首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Khrapunov S  Pastor N  Brenowitz M 《Biochemistry》2002,41(30):9559-9571
The intrinsic fluorescence of the six tyrosines located within the C-terminal domain of the Saccharomyces cerevisiae TATA binding protein (TBP) and the single tryptophan located in the N-terminal domain has been used to separately probe the structural changes associated with each domain upon DNA binding or oligomerization of the protein. The unusually short-wavelength maximum of TBP fluorescence is shown to reflect the unusually high quantum yield of the tyrosine residues in TBP and not to result from unusual tryptophan fluorescence. The anisotropy of the C-terminal tyrosines is very high in monomeric, octameric, and DNA-complexed TBP and comparable to that observed in much larger proteins. The tyrosines have low accessibility to an external fluorescence quencher. The anisotropy of the single tryptophan located within the N-terminal domain of TBP is much lower than that of the tyrosines and is accessible to an external fluorescence quencher. Tyrosine, but not tryptophan, fluorescence is quenched upon TBP-DNA complex formation. Only the tryptophan fluorescence is shifted to longer wavelengths in the protein-DNA complex. In addition, the accessibility of the tryptophan residue to the external quencher and the internal motion of the tryptophan residue increase upon DNA binding by TBP. These results show the following: (i) The structure of the C-terminal domain structure is unchanged upon TBP oligomerization, in contrast to the N-terminal domain [Daugherty, M. A., Brenowitz, M., and Fried, M. G. (2000) Biochemistry 39, 4869-4880]. (ii) The environment of the tyrosine residues within the C-terminal domain of TBP is structurally rigid and unaffected by oligomerization or DNA binding. (iii) The C-terminal domain of TBP is uniformly in close proximity to bound DNA. (iv) While the N-terminal domain unfolds upon DNA binding by TBP, its increased correlation time shows that the overall structure of the protein is more rigid when complexed to DNA. A model that reconciles these results is proposed.  相似文献   

2.
A frequency-domain fluorescence study of calcium-binding metalloproteinase from Staphylococcus aureus has shown that this two-tryptophan-containing protein exhibits a double-exponential fluorescence decay. At 10 degrees C in 0.05 M Tris-HCl buffer (pH 9.0) containing 10 mM CaCl2, fluorescence lifetimes of 1.2 and 5.1 ns are observed. Steady-state and frequency-domain solute-quenching studies are consistent with the assignment of the two lifetimes to the two tryptophan residues. The tryptophan residue characterized by a shorter lifetime has a maximum of fluorescence emission at about 317 nm and the second one exhibits a maximum of its emission at 350 nm. These two residues contribute almost equally to the protein's fluorescence. These results, as well as fluorescence-quenching studies using KI and acrylamide as a quencher, indicate that in calcium-loaded metalloproteinase, the tryptophan residue characterized by the shorter lifetime is extensively buried within the protein. The second residue is exposed on the surface of the protein. The tryptophan residues of metalloproteinase have acrylamide dynamic-quenching rate constants, kq values, of 2.3 and 0.26 X 10(9) M-1 X s-1 for the exposed and buried residue, respectively. A study of the temperature dependence of the fluorescence lifetime for the two tryptophan components gives activation energies, Ea values, for thermal quenching of 1.8 and 2.2 kcal/mol for the buried and the exposed residue, respectively. Dissociation of Ca2+ from the protein causes a change in the protein's structure, as can be judged from dramatic changes which occur in the fluorescence properties of the buried tryptophan residue. These changes include an approx. 13 nm red-shift in the maximum of the fluorescence emission and an increase in the acrylamide-quenching rate constant, and they indicate that the removal of Ca2+ results in an increase in the exposure and the polarity of the microenvironment of this 'blue' residue.  相似文献   

