首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
Synaptic vesicles contain a variety of proteins and lipids that mediate fusion with the pre-synaptic membrane. Although the structures of many synaptic vesicle proteins are known, an overall picture of how they are organized at the vesicle surface is lacking. In this paper, we describe a better method for the isolation of squid synaptic vesicles and characterize the results. For highly pure and intact synaptic vesicles from squid optic lobe, glycerol density gradient centrifugation was the key step. Different electron microscopic methods show that vesicle membrane surfaces are largely covered with structures corresponding to surface proteins. Each vesicle contains several stalked globular structures that extend from the vesicle surface and are consistent with the V-ATPase. BLAST search of a library of squid expressed sequence tags identifies 10 V-ATPase subunits, which are expressed in the squid stellate ganglia. Negative-stain tomography demonstrates directly that vesicles flatten during the drying step of negative staining, and furthermore shows details of individual vesicles and other proteins at the vesicle surface.  相似文献   

2.
Poly(A)-containing mRNA was isolated from the electric lobe, cerebellum and forebrain of Torpedo marmorata and from cholinergic electromotor perikarya isolated from the electric lobe. All the mRNA preparations were translated by a cell-free protein-synthesizing system from rabbit reticulocytes; no brain-specific factors were required. The highest stimulation rate was found with the perikaryal mRNA suggesting that this purely neuronal mRNA is a preferred template in the protein-synthesis system; the molecular basis of this phenomenon remains to be elucidated. The translation products of the perikaryal mRNA were analysed by two-dimensional gel electrophoresis and compared with the proteins of synaptosomes derived from the electromotor nerve terminals. The majority of the synaptosomal proteins comigrated with synthesized products. More than 100 synthesized proteins were detected as individual spots in the gel pattern, among them actin, subunits of neurofilamentous proteins and a protein considered to be a specific component of electromotor synaptic vesicles. Identities were confirmed in some cases by immunochemical methods. The results suggest that protein synthesis in the perikaryon of the electromotor neurone is largely directed to the production of proteins needed to maintain synaptic integrity. A comparison of the translation products of mRNA derived from the highly cholinergic electric lobe and a brain region, the cerebellum, which is non-cholinergic, revealed, as expected, some common translation products and others which appeared to be specific for the brain regions concerned. This approach may lead to the identification of protein specific for neurones of different transmitter types.  相似文献   

3.
Abstract— Relatively high concentrations of ACh have been found in the head ganglion of the squid ( Loligo pealii ) and the identity of the ACh has been verified by ion-exchange chromatography. Following homogenization in media iso-osmotic with sea water about 40 per cent of the ACh survives in particle-bound form. Experiments using media of varying osmolarity suggest that this bound ACh is osmotically sensitive. A study has been made of the subcellular fractionation of squid head ganglion using sucrose homogenates. A rapid and novel method is described for the preparation of a synaptosome fraction freed from mitochondria. This preparation contains synaptosomes of well-preserved morphology with occluded cytoplasm and a high specific content of ACh. The synaptosomes are osmotically sensitive and when suspended in water they burst, releasing cytoplasmic constituents and ACh-containing synaptic vesicles. The synaptic vesicles can be separated from other sub-synaptic constituents by density gradient centrifugation.  相似文献   

