首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The liver has an extraordinary regenerative capacity rapidly triggered upon injury or resection. This response is intrinsically adjusted in its initiation and termination, a property termed the “hepatostat”. Several molecules have been involved in liver regeneration, and among them bile acids may play a central role. Intrahepatic levels of bile acids rapidly increase after resection. Through the activation of farnesoid X receptor (FXR), bile acids regulate their hepatic metabolism and also promote hepatocellular proliferation. FXR is also expressed in enterocytes, where bile acids stimulate the expression of fibroblast growth factor 15/19 (FGF15/19), which is released to the portal blood. Through the activation of FGFR4 on hepatocytes FGF15/19 regulates bile acids synthesis and finely tunes liver regeneration as part of the “hepatostat”. Here we review the experimental evidences supporting the relevance of the FXR-FGF15/19-FGFR4 axis in liver regeneration and discuss potential therapeutic applications of FGF15/19 in the prevention of liver failure. This article is part of a Special Issue entitled: Cholangiocytes in Health and Disease edited by Jesus Banales, Marco Marzioni, Nicholas LaRusso and Peter Jansen.  相似文献   

3.
Cholesterol feeding upregulates CYP7A1 in rats but downregulates CYP7A1 in rabbits. To clarify the mechanism responsible for the upregulation of CYP7A1 in cholesterol-fed rats, the effects of dietary cholesterol (Ch) and cholic acid (CA) on the activation of the nuclear receptors, liver X-receptor (LXR-alpha) and farsenoid X-receptor (FXR), which positively and negatively regulate CYP7A1, were investigated in rats. Studies were carried out in four groups (n = 12/group) of male Sprague-Dawley rats fed regular chow (control), 2% Ch, 2% Ch + 1% CA, and 1% CA alone for 1 wk. Changes in mRNA expression of short heterodimer partner (SHP) and bile salt export pump (BSEP), target genes for FXR, were determined to indicate FXR activation, whereas the expression of ABCA1 and lipoprotein lipase (LPL), target genes for LXR-alpha, reflected activation. CYP7A1 mRNA and activity increased twofold and 70%, respectively, in rats fed Ch alone when the bile acid pool size was stable but decreased 43 and 49%, respectively, after CA was added to the Ch diet, which expanded the bile acid pool 3.4-fold. SHP and BSEP mRNA levels did not change after feeding Ch but increased 88 and 37% in rats fed Ch + CA. This indicated that FXR was activated by the expanded bile acid pool. When Ch or Ch + CA were fed, hepatic concentrations of oxysterols, ligands for LXR-alpha increased to activate LXR-alpha, as evidenced by increased mRNA levels of ABCA1 and LPL. Feeding CA alone enlarged the bile acid pool threefold and increased the expression of both SHP and BSEP. These results suggest that LXR-alpha was activated in rats fed both Ch or Ch + CA, whereas CYP7A1 mRNA and activity were induced only in Ch-fed rats where the bile acid pool was not enlarged such that FXR was not activated. In rats fed Ch + CA, the bile acid pool expanded, which activated FXR to offset the stimulatory effects of LXR-alpha on CYP7A1.  相似文献   

4.
5.
6.
In cattle and other species, the fetal ovary is steroidogenically active before follicular development commences, and there is evidence that estradiol and progesterone inhibit follicle formation and activation. Estradiol levels decline sharply around the time of follicle formation. In the present study, we hypothesized that FGF10 and FGF18, which inhibit estradiol secretion from granulosa cells of antral follicles, also regulate fetal ovarian steroid production. Fetuses were collected at local abattoirs, and age determined by crown‐rump length measurements. Real‐time polymerase chain reaction assays with RNA extracted from whole ovaries revealed that the abundance of CYP19A1 messenger RNA (mRNA) decreased from 60 to 90 days of gestation, which is consistent with the decline in estradiol secretion previously observed. Immunohistochemistry revealed the presence of FGF18 in ovigerous cords in early gestation and in oocytes later in fetal age (≥150 days). The abundance of FGF18 mRNA increased after Day 90 gestation. Addition of recombinant FGF18 to fetal ovarian pieces inhibited estradiol and progesterone secretion in vitro, whereas FGF10 was without effect. Consistent with these results, FGF18 decreased levels of mRNA for CYP19A1 and CYP11A1 in ovarian pieces in vitro. These data suggest that FGF18 may be an intraovarian factor that regulates steroidogenesis in fetal ovaries.  相似文献   