3.
D Xu  K Baburaj  C B Peterson  Y Xu 《Proteins》2001,44(3):312-320
The structure of vitronectin, an adhesive protein that circulates in high concentrations in human plasma, was predicted through a combination of computational methods and experimental approaches. Fold recognition and sequence-structure alignment were performed using the threading program PROSPECT for each of three structural domains, i.e., the N-terminal somatomedin B domain (residues 1-53), the central region that folds into a four-bladed beta-propeller domain (residues 131-342), and the C-terminal heparin-binding domain (residues 347-459). The atomic structure of each domain was generated using MODELLER, based on the alignment obtained from threading. Docking experiments between the central and C-terminal domains were conducted using the program GRAMM, with limits on the degrees of freedom from a known inter-domain disulfide bridge. The docked structure has a large inter-domain contact surface and defines a putative heparin-binding groove at the inter-domain interface. We also docked heparin together with the combined structure of the central and C-terminal domains, using GRAMM. The predictions from the threading and docking experiments are consistent with experimental data on purified plasma vitronectin pertaining to protease sensitivity, ligand-binding sites, and buried cysteines.  相似文献   

4.
Phosphorylation of serine 40 of the major nucleocapsid protein of avian retroviruses, pp12, regulates binding to viral RNA (Leis, J., Johnson, S., Collins, L. S., and Traugh, J. A. (1984) J. Biol. Chem. 259, 7726-7732). The phosphorylation state of the protein can be altered in vitro, resulting in the interconversion of the protein between a state of high affinity for single-stranded RNA and low affinity for single- or double-stranded RNA. The reversible phosphorylation of serine 40 is accompanied by a change in the conformation of the protein as demonstrated by quenching of intrinsic tryptophan fluorescence and chemical modification studies. Quenching of fluorescence of the sole tryptophan residue, Trp 80, by poly(U), KI, and CsCl indicates that the microenvironment of this residue is more positive in pp12 than in p12. Chemical modification studies indicate that the 3 lysine residues at positions 36, 37, and 39 of pp12 react with 2,4,6-trinitrobenzenesulfonic acid, while only 1 of these residues reacts in p12. The addition of single-stranded, but not double-stranded RNA, to pp12 protects 2 of the 3 lysine residues from chemical modification, suggesting that the two protected lysyl groups are required for binding to single-stranded viral RNA. In contrast to the phosphorylation of serine 40, phosphorylation of serine 43, catalyzed by protease-activated kinase II in vitro, does not induce changes in the protein conformation nor does it alter the RNA binding properties of the protein.  相似文献   

5.
The human MTH1 antimutator protein hydrolyzes mutagenic oxidized nucleotides, and thus prevents their incorporation into DNA and any subsequent mutation. We have examined its great selectivity for oxidized nucleotides by analyzing the structure of the protein and its interaction with nucleotides, as reflected in the fluorescence of its tryptophan residues. The binding of nucleotides decreased the intensity of MTH1 protein fluorescence and red-shifted the emission peak, indicating that at least one tryptophan residue is close to the binding site. Oxidized nucleotides (2-OH-dATP and 8-oxo-dGTP) produced a larger decrease in fluorescence intensity than did unoxidized nucleotides, and MTH1 protein had a much higher binding affinity for oxidized nucleotides. Deconvolution of protein fluorescence by comparison of its quenching by positively (Cs(+)) and negatively (I(-)) charged ions indicated that the MTH1 tryptophan residues are in two different environments. One class of tryptophan residues is exposed to solvent but in a negatively charged environment; the other class is partially buried. While the binding of unoxidized nucleotides quenches the fluorescence of only class 1 tryptophan residue(s), the binding of oxidized nucleotides quenched that of class 2 tryptophan residue(s) as well. This suggests that selectivity is due to additional contact between the protein and the oxidized nucleotide. Mutation analysis indicated that the tryptophan residue at position 117, which is in a negative environment, is in contact with nucleotides. The negatively charged residues in the binding site probably correlate with the finding that nucleotide binding requires metal ions and depends upon their nature. Positively charged metal ions probably act by neutralizing the negatively charged nucleotide phosphate groups. (c) 2002 Elsevier Science Ltd.  相似文献   

6.
To facilitate investigation of the molecular and biochemical functions of the adenovirus E4 Orf6 protein, we sought to derive three-dimensional structural information using computational methods, particularly threading and comparative protein modeling. The amino acid sequence of the protein was used for secondary structure and hidden Markov model (HMM) analyses, and for fold recognition by the ProCeryon program. Six alternative models were generated from the top-scoring folds identified by threading. These models were examined by 3D-1D analysis and evaluated in the light of available experimental evidence. The final model of the E4 protein derived from these and additional threading calculations was a chimera, with the tertiary structure of its C-terminal 226 residues derived from a TIM barrel template and a mainly alpha-nonbundle topology for its poorly conserved N-terminal 68 residues. To assess the accuracy of this model, additional threading calculations were performed with E4 Orf6 sequences altered as in previous experimental studies. The proposed structural model is consistent with the reported secondary structure of a functionally important C-terminal sequence and can account for the properties of proteins carrying alterations in functionally important sequences or of those that disrupt an unusual zinc-coordination motif.  相似文献   