4.
A subcellular fraction prepared from fetal rat brain and enriched in growth cone membranes is analyzed for its lectin-binding proteins. Growth-associated glycoproteins are identified by comparing the growth cone glycoproteins with those of synaptosomes. Protein was resolved in one- or two-dimensional gels, electroblotted, and blots probed with radioiodinated concanavalin A, wheat germ agglutinin, and Ricinus communis agglutinins I and II. In one-dimensional gels, each lectin recognizes approximately 20 polypeptides (with substantial overlap) most of which migrate diffusely and have relatively high molecular masses (range 30-200 kD). The seven major Coomassie-staining proteins of the membrane fraction (34-52 kD) are not the major lectin-binding proteins. In two-dimensional gels, the lectin-binding proteins are either streaked across the pH gradient or exist as multiple spots, indicating broad charge heterogeneity. Seven wheat germ agglutinin- and Ricinus communis agglutinin II-binding glycoproteins are present in greater abundance in growth cone fractions compared with synaptosomes. Most notably, an acidic, sialic acid-rich protein (27-30 kD, pI 4.0; termed gp27-30) is most abundant at postnatal day 4, but absent from adult brain. The protein's very acidic isoelectric point is due, at least in part, to its high sialic acid content. Growth regulation of specific protein-linked oligosaccharides suggests that they play a special role in growth cone function. In addition, the great diversity of growth cone glycoproteins from whole brain suggests glycoprotein heterogeneity among growth cones from different neuron types.  相似文献   

5.
The ephrin receptors EphA4 and EphB2 have been implicated in synaptogenesis and long-term potentiation in the cerebral cortex and hippocampus, where they are generally viewed as post-synaptic receptors. To determine the precise distribution of EphA4 and EphB2 in mature brain synapses, we used subcellular fractionation and electron microscopy to examine the adult mouse forebrain/midbrain. EphA4 and EphB2 were both enriched in microsomes and synaptosomes. In synaptosomes, they were present in the membrane and the synaptic vesicle fractions. While EphA4 was tightly associated with PSD-95-enriched post-synaptic density fractions, EphB2 was easily extracted with detergents. In contrast, both receptors were found in the pre-synaptic active zone fraction. By electron microscopy, EphA4 was mainly detected in axon terminals, whereas EphB2 was more frequently detected in large dendritic shafts, in the hippocampus and cerebral cortex. However, in the ventrobasal thalamus, EphB2 was detected most frequently in axon terminals and thin dendritic shafts. The localization of EphA4 and EphB2 in multiple compartments of neurons and synaptic junctions suggests that they interact with several distinct scaffolding proteins and play diverse roles at synapses.  相似文献   

6.
Studies on the turnover of mouse brain synaptosomal proteins   总被引:1,自引:1,他引:0  
(l) The half-lives of the proteins of various fractions of whole mouse brain increase with increasing insolubility; the supernatant and hypotonic-extractable proteins had half-lives of about 13 days, whereas the membrane proteins solubilized with Triton X-100 and SLS had half-lives of about 18 days. The proteins of the subfractions of synaptosomes had half-lives ranging from 15 to 19 days; those in the cytoplasm had a half-life of 18·3 days, in the membranes, about 17 days and in the synaptic vesicles, 15·6 days. (2) Although the half-life of the synaptic vesicles was not significantly different from that of other synaptosomal subfractions, the vesicles exhibited a different protein pattern on acrylamide gels, an observation which implies that the proteins of the vesicles are qualitatively different from those of other synaptic membranes. (3) The uptake of labelled lysine into the cytoplasm of the synaptosomes of youg mice in vivo was very rapid. (4) The data derived from the relative specific radioactivities of synaptosomal fractions compared with their whole brain analogs support the contention that a sizeable fraction of the synaptosomal cytoplasmic protein was transported to the synapse by axoplasmic flow. The relative specific radioactivities of synaptosomal membrane and synaptic vesicle proteins rose much more quickly than the comparable activities for the cytoplasmic material, and the alternate possibility of synthesis in situ is discussed.  相似文献   