7.
Fibroblast growth factor (FGF) has been considered to modulate liver regeneration (LR) after partial hepatectomy (PH) at the tissue level. Previous studies have demonstrated that FGF15 and FGF19 induce the activation of its receptor, FGF receptor 4 (FGFR4), which can promote hepatocellular carcinoma progression and regulate liver lipid metabolism. In this study, we aimed to explore the role of the ileal FGF15/19- hepatic FGFR4 axis in the LR after PH. Male C57BL/6 mice aged 8–12 weeks were partially hepatectomized and assessed for expression of ileal FGF15/19 to hepatic FGFR4 signaling. We used recombinant human FGF19 protein and a small interfering RNA (siRNA) of FGFR4 to regulate expression of the FGF15/19-FGFR4 axis in vitro and in vivo. The proliferation and cell cycle of hepatocytes, the expression levels of FGF15/19-FGFR4 downstream molecules, liver recovery, and lipid metabolism were assessed. We found that both ileal and serum FGF15 expression were upregulated and hepatic FGFR4 was activated after PH in mice. FGF15/19 promoted cell cycle progression, enhanced proliferation, and reduced hepatic lipid accumulation of hepatocytes both in vitro and in vivo. Furthermore, the proliferative effect and lipid regulatory properties of FGF15/19 were dependent on FGFR4 in hepatocytes. In addition, ileal FGF15/19-hepatic FGFR4 transduction during hepatocyte proliferation was regulated by extracellular regulated protein kinase (ERK) 1/2. In conclusion, the ileal FGF15/19 to hepatic FGFR4 axis is activated and promotes LR after PH in mice, supporting the potential of ileal FGF15/19 to hepatic FGFR4 axis-targeted therapy to enhance LR after PH.  相似文献   

8.
The liver and intestine play crucial roles in maintaining bile acid homeostasis. Here, we demonstrate that fibroblast growth factor 15 (FGF15) signals from intestine to liver to repress the gene encoding cholesterol 7alpha-hydroxylase (CYP7A1), which catalyzes the first and rate-limiting step in the classical bile acid synthetic pathway. FGF15 expression is stimulated in the small intestine by the nuclear bile acid receptor FXR and represses Cyp7a1 in liver through a mechanism that involves FGF receptor 4 (FGFR4) and the orphan nuclear receptor SHP. Mice lacking FGF15 have increased hepatic CYP7A1 mRNA and protein levels and corresponding increases in CYP7A1 enzyme activity and fecal bile acid excretion. These studies define FGF15 and FGFR4 as components of a gut-liver signaling pathway that synergizes with SHP to regulate bile acid synthesis.  相似文献   

9.
Background: Nonalcoholic steatohepatitis (NASH) is the most severe form of non-alcoholic fatty liver disease (NAFLD) and a potential precursor of hepatocellular carcinoma (HCC). In our previous studies, we found that endocrine fibroblast growth factor 21 (FGF21) played a key role in preventing the development of NASH, however, the FGF15/19 mediated-FGFR4 signaling worsened NASH and even contributed to the NASH-HCC transition. The aim of this study is to determine whether FGF15/FGFR4 signaling could alleviate or aggravate NASH in the FGF21KO mice.Methods: NASH models were established in FGF21KO mice fed with high fat methionine-choline deficient (HFMCD) diet to investigate FGF15/FGFR4 signaling during early stage NASH and advanced stage NASH. Human hepatocytes, HepG2 and Hep3B cells, were cultured with human enterocytes Caco-2 cells to mimic gut-liver circulation to investigate the potential mechanism of NASH development.Results: Significant increase of FGF15 production was found in the liver of the NASH-FGF21KO mice, however the increased FGF15 protein was unable to alleviate hepatic lipid accumulation. In contrast, up-regulated FGF15/19/FGFR4 signaling was found in the FGF21KO mice with increased NASH severity, as evident by hepatocyte injury/repair, fibrosis and potential malignant events. In in vitro studies, blockage of FGFR4 by BLU9931 treatment attenuated the lipid accumulation, up-regulated cyclin D1, and epithelial-mesenchymal transition (EMT) in the hepatocytes.Conclusion: The increased FGF15 in NASH-FGF21KO mice could not substitute for FGF21 to compensate its lipid metabolic benefits thereby to prevent NASH development. Up-regulated FGFR4 signaling in NASH-FGF21KO mice coupled to proliferation and EMT events which were widely accepted to be associated with carcinogenic transformation.  相似文献   

