首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Saccharomyces cerevisiae can utilize allantoin as a sole nitrogen source by degrading it in five steps to ammonia, “CO2”, and glyoxylate. We have previously shown that allophanic acid is the inducer of the urea carboxylase: allophanate hydrolase multienzyme complex. Since these enzymes catalyse the last two steps of allantoin degradation, experiments were performed to determine if allophanate was also the inducer of any other enzymes in the pathway. Our data demonstrate that allophanate induces synthesis of at least five of the seven purine degradative enzymes.  相似文献   

2.
TrzF, the allophanate hydrolase from Enterobacter cloacae strain 99, was cloned, overexpressed in the presence of a chaperone protein, and purified to homogeneity. Native TrzF had a subunit molecular weight of 65,401 and a subunit stoichiometry of α2 and did not contain significant levels of metals. TrzF showed time-dependent inhibition by phenyl phosphorodiamidate and is a member of the amidase signature protein family. TrzF was highly active in the hydrolysis of allophanate but was not active with urea, despite having been previously considered a urea amidolyase. TrzF showed lower activity with malonamate, malonamide, and biuret. The allophanate hydrolase from Pseudomonas sp. strain ADP, AtzF, was also shown to hydrolyze biuret slowly. Since biuret and allophanate are consecutive metabolites in cyanuric acid metabolism, the low level of biuret hydrolase activity can have physiological significance. A recombinant Escherichia coli strain containing atzD, encoding cyanuric acid hydrolase that produces biuret, and atzF grew slowly on cyanuric acid as a source of nitrogen. The amount of growth produced was consistent with the liberation of 3 mol of ammonia from cyanuric acid. In vitro, TrzF was shown to hydrolyze biuret to liberate 3 mol of ammonia. The biuret hydrolyzing activity of TrzF might also be physiologically relevant in native strains. E. cloacae strain 99 grows on cyanuric acid with a significant accumulation of biuret.  相似文献   

3.
The first prokaryotic urea carboxylase has previously been purified and characterized from Oleomonas sagaranensis. As the results indicated the presence of an ATP-dependent urea degradation pathway in Bacteria, the characterization of the second component of this pathway, allophanate hydrolase, was carried out. The gene encoding allophanate hydrolase was found adjacent to the urea carboxylase gene. The purified, recombinant enzyme exhibited ammonia-generating activity towards allophanate, and, together with urea carboxylase, efficiently produced ammonia from urea in an ATP-dependent manner. The substrate specificity of the enzyme was strict, and analogs of allophanate were not hydrolyzed. Moreover, although the urea carboxylase exhibited carboxylase activity towards urea, acetamide, and formamide, ammonia-releasing activity of the two enzymes combined was detected only towards urea, indicating that the pathway was specific for urea degradation.  相似文献   

4.
Allophanate hydrolase was purified to homogeneity from extracts of Chlamydomonas reinhardii grown phototrophically using urea as sole source of nitrogen. The following sequence of steps comprised the purification procedure: (1) protamine sulfate precipitation; (2) ammonium sulfate fractionation; (3) poly(ethylene glycol) fractionation; (4) batch-wise DEAE-cellulose adsorption; (5) Sepharose 6-B gel filtration; (6) hydroxyapatite chromatography. This procedure yielded an allophanate hydrolase preparation which was homogenous as judged by polyacrylamide gel electrophoresis. The molecular weight, as determined by gradient polyacrylamide electrophoresis and gel filtration, was 110 000 and 100 000, respectively. The pH optimum of this enzyme was approximately 9.0, while the Km for allophanate was 0.55 mM. Allophanate hydrolase was sensitive to N-ethylmaleimide but was protected from this inhibition by allophanate. Malonic acid, oxaloacetic acid, and acetoacetic acid were inhibitory to allophanate hydrolysis.  相似文献   

5.
Urea amidolyase catalyzes the two reactions (urea carboxylase and a allophanate hydrolase) associated with urea degradation in Saccharomyces cerevisiae. Past work has shown that both reactions are catalyzed by a 204-kilodalton, multifunctional protein. In view of these observations, it was surprising to find that on induction at 22 degrees C, approximately 2 to 6 min elapsed between the appearance of allophanate hydrolase and urea carboxylase activities. In search of an explanation for this apparent paradox, we determined whether or not a detectable period of time elapsed between the appearance of allophanate hydrolase activity and activation of the urea carboxylase domain by the addition of biotin. We found that a significant portion of the protein produced immediately after the onset of induction lacked the prosthetic group. A steady-state level of biotin-free enzyme was reached 16 min after induction and persisted indefinitely thereafter. These data are consistent with the suggestion that sequential induction of allophanate hydrolase and urea carboxylase activities results from the time required to covalently bind biotin to the latter domain of the protein.  相似文献   