7.
P J Robinson 《FEBS letters》1991,282(2):388-392
A 96,000 dalton phosphoprotein, called dephosphin, is phosphorylated in intact synaptosomes from rat brain and is rapidly dephosphorylated upon depolarisation-dependent calcium entry. A 96,000 dalton phosphoprotein is also a substrate of protein kinase C in synaptosomal cytosol, and the aim of the study was to determine whether the two proteins may be the same. Dephosphin in intact synaptosomes and the 96,000 dalton protein kinase C substrate comigrated on polyacrylamide gels. Both phosphoproteins had identical phosphopeptide maps after digestion with V8 protease. Both phosphoproteins ran on isoelectric focussing gels with a pI of 6.3-6.7 and focussed as a series of 5-6 spots. Both proteins were phosphorylated exclusively on serine. Both proteins could be resolved into a doublet on longer polyacrylamide gels. The two subunits were of 96 and 93 kDa in both phosphorylation conditions and had dissimilar phosphopeptide maps. However, phosphopeptide maps of either the 96 or 93 kDa subunits were identical in intact synaptosomes compared with synaptosomal cytosol. These results show that a phosphoprotein phosphorylated in intact synaptosomes and a 96,000 dalton protein kinase C substrate from rat brain synaptosomal cytosol are the same, and raise the possibility that protein kinase C is the protein kinase responsible for dephosphin phosphorylation in intact synaptosomes.  相似文献   

8.
After 10-15 food stimuli paired with electrical shock in semi-intact snail preparation, responses to strong tactile stimuli identified feeding behaviour neurones were studied. Inhibition evoked by tactile stimulation in these cells before learning procedure disappeared and in some cases noxious stimulus evoked synaptic activation corresponding to feeding reactions in the intact animal. Changes in second-order sensory neurones pre-synaptic to the command neurones of avoidance behaviour are suggested to be the mechanism of forward conditioned connection as well as the mechanism of backward conditioned connection.  相似文献   

9.
In the present work, we investigated the role of pre- and post-synaptic neuropeptide Y1 (NPY1) and Y2 receptors on the calcium responses and on glutamate release in the rat hippocampus. In cultured hippocampal neurones, we observed that only NPY1 receptors are involved in the modulation of intracellular free calcium concentration ([Ca(2+)](i)). In 88% of the neurones analysed, the increase in the [Ca(2+)](i), in response to depolarization with 50 mM KCl, was inhibited by 1 microM [Leu31,Pro34]NPY, whereas 300 nM NPY13-36 was without effect. However, studies with hippocampal synaptosomes showed that both NPY1 and Y2 receptors can modulate the [Ca(2+)](i) and glutamate release. The pharmacological characterization of the NPY-induced inhibition of glutamate release indicated that Y2 receptors play a predominant role, both in the modulation of Ca(2+)-dependent and -independent glutamate release. However, we could distinguish between Y1 and Y2 receptors by using [Leu31,Pro34]NPY and NPY13-36. Active pre-synaptic Y1 receptors are present in the dentate gyrus (DG) as well as in the CA3 subregion, but its activity was not revealed by using the endogenous agonist, NPY. Concerning the Y2 receptors, they are present in the three subregions (CA1, CA3 and DG) and were activated by either NPY13-36 or NPY. The present data support a predominant role for NPY2 receptors in mediating NPY-induced inhibition of glutamate release in the hippocampus, but the physiological relevance of the presently described DG and CA3 pre-synaptic NPY1 receptors remains to be clarified.  相似文献   

10.
Chick brain synaptosomes or synaptic subfractions were treated with neuraminidase (EC 3.2.1.18) and/or galactose oxidase (EC 1.1.3.9) preparations in which proteolytic activity was inhibited with phenylmethanesulfonyl fluoride followed, after washing, by reductive incorporation of sodium boro[3H]hydride to identify galactose residues exposed on the synaptosomal external surface. Control experiments to demonstrate restriction of labeling to the external surface involved comparing the radioactivity in synaptoplasmic, soluble polypeptides isolated after labeling with labeled, isolated synaptoplasm and examining incorporation into fractions incubated without enzymes. Intactness of the synaptic plasma membrane after labeling was shown by trypsin digestion studies. Polypeptides were separated on sodium dodecyl sulfate polyacrylamide gels and were detected by a liquid scintillation counting procedure. Eleven major radioactive peaks were found after galactose oxidase treatment and reduction of isolated synaptic membranes. When intact synaptosomes were labeled, the same components were detected. When isolated synaptic membranes or intact synaptosomes were treated with neuraminidase before galactose oxidase treatment, three additional components were labeled. These results suggest that (a) chick synaptic membranes have a complex mixture of glycoproteins, (b) all major chick synaptic membrane glycoproteins labeled by galactose oxidase have most or all carbohydrate groups exposed at the exterior surface of the synaptosome, (c) all major, externally-disposed polypeptides of these synaptic membranes are glycoproteins.  相似文献   