10.
11.
Bile acid malabsorption, which in patients leads to excessive fecal bile acid excretion and diarrhea, is characterized by a vicious cycle in which the feedback regulation of bile acid synthesis is interrupted, resulting in additional bile acid production. Feedback regulation of bile acid synthesis is under the control of an endocrine pathway wherein activation of the nuclear bile acid receptor, farnesoid X receptor (FXR), induces enteric expression of the hormone, fibroblast growth factor 15 (FGF15). In liver, FGF15 acts together with FXR-mediated expression of small heterodimer partner to repress bile acid synthesis. Here, we show that the FXR-FGF15 pathway is disrupted in mice lacking apical ileal bile acid transporter, a model of bile acid malabsorption. Treatment of Asbt-/- mice with either a synthetic FXR agonist or FGF15 downregulates hepatic cholesterol 7alpha-hydroxylase mRNA levels, decreases bile acid pool size, and reduces fecal bile acid excretion. These findings suggest that FXR agonists or FGF15 could be used therapeutically to interrupt the cycle of excessive bile acid production in patients with bile acid malabsorption.  相似文献   

12.
Liver-specific activities of FGF19 require Klotho beta   总被引:3,自引:0,他引:3  
Hepatocyte function is regulated by members of the fibroblast growth factor (FGF) family of proteins, but little is known about the specific molecular mechanisms of this endocrine pathway. FGF19 regulates bile acid homeostasis and gall bladder filling; FGF19 binds only to FGF receptor 4 (FGFR4), but its liver-specific activity cannot be explained solely by the distribution of this receptor. Although it has been suggested that Klotho beta (KLB) may have a role in mediating FGF19 activity, we have provided for the first time definitive evidence that KLB is required for FGF19 binding to FGFR4, intracellular signaling, and downstream modulation of gene expression. We have shown that FGFR4 is widely distributed in mouse, whereas KLB distribution is more restricted. Liver was the only organ in which both genes were abundantly expressed. We show that in mice, FGF19 injection triggers liver-specific induction of c-Fos and repression of CYP7A1. The tissue-specific activity of FGF19 supports the unique intersection of KLB and FGFR4 distribution in liver. These studies define KLB as a novel FGFR4 coreceptor required for FGF19 liver specific functions.  相似文献   

13.
成纤维细胞生长因子21(fibroblast growth factor,FGF21)是FGF家族中的新成员.目前研究显示,FGF21是一个新的糖脂代谢调节因子,有望成为治疗糖尿病的新型药物.为探讨FGF21的生理功能,利用real-time PCR和Western印迹,检测FGF21在不同生理或病理状态下基因水平和蛋白水平的表达量变化规律.实验结果显示,在全天24 h中,小鼠肝脏中FGF21在晚18点至21点,表达量显著升高,这可能与啮齿类动物傍晚活动加强及进食习性有关|FGF21在饥饿后表达量显著升高,在饥饿后喂食FGF21的表达量下降,并且随着饥饿时间的延长,FGF21的表达量升高,说明FGF21与饥饿程度呈正相关|灌注葡萄糖后20 min内,FGF21的表达量下降,而灌注脂肪乳20 min内,FGF21的表达量上升,说明葡萄糖是FGF21的负调节因子,而脂肪乳是FGF21的正调节因子|利用谷氨酸钠造模的肥胖小鼠,肝脏中FGF21的表达量显著高于同龄对照组,说明肥胖可诱导FGF21高表达.综上所述,FGF21的表达量变化与小鼠夜间活动取食、饥饿程度、饮食中不同的成分以及肥胖有关.  相似文献   

14.
15.
16.
目的: 研究持续性运动训练(CT)与高强度间歇运动训练(HIIT)对正常和肥胖大鼠血清和肝脏FGF21蛋白含量及肝脏脂肪代谢的影响。方法: 雄性SD大鼠随机分为两组:普通饲料及45%高脂饲料喂养,8周后以普通饲料喂养,大鼠体重增加20%为肥胖造模成功标准。将正常大鼠随机分为正常安静组(LC)、正常高强度间歇运动训练组(LHI)、正常持续性运动训练组(LCT),肥胖大鼠随机分为肥胖安静组(OC)、肥胖高强度间歇运动训练组(OHI)及肥胖持续性运动训练组(OCT),每组10只,运动干预组大鼠进行8周不同方式负重游泳运动训练干预,末次运动干预间隔24 h后取血液检测血清炎症因子、FGF21水平,取肝脏组织检测脂质含量、脂代谢酶含量及FGF21表达水平。结果: 与LC组比较,OC组大鼠体重、血清炎症因子、肝脏甘油三酯(TG)含量显著增高(P<0.05),LHI组肝脏TG含量显著降低,LCT组肝脏FGF21表达水平显著增高(P<0.05)。与OC组比较,OHI组大鼠肝脏TG含量显著降低(P<0.05),线粒体CPT-1β、β-HAD酶含量显著升高(P<0.05),OCT组大鼠肝脏LPL、FAT/CD36酶含量显著增高,血清、肝脏FGF21水平均显著上升(P<0.05)。结论: 两种运动方式均能降低正常、肥胖大鼠体重及肥胖大鼠肝脏脂质沉积现象,其中HIIT上调线粒体脂肪氧化水平,显著降低正常、肥胖大鼠肝脏TG含量,而CT通过提高正常、肥胖大鼠肝脏FGF21蛋白表达及血清FGF21水平,促进肝脏摄取脂肪酸,对缓解肥胖大鼠肝脏脂质沉积效果有限。  相似文献   