7.
The location of tryptophan residues in the actin macromolecule was studied on the basis of the known 3D structure. For every tryptophan residue the polarity and packing density of their microenvironments were evaluated. To estimate the accessibility of the tryptophan residues to the solvent molecules it was proposed to analyze the radial dependence of the packing density of atoms in the macromolecule about the geometric center of the indole rings of the tryptophan residues. The proposed analysis revealed that the microenvironment of tryptophan residues Trp-340 and Trp-356 has a very high density. So these residues can be regarded as internal and inaccessible to solvent molecules. Their microenvironment is mainly formed by non-polar groups of protein. Though the packing density of the Trp-86 microenvironment is lower, this tryptophan residue is apparently also inaccessible to solvent molecules, as it is located in the inner region of macromolecule. Tryptophan residue Trp-79 is external and accessible to the solvent. All residues that can affect tryptophan fluorescence were revealed. It was found that in the close vicinity of tryptophan residues Trp-79 and Trp-86 there are a number of sulfur atoms of cysteine and methionine residues that are known to be effective quenchers of tryptophan fluorescence. The most essential is the location of SG atom of Cys-10 near the NE1 atom of the indole ring of tryptophan residue Trp-86. On the basis of microenvironment analysis of these tryptophan residues and the evaluation of energy transfer between them it was concluded that the contribution of tryptophan residues Trp-79 and Trp-86 must be low. Intrinsic fluorescence of actin must be mainly determined by two other tryptophan residues--Trp-340 and Trp-356. It is possible that the unstrained conformation of tryptophan residue Trp-340 and the existence of aromatic rings of tyrosine and phenylalanine and proline residues in the microenvironments of tryptophan residues Trp-340 and Trp-356 are also essential to their blue fluorescence spectrum.  相似文献   

8.
In our previous paper (Reshetnyak, Ya. K., and E. A. Burstein. 2001. Biophys. J. 81:1710-1734) we confirmed the existence of five statistically discrete classes of emitting tryptophan fluorophores in proteins. The differences in fluorescence properties of tryptophan residues of these five classes reflect differences in interactions of excited states of tryptophan fluorophores with their microenvironment in proteins. Here we present a system of describing physical and structural parameters of microenvironments of tryptophan residues based on analysis of atomic crystal structures of proteins. The application of multidimensional statistical methods of cluster and discriminant analyses for the set of microenvironment parameters of 137 tryptophan residues of 48 proteins with known three-dimensional structures allowed us to 1) demonstrate the discrete nature of ensembles of structural parameters of tryptophan residues in proteins; 2) assign spectral components obtained after decomposition of tryptophan fluorescence spectra to individual tryptophan residues; 3) find a correlation between spectroscopic and physico-structural features of the microenvironment; and 4) reveal differences in structural and physical parameters of the microenvironment of tryptophan residues belonging to various spectral classes.  相似文献   

9.
Recent characterization of spinach phosphoribulokinase has revealed that the homodimeric molecule contains only two tryptophans per 44-kDa subunit. We have performed steady-state and frequency domain studies of the intrinsic fluorescence of this protein. The fluorescence properties reflect contributions from both types of tryptophan residues. One of these appears to be relatively exposed to solvent and the quencher, acrylamide; fluoresce with a lambda max of 345 nm; decay with a fluorescence lifetime of 6.3 ns; have a relatively red-shifted absorption spectrum; and have a certain degree of independent motional freedom, with respect to the protein. The other tryptophan residue appears to be more buried; fluoresce with lambda max of 325 nm; have a lifetime of 1.7 ns; have a relatively blue-shifted absorption spectrum; and not to enjoy independent motional freedom. On comparison of phase-resolved spectral data and solute quenching data, we suggest that resonance energy transfer between the blue and red tryptophan residues may occur. We also describe the strategy of simultaneously fitting Stern-Volmer quenching data collected at two emission wavelengths.  相似文献   