6.
The activity of the allophanate hydrolase from Pseudomonas sp. strain ADP, AtzF, provides the final hydrolytic step for the mineralization of s-triazines, such as atrazine and cyanuric acid. Indeed, the action of AtzF provides metabolic access to two of the three nitrogens in each triazine ring. The X-ray structure of the N-terminal amidase domain of AtzF reveals that it is highly homologous to allophanate hydrolases involved in a different catabolic process in other organisms (i.e., the mineralization of urea). The smaller C-terminal domain does not appear to have a physiologically relevant catalytic function, as reported for the allophanate hydrolase of Kluyveromyces lactis, when purified enzyme was tested in vitro. However, the C-terminal domain does have a function in coordinating the quaternary structure of AtzF. Interestingly, we also show that AtzF forms a large, ca. 660-kDa, multienzyme complex with AtzD and AtzE that is capable of mineralizing cyanuric acid. The function of this complex may be to channel substrates from one active site to the next, effectively protecting unstable metabolites, such as allophanate, from solvent-mediated decarboxylation to a dead-end metabolic product.  相似文献   

7.
Mannosyl-3-phosphoglycerate synthase is a glycosyltransferase involved in the two-step synthetic pathway of mannosylglycerate, a compatible solute that accumulates in response to salt and/or heat stresses in many microorganisms thriving in hot environments. The three-dimensional structure of mannosyl-3-phosphoglycerate synthase from Thermus thermophilus HB27 in its binary complex form, with GDP-α-d-mannose and Mg2+, shows a second metal binding site, about 6 Å away from the mannose moiety. Kinetic and mutagenesis studies have shown that this metal site plays a role in catalysis. Additionally, Asp167 in the DXD motif is found within van der Waals contact distance of the C1′ atom in the mannopyranose ring, suggesting its action as a catalytic nucleophile, either in the formation of a glycosyl-enzyme intermediate according to the double-displacement SN2 reaction mechanism or in the stabilization of the oxocarbenium ion-like intermediate according to the DN*ANss (SNi-like) reaction mechanism. We propose that either mechanism may occur in retaining glycosyltransferases with a GT-A fold, and, based on the gathered structural information, we identified an extended structural signature toward a common scaffold between the inverting and retaining glycosyltransferases.  相似文献   

8.
Growth substrates containing an s-triazine ring are typically metabolized by bacteria to liberate 3 mol of ammonia via the intermediate cyanuric acid. Over a 25-year period, a number of original research papers and reviews have stated that cyanuric acid is metabolized in two steps to the 2-nitrogen intermediate urea. In the present study, allophanate, not urea, was shown to be the 2-nitrogen intermediate in cyanuric acid metabolism in all the bacteria examined. Six different experimental results supported this conclusion: (i) synthetic allophanate was shown to readily decarboxylate to form urea under acidic extraction and chromatography conditions used in previous studies; (ii) alkaline extraction methods were used to stabilize and detect allophanate in bacteria actively metabolizing cyanuric acid; (iii) the kinetic course of allophanate formation and disappearance was consistent with its being an intermediate in cyanuric acid metabolism, and no urea was observed in those experiments; (iv) protein extracts from cells grown on cyanuric acid contained allophanate hydrolase activity; (v) genes encoding the enzymes AtzE and AtzF, which produce and hydrolyze allophanate, respectively, were found in several cyanuric acid-metabolizing bacteria; and (vi) TrzF, an AtzF homolog found in Enterobacter cloacae strain 99, was cloned, expressed in Escherichia coli, and shown to have allophanate hydrolase activity. In addition, we have observed that there are a large number of genes homologous to atzF and trzF distributed in phylogenetically distinct bacteria. In total, the data indicate that s-triazine metabolism in a broad class of bacteria proceeds through allophanate via allophanate hydrolase, rather than through urea using urease.  相似文献   