17.
We investigated the role of the orphan nuclear receptor farnesoid X receptor (FXR) in the regulation of cholesterol 7alpha-hydroxylase (CYP7A1), using an in vivo rabbit model, in which the bile acid pool, which includes high affinity ligands for FXR, was eliminated. After 7 days of bile drainage, the enterohepatic bile acid pool, in both New Zealand White and Watanabe heritable hyperlipidemic rabbits, was depleted. CYP7A1 activity and mRNA levels increased while FXR was deactivated as indicated by reduced FXR protein and changes in the expression of target genes that served as surrogate markers of FXR activation in the liver and ileum, respectively. Hepatic bile salt export pump mRNA levels and ileal bile acid-binding protein decreased while sterol 12alpha-hydroxylase and sodium/taurocholate cotransporting polypeptide mRNA levels increased in the liver. In addition, hepatic FXR mRNA levels decreased significantly.The data, taken together, indicate that FXR was deactivated when the bile acid pool was depleted such that CYP7A1 was upregulated. Further, lack of the high affinity ligand supply was associated with downregulation of hepatic FXR mRNA levels.  相似文献   

18.
Peptide transporter 1 (SLC15A1, PepT1), excitatory amino acid transporter 3 (SLC1A1, EAAT3) and cationic amino acid transporter 1 (SLC7A1, CAT1) were identified as genes responsible for the transport of small peptides and amino acids. The tissue expression pattern of rabbit (SLC15A1, SLC7A1 and SLC1A1) across the digestive tract remains unclear. The present study investigated SLC15A1, SLC7A1 and SLC1A1 gene expression patterns across the digestive tract at different stages of development and in response to dietary protein levels. Real time-PCR results indicated that SLC15A1, SLC7A1 and SLC1A1 genes throughout the rabbits’ entire development and were expressed in all tested rabbit digestive sites, including the stomach, duodenum, jejunum, ileum, colon and cecum. Furthermore, SLC7A1 and SLC1A1 mRNA expression occurred in a tissue-specific and time-associated manner, suggesting the distinct transport ability of amino acids in different tissues and at different developmental stages. The most highly expressed levels of all three genes were in the duodenum, ileum and jejunum in all developmental stages. All increased after lactation. With increased dietary protein levels, SLC7A1 mRNA levels in small intestine and SLC1A1 mRNA levels in duodenum and ileum exhibited a significant decreasing trend. Moreover, rabbits fed a normal level of protein had the highest levels of SLC15A1 mRNA in the duodenum and jejunum (P<0.05). In conclusion, gene mRNA differed across sites and with development suggesting time and sites related differences in peptide and amino acid absorption in rabbits. The effects of dietary protein on expression of the three genes were also site specific.  相似文献   

19.
Fibroblast growth factor (FGF) and bone morphogenetic protein (BMP) play essential roles in bone formation and osteoblast activity through the extracellular signal‐regulated kinase 1/2 (ERK1/2) and Smad pathways. Sprouty family members are intracellular inhibitors of the FGF signaling pathway, and four orthologs of Sprouty have been identified in mammals. In vivo analyses have revealed that Sprouty2 is associated with bone formation. However, the mechanism by which the Sprouty family controls bone formation has not been clarified. In this study, we investigated the involvement of Sprouty2 in osteoblast proliferation and differentiation. We examined Sprouty2 expression in MC3T3‐E1 cells, and found that high levels of Sprouty2 expression were induced by basic FGF stimulation. Overexpression of Sprouty2 in MC3T3‐E1 cells resulted in suppressed proliferation compared with control cells. Sprouty2 negatively regulated the phosphorylation of ERK1/2 after basic FGF stimulation, and of Smad1/5/8 after BMP stimulation. Furthermore, Sprouty2 suppressed the expression of osterix, alkaline phosphatase, and osteocalcin mRNA, which are markers of osteoblast differentiation. Additionally, Sprouty2 inhibited osteoblast matrix mineralization. These results suggest that Sprouty2 is involved in the control of osteoblast proliferation and differentiation by downregulating the FGF‐ERK1/2 and BMP‐Smad pathways, and suppresses the induction of markers of osteoblast differentiation.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号