11.
Amyloid Precursor Protein (APP) is a type I membrane protein that undergoes extensive processing by secretases, including BACE1. Although mutations in APP and genes that regulate processing of APP, such as PSENs and BRI2/ITM2B, cause dementias, the normal function of APP in synaptic transmission, synaptic plasticity and memory formation is poorly understood. To grasp the biochemical mechanisms underlying the function of APP in the central nervous system, it is important to first define the sub-cellular localization of APP in synapses and the synaptic interactome of APP. Using biochemical and electron microscopy approaches, we have found that APP is localized in pre-synaptic vesicles, where it is processed by Bace1. By means of a proteomic approach, we have characterized the synaptic interactome of the APP intracellular domain. We focused on this region of APP because in vivo data underline the central funtional and pathological role of the intracellular domain of APP. Consistent with the expression of APP in pre-synaptic vesicles, the synaptic APP intracellular domain interactome is predominantly constituted by pre-synaptic, rather than post-synaptic, proteins. This pre-synaptic interactome of the APP intracellular domain includes proteins expressed on pre-synaptic vesicles such as the vesicular SNARE Vamp2/Vamp1 and the Ca2+ sensors Synaptotagmin-1/Synaptotagmin-2, and non-vesicular pre-synaptic proteins that regulate exocytosis, endocytosis and recycling of pre-synaptic vesicles, such as target-membrane-SNAREs (Syntaxin-1b, Syntaxin-1a, Snap25 and Snap47), Munc-18, Nsf, α/β/γ-Snaps and complexin. These data are consistent with a functional role for APP, via its carboxyl-terminal domain, in exocytosis, endocytosis and/or recycling of pre-synaptic vesicles.  相似文献   

12.
Abstract: The 14-3-3 protein family, which is present at particularly high concentrations in mammalian brain, is known to be involved in various cellular functions, including protein kinase C regulation and exocytosis. Despite the fact that most of the 14-3-3 proteins are cytosolic, a small but significant proportion of 14-3-3 in brain is tightly and selectively associated with some membranes. Using a panel of isoform-specific antisera we find that the ε, η, γ, β, and ζ isoforms are all present in purified synaptic membranes but absent from mitochondrial and myelin membranes. In addition, the η, ε, and γ isoforms but not the β and ζ isoforms are associated with isolated synaptic junctions. When different populations of synaptosomes were fractionated by a nonequilibrium Percoll gradient procedure, the ε and γ isoforms were present and the β and ζ isoforms were absent from the membranes of synaptosomes sedimenting in the more dense parts of the gradient. The finding that these proteins are associated with different populations of synaptic membranes suggests that they are selectively expressed in different classes of neurones and raises the possibility that some or all of them may influence neurotransmission by regulating exocytosis and/or phosphorylation.  相似文献   