10.
The effects of metal ion binding on the optical spectroscopic properties and temperature stability of two single tryptophan mutants of chicken skeletal TnC, F78W and F154W, have been examined. The absence of tyrosine and other tryptophan residues allowed the unambiguous assignment of the spectral signal from the introduced Trp residue. Changes in the molar ellipticity values in the far-UV CD spectra of the mutant proteins on metal ion binding were similar to those of wild-type TnC suggesting that the introduction of the Trp residue had no effect on the total secondary structure content. The fluorescence and near-UV absorbance data reveal that, in the apo state, Trp-78 is buried while Trp-154 is exposed to solvent. Additionally, the highly resolved (1)L(b) band of Trp-78 seen in the near-UV absorbance and CD spectra of the apo state of F78W suggest that this residue is likely in a rigid molecular environment. In the calcium-saturated state, Trp-154 becomes buried while the solvent accessibility of Trp-78 increases. The fluorescence emission and near-UV CD of Trp-78 in the N-terminal domain were sensitive to calcium binding at the C-terminal domain sites. Measurements of the temperature stability reveal that events occurring in the N-terminal domain affect the stability of the C-terminal domain and vice versa. This, coupled with the titration data, strongly suggests that there are interactions between the N- and C-terminal domains of TnC.  相似文献   

11.
The fluorescence behaviour of human orosomucoid was investigated. The intrinsic fluorescence was more accessible to acrylamide than to the slightly larger succinimide, indicating limited accessibility to part of the tryptophan population. Although I- showed almost no quenching, that of Cs+ was enhanced, and suggested a region of negative charge proximal to an emitting tryptophan residue. Removal of more than 90% of sialic acid from the glycan chains led to no change in the Cs+, I-, succinimide or acrylamide quenching, indicating that the negatively charged region originates with the protein core. Quenching as a function of pH and temperature supported this view. The binding of chlorpromazine monitored by fluorescence quenching, in the presence and in the absence of the small quenching probes (above), led to a model of its binding domain on orosomucoid that includes two tryptophan residues relatively shielded from the bulk solvent, with the third tryptophan residue being on the periphery of the domain, or affected allotopically and near the negatively charged field.  相似文献   

12.
The structure of PsbQ, one of the three main extrinsic proteins associated with the oxygen-evolving complex (OEC) of higher plants and green algae, is examined by Fourier transform infrared (FTIR) and circular dichroic (CD) spectroscopy and by computational structural prediction methods. This protein, together with two other lumenally bound extrinsic proteins, PsbO and PsbP, is essential for the stability and full activity of the OEC in plants. The FTIR spectra obtained in both H(2)O and D(2)O suggest a mainly alpha-helix structure on the basis of the relative areas of the constituents of the amide I and I' bands. The FTIR quantitative analyses indicate that PsbQ contains about 53% alpha-helix, 7% turns, 14% nonordered structure, and 24% beta-strand plus other beta-type extended structures. CD analyses indicate that PsbQ is a mainly alpha-helix protein (about 64%), presenting a small percentage assigned to beta-strand ( approximately 7%) and a larger amount assigned to turns and nonregular structures ( approximately 29%). Independent of the spectroscopic analyses, computational methods for protein structure prediction of PsbQ were utilized. First, a multiple alignment of 12 sequences of PsbQ was obtained after an extensive search in the public databases for protein and EST sequences. Based on this alignment, computational prediction of the secondary structure and the solvent accessibility suggest the presence of two different structural domains in PsbQ: a major C-terminal domain containing four alpha-helices and a minor N-terminal domain with a poorly defined secondary structure enriched in proline and glycine residues. The search for PsbQ analogues by fold recognition methods, not based on the secondary structure, also indicates that PsbQ is a four alpha-helix protein, most probably folding as an up-down bundle. The results obtained by both the spectroscopic and computational methods are in agreement, all indicating that PsbQ is mainly an alpha protein, and show the value of using both methodologies for protein structure investigation.  相似文献   

