [Co(NH3)6]3+. The crystals diffract X-rays to high resolution, and the structures were refined at 1.25 A. The [Co(NH3)6]3+ ion forms five hydrogen bonds onto the surface of Z-DNA, bonding to a guanine O6 and N7 as well as to a phosphate group in the ZII conformation. The Mg2+ ion binds through its hydration shell with up to three hydrogen bonds to guanine N7 and O6. Higher charge, specific fitting of more hydrogen bonds, and a more stable complex all contribute to the great effectiveness of [Co(NH3)6]3+ in stabilizing Z-DNA.  相似文献   

18.
Alternating self-complementary oligonucleotides starting with a 5'-pyrimidine usually form left-handed Z-DNA; however, with a 5'-purine start sequence they form the right-handed A-DNA. Here we report the crystal structure of the decamer d(GCGCGCGCGC) with a 5'-purine start in the Z-DNA form. The decamer crystallizes in the hexagonal space group P6(5)22, unit cell dimensions a = b = 18.08 and c = 43.10 A, with one of the following four dinucleotide diphosphates in the asymmetric unit: d(pGpC)/d(GpCp)/d(pCpG)/d(CpGp). The molecular replacement method, starting with d(pGpC) of the isomorphous Z-DNA hexamer d(araC-dG)3 without the 2'-OH group of arabinose, was used in the structure analysis. The method gave the solution only after the sugar-phosphate conformation of the GpC step was manipulated. The refinement converged to a final R value of 18.6% for 340 unique reflections in the resolution range 8.0-1.9 A. A result of the sequence alternation is the alternation in the nucleotide conformation; guanosine is C3'-endo, syn, and cytidine is C2'-endo, anti. The CpG step phosphodiester conformation is the same as ZI or ZII, whereas that of the GpC step phosphodiester is "intermediate" in the sense that zeta (O3'-P bond) is the same as ZII but alpha (P-O5' bond) is the same as ZI. The duplexes generated from the dinucleotide asymmetric unit are stacked one on top of the other in the crystal to form an infinite pseudocontinuous helix. This renders it a quasi-polymerlike structure that has assumed the Z-DNA conformation further strengthened by the long inner Z-forming stretch d(CG)4. An interesting feature of the structure is the presence of water strings in both the major and the minor grooves. In the minor groove the cytosine carbonyl oxygen atoms of the GpC and CpG steps are cross-bridged by water molecules that are not themselves hydrogen bonded but are enclosed by the water rings in the mouth of the minor groove. In the major groove three independent water molecules form a zigzagging continuous water string that runs throughout the duplex.  相似文献   

19.
Purine-rich regions in DNA and RNA may contain both guanines and adenines, which have various biological functions. Here we report the crystal structure of an RNA purine-rich fragment containing both guanine and adenine at 1.4 A resolution. Adenines form an adenine tetrad in the N6-H em leader N7 conformation. Substitution of an adenine tetrad in the guanine tetraplex does not change the global conformation but introduces irregularity in both the hydrogen bonding interaction pattern in the groove and the metal ion binding pattern in the central cavity of the tetraplex. The irregularity in groove binding may be critical for specific binding in tetraplexes. The formation of G-U octads provides a mechanism for interaction in the groove. Ba(2+) ions prefer to bind guanine tetrads, and adenine tetrads can only be bound by Na(+) ions, illustrating the binding selectivity of metal ions for the tetraplex.  相似文献   

20.
Three crystal structures containing the entire Sp1 consensus sequence d(GGGGCGGGG) with two or three additional base-pairs on either the 5' or 3' ends and overhangs have been determined. Despite the different lengths of DNA in the pseudo-dodecamers and pseudo-tridecamer, all three structures form A-DNA duplexes that share a common set of crystal contacts, including a T*(G.C) base triplet and a 5'-overhang that flips out and away from the helical axes to form a Hoogsteen base-pair with the 3'-overhang of a symmetry mate. The global conformations of the three structures differ, however, in the widths of their respective major grooves, the lengths of the molecules, and the extent of crystal packing. The structures were determined from crystals grown in an unusual precipitant for A-DNA, polyethylene glycol (PEG) 400, in combination with polyamines or ions; cobalt hexamine for the pseudo-tridecamer, and spermidine for the pseudo-dodecamers. As the Sp1 binding site is a target for antiviral and anticancer drugs, pseudo-dodecamer crystals were soaked with one such antiviral and anticancer compound, P4N. Although P4N was not visualized unambiguously in the electron density maps, the effect of the drug is evident from significant differences in the lattice constants, crystal packing, and overall conformation of the structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号