9.
2-Ketocyclohexanecarboxyl coenzyme A (2-ketochc-CoA) hydrolase has been proposed to catalyze an unusual hydrolytic ring cleavage reaction as the last unique step in the pathway of anaerobic benzoate degradation by bacteria. This enzyme was purified from the phototrophic bacterium Rhodopseudomonas palustris by sequential Q-Sepharose, phenyl-Sepharose, gel filtration, and hydroxyapatite chromatography. The sequence of the 25 N-terminal amino acids of the purified hydrolase was identical to the deduced amino acid sequence of the badI gene, which is located in a cluster of genes involved in anaerobic degradation of aromatic acids. The deduced amino acid sequence of badI indicates that 2-ketochc-CoA hydrolase is a member of the crotonase superfamily of proteins. Purified BadI had a molecular mass of 35 kDa as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and a native molecular mass of 134 kDa as determined by gel filtration. This indicates that the native form of the enzyme is a homotetramer. The purified enzyme was insensitive to oxygen and catalyzed the hydration of 2-ketochc-CoA to yield pimelyl-CoA with a specific activity of 9.7 μmol min−1 mg of protein−1. Immunoblot analysis using polyclonal antiserum raised against the purified hydrolase showed that the synthesis of BadI is induced by growth on benzoate and other proposed benzoate pathway intermediates but not by growth on pimelate or succinate. An R. palustris mutant, carrying a chromosomal disruption of badI, did not grow with benzoate and other proposed benzoate pathway intermediates but had wild-type doubling times on pimelate and succinate. These data demonstrate that BadI, the 2-ketochc-CoA hydrolase, is essential for anaerobic benzoate metabolism by R. palustris.  相似文献   

10.
Benzene is a highly toxic industrial compound that is essential to the production of various chemicals, drugs, and fuel oils. Due to its toxicity and carcinogenicity, much recent attention has been focused on benzene biodegradation, especially in the absence of molecular oxygen. However, the mechanism by which anaerobic benzene biodegradation occurs is still unclear. This is because until the recent isolation of Dechloromonas strains JJ and RCB no organism that anaerobically degraded benzene was available with which to elucidate the pathway. Although many microorganisms use an initial fumarate addition reaction for hydrocarbon biodegradation, the large activation energy required argues against this mechanism for benzene. Other possible mechanisms include hydroxylation, carboxylation, biomethylation, or reduction of the benzene ring, but previous studies performed with undefined benzene-degrading cultures were unable to clearly distinguish which, if any, of these alternatives is used. Here we demonstrate that anaerobic nitrate-dependent benzene degradation by Dechloromonas strain RCB involves an initial hydroxylation, subsequent carboxylation, and loss of the hydroxyl group to form benzoate. These studies provide the first pure-culture evidence of the pathway of anaerobic benzene degradation. The outcome of these studies also suggests that all anaerobic benzene-degrading microorganisms, regardless of their terminal electron acceptor, may use this pathway.  相似文献   

11.
Propionyl-CoA arises as a metabolic intermediate from the degradation of propionate, odd-chain fatty acids, and some amino acids. Thus, pathways for catabolism of this intermediate have evolved in all kingdoms of life, preventing the accumulation of toxic propionyl-CoA concentrations. Previous studies have shown that fungi generally use the methyl citrate cycle for propionyl-CoA degradation. Here, we show that this is not the case for the pathogenic fungus Candida albicans despite its ability to use propionate and valerate as carbon sources. Comparative proteome analyses suggested the presence of a modified β-oxidation pathway with the key intermediate 3-hydroxypropionate. Gene deletion analyses confirmed that the enoyl-CoA hydratase/dehydrogenase Fox2p, the putative 3-hydroxypropionyl-CoA hydrolase Ehd3p, the 3-hydroxypropionate dehydrogenase Hpd1p, and the putative malonate semialdehyde dehydrogenase Ald6p essentially contribute to propionyl-CoA degradation and its conversion to acetyl-CoA. The function of Hpd1p was further supported by the detection of accumulating 3-hydroxypropionate in the hpd1 mutant on propionyl-CoA-generating nutrients. Substrate specificity of Hpd1p was determined from recombinant purified enzyme, which revealed a preference for 3-hydroxypropionate, although serine and 3-hydroxyisobutyrate could also serve as substrates. Finally, virulence studies in a murine sepsis model revealed attenuated virulence of the hpd1 mutant, which indicates generation of propionyl-CoA from host-provided nutrients during infection.  相似文献   