13.
The response to hydrophobic mismatch of membrane-bound M13 major coat protein is measured using site-directed fluorescence and ESR spectroscopy. For this purpose, we investigate the membrane-anchoring interactions of M13 coat protein in model systems consisting of phosphatidylcholine bilayers that vary in hydrophobic thickness. Mutant coat proteins are prepared with an AEDANS-labeled single cysteine residue in the hinge region of the protein or at the C-terminal side of the transmembrane helix. In addition, the fluorescence of the tryptophan residue is studied as a monitor for the N-terminal side of the transmembrane helix. The fluorescence results show that the hinge region and C-terminal side of the transmembrane helix hardly respond to hydrophobic mismatch. In contrast, the N-terminal side of the helical transmembrane domain shifts to a more apolar environment, when the hydrophobic thickness is increased. The apparent strong membrane-anchoring interactions of the C-terminus are confirmed using a mutant that contains a longer transmembrane domain. As a result of this mutation, the tryptophan residue at the N-terminal side of the helical domain clearly shifts to a more polar environment, whereas the labeled position 46 at the C-terminal side is not affected. The phenylalanines in the C-terminal part of the protein play an important role in these apparent strong anchoring interactions. This is demonstrated with a mutant in which both phenylalanines are replaced by alanine residues. The phenylalanine residues in the C-terminus affect the location in the membrane of the entire transmembrane domain of the protein.  相似文献   

14.
The purpose of the study was to compare the effects of deamidation alone, truncation alone, or both truncation and deamidation on structural and functional properties of human lens alphaA-crystallin. Specifically, the study investigated whether deamidation of one or two sites in alphaA-crystallin (i.e., alphaA-N101D, alphaA-N123D, alphaA-N101/123D) and/or truncation of the N-terminal domain (residues 1-63) or C-terminal extension (residues 140-173) affected the structural and functional properties relative to wild-type (WT) alphaA. Human WT-alphaA and human deamidated alphaA (alphaA-N101D, alphaA-N123D, alphaA-N101/123D) were used as templates to generate the following eight N-terminal domain (residues 1-63) deleted or C-terminal extension (residues 140-173) deleted alphaA mutants and deamidated plus N-terminal domain or C-terminal extension deleted mutants: (i) alphaA-NT (NT, N-terminal domain deleted), (ii) alphaA-N101D-NT, (iii) alphaA-N123D-NT, (iv) alphaA-N101/123D-NT, (v) alphaA-CT (CT, C-terminal extension deleted), (vi) alphaA-N101D-CT, (vii) alphaA-N123D-CT, and (viii) alphaA-N101/123D-CT. All of the proteins were purified and their structural and functional (chaperone activity) properties determined. The desired deletions in the alphaA-crystallin mutants were confirmed by matrix-assisted laser desorption/ionization-time-of-flight (MALDI-TOF) mass spectrometric analysis. Relative to WT-alphaA homomers, the mutant proteins exhibited major structural and functional changes. The maximum decrease in chaperone activity in homomers occurred on deamidation of N123 residue, but it was substantially restored after N- or C-terminal truncations in this mutant protein. Far-UV circular dichroism (CD) spectral analyses generally showed an increase in the beta-contents in alphaA mutants with deletions of N-terminal domain or C-terminal extension and also with deamidation plus above N- or C-terminal deletions. Intrinsic tryptophan (Trp) and total fluorescence spectral studies suggested altered microenvironments in the alphaA mutant proteins. Similarly, the ANS (8-anilino-1-naphthalenesulfate) binding showed generally increased fluorescence with blue shift on deletion of the N-terminal domain in the deamidated mutant proteins, but opposite effects were observed on deletion of the C-terminal extension. Molecular mass, polydispersity of homomers, and the rate of subunit exchange with WT-alphaB-crystallin increased on deletion of the C-terminal extension in the deamidated alphaA mutants, but on N-terminal domain deletion these values showed variable results based on the deamidation site. In summary, the data suggested that the deamidation alone showed greater effect on chaperone activity than the deletion of N-terminal domain or C-terminal extension of alphaA-crystallin. The N123 residue of alphaA-crystallin plays a crucial role in maintaining its chaperone function. However, both the N-terminal domain and C-terminal extension are also important for the chaperone activity of alphaA-crystallin because the activity was partially or fully recovered following either deletion in the alphaA-N123D mutant. The results of subunit exchange rates among alphaA mutants and WT-alphaB suggested that such exchange is an important determinant in maintenance of chaperone activity following deamidation and/or deletion of the N-terminal domain or C-terminal extension in alphaA-crystallin.  相似文献   