13.
14.
The purpose of this study was to identify and validate novel serological protein biomarkers of human colorectal cancer (CRC). Proteins from matched CRC and adjacent normal tissue samples were resolved by two-dimensional gel electrophoresis. From each gel all spots were excised, and enveloped proteins were identified by MS. By comparison of the resulting protein profiles, dysregulated proteins can be identified. A list of all identified proteins and validation of five exemplarily selected proteins, elevated in CRC was reported previously (Roessler, M., Rollinger, W., Palme, S., Hagmann, M. L., Berndt, P., Engel, A. M., Schneidinger, B., Pfeffer, M., Andres, H., Karl, J., Bodenmuller, H., Ruschoff, J., Henkel, T., Rohr, G., Rossol, S., Rosch, W., Langen, H., Zolg, W., and Tacke, M. (2005) Identification of nicotinamide N-methyltransferase as a novel serum tumor marker for colorectal cancer. Clin. Cancer Res. 11, 6550-6557). Here we describe identification and initial validation of another potential marker protein for CRC. Comparison of tissue protein profiles revealed strong elevation of proteasome activator complex subunit 3 (PSME3) expression in CRC tissue. This dysregulation was not detectable based on the spot pattern. The PSME3-containing spot on tumor gels showed no visible difference to the corresponding spot on matched control gels. MS analysis revealed the presence of two proteins, PSME3 and annexin 4 (ANXA4) in one and the same spot on tumor gels, whereas the matched spot contained only one protein, ANXA4, on control gels. Therefore, dysregulation of PSME3 was masked by ANXA4 and could only be recognized by MS-based analysis but not by image analysis. To validate this finding, antibody to PSME3 was developed, and up-regulation in CRC was confirmed by Western blot analysis and immunohistochemistry. Finally by developing a highly sensitive immunoassay, PSME3 could be detected in human sera and was significantly elevated in CRC patients compared with healthy donors and patients with benign bowel disease. We propose that PSME3 be considered a novel serum tumor marker for CRC that may have significance in the detection and in the management of patients with this disease. Further studies are needed to fully assess the potential clinical value of this marker candidate.  相似文献   

15.
Five antibody secreting cell lines were selected on the basis of specific binding to photoreceptive structures from a fusion of myeloma cells with spleen cells from BALB/c mice immunized with photoreceptor membrane from crayfish compound eyes. On Western blots derived from one- and two-dimensional polyacrylamide gels of purified photoreceptor membrane the antibodies bound strongly to the major 35 kDa peptide and are therefore specific for the visual pigment, rhodopsin. Four antibodies also recognized a minor 24 kDa peptide probably representing a breakdown product generated in vivo by the action of lysosomal hydrolases. Epitope characterization of the antibodies using peptide maps of opsin after protease treatment revealed three grossly different specificities. Three antibodies recognize a major antigenic site located within the large proteolytic fragment of about 24 kDa, possibly derived from the aminoterminus of the molecule. Antibodies applied to lightly fixed frozen sections or semi-thin sections of crayfish retina embedded in Lowicryl or polyethyleneglycol specifically bound to the rhabdomeral structure formed by receptor cells R1-R7, but failed to show significant cross-reaction with R8, the blue receptor, proving significant differences in the primary structure of the apoproteins of visual pigments involved in crayfish colour vision. None of the antibodies revealed any cross-reactivity with Drosophila or squid rhodopsin, corroborating this finding. The antibodies also recognized granular material in the vicinity of the rhabdoms at sites occupied by secondary lysosomes containing degraded rhabdomeral membrane. No significant binding was observed to the outer plasma membrane of the retinula cells, or in any other part of the retina.  相似文献   

16.
Chick brain synaptosomes incorporated phosphate into proteins when incubated in physiological buffer containing energy sources. Sodium dodecyl sulfate polyacrylamide gel electrophoresis indicated that three synaptosomal polypeptides were significantly phosphorylated after 15 sec incubation while at least fifteen polypeptides were active kinase substrates after 15 min incubation. Labeled synaptosomes were hypotonically lysed and separated by centrifugation into soluble, membrane, and mitochondrial fractions. Every fraction exhibited significant phosphate incorporation. Electrophoresis revealed that each fraction had several unique phosphorylated polypeptides and a distinctive phosphorylation pattern. The same polypeptides appear to be labeled whether MgATP was added to synaptic plasma membranes or synaptic plasma membranes were isolated after synaptosomal autophosphorylation.  相似文献   