15.
Lifetime analysis of tryptophan fluorescence of the mitochondrial processing peptidase (MPP) from Saccharomyces cerevisiae clearly proved that substrate binding evoked a conformational change of the alpha-subunit while presence of substrate influenced neither the lifetime components nor the average lifetime of the tryptophan excited state of the beta-MPP subunit. Interestingly, lifetime analysis of tryptophan fluorescence decay of the alpha-MPP subunit revealed about 11% of steady-state fractional intensity due to the long-lived lifetime component, indicating that at least one tryptophan residue is partly buried at the hydrophobic microenvironment. Computer modeling, however, predicted none of three tryptophans, which the alpha-subunit contains, as deeply buried in the protein matrix. We conclude this as a consequence of a possible dimeric (oligomeric) structure.  相似文献   

16.
R B Weinberg 《Biochemistry》1988,27(5):1515-1521
We have investigated the exposure and electronic interaction of tyrosine and tryptophan residues in human apolipoprotein A-IV (apo A-IV). Differential absorption spectroscopy and chemical titration demonstrated that human apo A-IV contains six tyrosine residues, four of which are buried in the hydrophobic interior of the protein and two of which are exposed on the protein surface. Denaturation of the protein by guanidinium chloride caused progressive exposure of the buried tyrosines. The fluorescence emission spectra of apo A-IV were characterized by a blue-shifted tryptophan emission with a low relative quantum yield of 0.37 and a tyrosine emission with a relative quantum yield of 0.62. Fluorescence quenching studies demonstrated a low fractional exposure of tryptophan in the native state. Denaturation of apo A-IV was accompanied by an increase in the relative quantum yield which peaked at the denaturation midpoint. Fluorescence excitation techniques demonstrated energy transfer from tyrosine residues with a transfer efficiency of 0.40 in the native state; the efficiency was conformation dependent and decreased with protein unfolding. Fluorescence studies of tetranitromethane-modified apo A-IV suggested that a significant fraction of energy transfer proceeds from the exposed tyrosine residues. These data demonstrate the existence of intramolecular fluorescence energy transfer and tryptophan quenching in human apolipoprotein A-IV and suggest that the amino terminus of this protein is situated in a hydrophobic domain within energy-transfer range of nonvicinal tyrosine residues.  相似文献   

17.
The quenching of tryptophan fluorescence by N-bromosuccinamide, studied by the fluorescence stopped-flow technique, was used to compare the reactivities of tryptophan residues in protein molecules. The reaction of N-bromosuccinamide with the indole group of N-acetyltryptophanamide, a model compound for bound tryptophan, followed second-order kinetics with a rate constant of (7.8 +/- 0.8) . 10(5) dm3 . mol-1 . s-1 at 23 degrees C. The rate does not depend on ionic strength or on the pH near neutrality. The non-fluorescent intermediate formed from N-acetyltryptophanamide on the reaction with N-bromosuccinamide appears to be a bromohydrin compound. The second-order rate constant for fluorescence quenching of tryptophan in Gly-Trp-Gly by N-bromosuccinamide was very similar, (8.8 +/- 0.8) . 10(5) dm3 . mol-1 . s-1. Apocytochrome c has the conformation of a random coil with the single tryptophan largely exposed to the solvent. The rate constant for the fluorescence quenching of the tryptophan in apocytochrome c by N-bromosuccinamide was (3.7 +/- 0.3) . 10(5) dm3 . mol-1 . s-1. The fluorescence quenching by N-bromosuccinamide of the tryptophan residues incorporated in alpha-chymotrypsin at pH 7.0 showed three exponential terms from which the following rate constants were derived: 1.74 . 10(5), 0.56 . 10(5) and 0.11 . 10(5) dm3 . mol-1 . s-1. This protein is known to have eight tryptophan residues in the native state, six residues at the surface, and two buried. Three of the surface tryptophans have the indole rings protruding out of the molecule and may account for the fastest kinetic phase of the quenching process. The intermediate phase may be due to three surface tryptophans whose indole rings point inwards, and the slowest to the two interior tryptophan residues.  相似文献   