17.
Zinc is concentrated in certain CNS excitatory tracts, especially in hippocampal mossy fibres where it has been suggested to modulate synaptic transmission and plasticity. Using rat mossy fibre synaptosomes depolarized by 4-aminopyridine, we show here that low zinc concentrations restore the membrane potential and reduce glutamate release. Both effects arose from activation of ATP-sensitive potassium channels (KATP), since they were mimicked by the KATP opener diazoxide and antagonized by the KATP blocker tolbutamide. Using recombinant channels expressed in COS-7 cells, we confirmed that micromolar zinc did activate KATP of the type found in hippocampus. We tested the hypothesis that this action of zinc could be beneficial during an ischaemic challenge by using organotypic hippocampal slice cultures. When zinc was applied at micromolar concentrations during a brief anoxic-hypoglycaemic episode, it significantly attenuated the ensuing neuronal death, whereas chelation of endogenous zinc markedly aggravated cell damage. Protective effect of zinc was mediated through KATP, as was shown by using the opener diazoxide and the blocker tolbutamide. Thus, by activating pre-synaptic KATP channels, zinc protects neurones from hyper-excitation, excessive transmitter release and exitotoxicity, and may thus act as an endogenous neuroprotector in conditions such as epilepsy or stroke.  相似文献   

18.
We previously reported the presence of a group of coronary dilatatory protein-carriers of the cardioactive neurohormones and precursors of bioactive compounds in the hypothalamus of some animals.Investigation of the subcellular distribution of those proteins revealed their localization in neurosecretory granules and in synaptosomes of the hypothalamus. In further investigation of the regional distribution of coronary-active proteins in different parts of the brain they were found in synaptosomes of the cerebral cortex too.The main location of coronary-active proteins in synaptosomes indicates their participation in synaptic functions.  相似文献   

19.
Qualitative aspects of protein synthesis in organelles and intact cultured cells of brain origin were compared to clarify the distinction between synaptosomal and mitochondrial protein synthesis. Brain mitochondria and synaptosomes were isolated either on a traditional Ficoll-sucrose gradient or by a new Percoll gradient procedure, and were incubated in an amino acid incorporation system containing [35S]methionine, then electrophoresed on gradient slab gels. Autoradiography of the gels revealed that in the presence of cycloheximide both mitochondria and synaptosomes synthesized at least 17 proteins in the 6,000-50,000 MW range, and that incubation with chloramphenicol reduced or eliminated these bands. With minor variation these patterns in the low-molecular-weight region also resembled patterns obtained from cycloheximide-inhibited rat liver mitochondria and intact brain cells (cultured glia, glioma, and neuroblastoma). In the higher molecular weight region of the gels (greater than 50,000) banding patterns were more complex and tended to differ between organelles and intact cells. These polypeptides probably reflect nonmitochondrial protein synthesis, and their variable response to inhibitors may account for confusion in the literature with regard to the effects of inhibitors of protein synthesis in brain mitochondria and synaptosomes.  相似文献   

20.
Plasma membranes were purified from purely cholinergic nerve endings (synaptosomes) isolated from the electric organ of Torpedo marmorata. Synaptosomes were lysed, membranes recovered and further separated by density gradient centrifugation. A fraction was obtained enriched in 5'-nucleotidase, Na+, K+-activated ATPase and acetylcholine esterase. Morphological examination showed abundant membrane fragments of the size range of synaptosomes and few of vesicle size. The fraction has a characteristic protein composition upon gel electrophoresis. Five reproducible major bands with apparent Mr of 100000, 75000, 52000, 42000 and 35000--33000 are found. A gel-electrophoretic comparison with proteins from synaptic vesicles from the same source (major bands Mr 160000, 147000, 34000 and 25000) was made. Comigration of major bands was detected in one-dimensional gel electrophoresis with the 42000-Mr, 35000--33000-Mr and 34000-Mr components. Upon two-dimensional gel electrophoresis the 42000-Mr component comigrates with a similar component in vesicles, recently characterized as actin; the other components are different. The presence of tubulin-like polypeptides is unlikely. Beside actin, all major vesicle proteins are often detected in small amounts in the plasma membrane preparation. It cannot be decided if they result from fused or contaminating vesicle membranes, but since they are essentially absent in some preparations, it seems that the plasma membrane does not contain vesicle proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号