18.
Phosphorylation of Ser40 in the regulatory domain of tyrosine hydroxylase activates the enzyme by increasing the rate constant for dissociation of inhibitory catecholamines from the active site by 3 orders of magnitude. To probe the changes in the structure of the N-terminal domain upon phosphorylation, individual phenylalanine residues at positions 14, 34, and 74 were replaced with tryptophan in a form of the protein in which the endogenous tryptophans had all been mutated to phenylalanine (W(3)F TyrH). The steady-state fluorescence anisotropy of F74W W(3)F TyrH was unaffected by phosphorylation, but the anisotropies of both F14W and F34W W(3)F TyrH increased significantly upon phosphorylation. The fluorescence of the single tryptophan residue at position 74 was less readily quenched by acrylamide than those at the other two positions; fluorescence increased the rate constant for quenching of the residues at positions 14 and 34 but did not affect that for the residue at position 74. Frequency domain analyses were consistent with phosphorylation having no effect on the amplitude of the rotational motion of the indole ring at position 74, resulting in a small increase in the rotational motion of the residue at position 14 and resulting in a larger increase in the rotational motion of the residue at position 34. These results are consistent with the local environment at position 74 being unaffected by phosphorylation, that at position 34 becoming much more flexible upon phosphorylation, and that at position 14 becoming slightly more flexible upon phosphorylation. The results support a model in which phosphorylation at Ser40 at the N-terminus of the regulatory domain causes a conformational change to a more open conformation in which the N-terminus of the protein no longer inhibits dissociation of a bound catecholamine from the active site.  相似文献   

19.
A procedure is described for using nanosecond time resolved fluorescence decay data to obtain decay-associated fluorescence spectra. It is demonstrated that the individual fluorescence spectra of two or more components in a mixture can be extracted without prior knowledge of their spectral shapes or degree of overlap. The procedure is also of value for eliminating scattered light artifacts in the fluorescence spectra of turbid samples. The method was used to separate the overlapping emission spectra of the two tryptophan residues in horse liver alcohol dehydrogenase. Formation of a ternary complex between the enzyme, NAD+, and pyrazole leads to a decrease in the total tryptophan fluorescence. It is shown that the emission of both tryptophan residues decreases. The buried tryptophan (residue 314) undergoes dynamic quenching with no change in the spectral distribution. Under the same conditions, the fluorescence intensity of tryptophan (residue 15) decreases without a change in decay time but with a red shift of the emission spectrum. There is also a decrease in tryptophan fluorescence intensity when the free enzyme is acid denatured (succinate buffer, pH 4.1). The denatured enzyme retains sufficient structure to provide different microenvironments for different tryptophan residues as reflected by biexponential decay and spectrally shifted emission spectra (revealed by decay association). The value of this technique for studies of microheterogeneity in biological macromolecules is discussed.  相似文献   

20.
The catalytic domain of cytochrome P450 is thought to contact the lipid core of the endoplasmic reticulum membrane based on antibody epitope accessibility, protease susceptibility, and hydrophobic surfaces present on P450 structures of solubilized forms of the proteins. Quenching by nitroxide spin label-modified phospholipids of the fluorescence of tryptophan residues substituted into cytochrome P450 2C2, modified to contain tryptophan only at position 120, was used to identify regions of P450 inserted into the lipid core and to estimate the depth of penetration. Consistent with the proposed models of cytochrome P450-membrane interaction, the fluorescence of tryptophans inserted at residues 36 and 69 in the two segments of P450 2C2 flanking the A-helix and at residue 380 in the beta2-2 strand was quenched by nitroxide spin labels on carbon 5 of the fatty acid tails of the phospholipids within the lipid bilayer. The fluorescence of tryptophan at 380 was also strongly quenched by a spin label on carbon 12 of the fatty acids suggesting it was deepest in the membrane. However, fluorescence of tryptophan substituted at residue 225 in the F-G loop, which was predicted to be in the lipid bilayer, was not quenched by the spin labels at carbons 5 and 12 of the fatty acids. The pattern of quenching of fluorescence for tryptophans at the other positions tested, 80, 189, 239, and 347, was similar to the parent protein indicating they were not inserted into the lipid bilayer as expected. The results are consistent with an orientation of cytochrome P450 2C2 in the membrane in which positions 36, 69, and 380 are inserted into the lipid bilayer and residues 80 and 225 are near or within the phospholipid headgroup region. In this orientation, the F-G loop, which contains residue 225, could form a dimerization interface as was observed in the P450 2C8 crystal structure (Schoch, G. A., et al. (2004) J. Biol. Chem. 279, 9497).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号