12.
The high resolution crystal structures of isatin hydrolase from Labrenzia aggregata in the apo and the product state are described. These are the first structures of a functionally characterized metal-dependent hydrolase of this fold. Isatin hydrolase converts isatin to isatinate and belongs to a novel family of metalloenzymes that include the bacterial kynurenine formamidase. The product state, mimicked by bound thioisatinate, reveals a water molecule that bridges the thioisatinate to a proton wire in an adjacent water channel and thus allows the proton released by the reaction to escape only when the product is formed. The functional proton wire present in isatin hydrolase isoform b represents a unique catalytic feature common to all hydrolases is here trapped and visualized for the first time. The local molecular environment required to coordinate thioisatinate allows stronger and more confident identification of orthologous genes encoding isatin hydrolases within the prokaryotic kingdom. The isatin hydrolase orthologues found in human gut bacteria raise the question as to whether the indole-3-acetic acid degradation pathway is present in human gut flora.  相似文献   

13.
14.
In the malarial parasite Plasmodium falciparum, a multifunctional phosphoethanolamine methyltransferase (PfPMT) catalyzes the methylation of phosphoethanolamine (pEA) to phosphocholine for membrane biogenesis. This pathway is also found in plant and nematodes, but PMT from these organisms use multiple methyltransferase domains for the S-adenosylmethionine (AdoMet) reactions. Because PfPMT is essential for normal growth and survival of Plasmodium and is not found in humans, it is an antiparasitic target. Here we describe the 1.55 Å resolution crystal structure of PfPMT in complex with AdoMet by single-wavelength anomalous dispersion phasing. In addition, 1.19–1.52 Å resolution structures of PfPMT with pEA (substrate), phosphocholine (product), sinefungin (inhibitor), and both pEA and S-adenosylhomocysteine bound were determined. These structures suggest that domain rearrangements occur upon ligand binding and provide insight on active site architecture defining the AdoMet and phosphobase binding sites. Functional characterization of 27 site-directed mutants identifies critical active site residues and suggests that Tyr-19 and His-132 form a catalytic dyad. Kinetic analysis, isothermal titration calorimetry, and protein crystallography of the Y19F and H132A mutants suggest a reaction mechanism for the PMT. Not only are Tyr-19 and His-132 required for phosphobase methylation, but they also form a “catalytic” latch that locks ligands in the active site and orders the site for catalysis. This study provides the first insight on this antiparasitic target enzyme essential for survival of the malaria parasite; however, further studies of the multidomain PMT from plants and nematodes are needed to understand the evolutionary division of metabolic function in the phosphobase pathway of these organisms.  相似文献   

15.
The coenzyme A (CoA)-dependent aerobic benzoate metabolic pathway uses an unprecedented chemical strategy to overcome the high aromatic resonance energy by forming the non-aromatic 2,3-epoxybenzoyl-CoA. The crucial dearomatizing reaction is catalyzed by three enzymes, BoxABC, where BoxA is an NADPH-dependent reductase, BoxB is a benzoyl-CoA 2,3-epoxidase, and BoxC is an epoxide ring hydrolase. We characterized the key enzyme BoxB from Azoarcus evansii by structural and Mössbauer spectroscopic methods as a new member of class I diiron enzymes. Several family members were structurally studied with respect to the diiron center architecture, but no structure of an intact diiron enzyme with its natural substrate has been reported. X-ray structures between 1.9 and 2.5 Å resolution were determined for BoxB in the diferric state and with bound substrate benzoyl-CoA in the reduced state. The substrate-bound reduced state is distinguished from the diferric state by increased iron-ligand distances and the absence of directly bridging groups between them. The position of benzoyl-CoA inside a 20 Å long channel and the position of the phenyl ring relative to the diiron center are accurately defined. The C2 and C3 atoms of the phenyl ring are closer to one of the irons. Therefore, one oxygen of activated O2 must be ligated predominantly to this proximate iron to be in a geometrically suitable position to attack the phenyl ring. Consistent with the observed iron/phenyl geometry, BoxB stereoselectively should form the 2S,3R-epoxide. We postulate a reaction cycle that allows a charge delocalization because of the phenyl ring and the electron-withdrawing CoA thioester.  相似文献   

16.
Urea amidolyase (EC 3.5.1.45) is an important multi-functional enzyme for the degradation of urea. The urea amidolyase gene from Candida utilis CA(u)-37 (DUR1,2c) was cloned by plaque hybridization, and the nucleotide sequences of DUR1, 2c and its flanking regions were determined. DUR1, 2c was found to be composed of 5,490 base pairs and 1,830 amino acid residues. Using Edman degradation of the purified enzyme, it was revealed that the amino-terminal residue (methionine) was processed for maturation. A TATA-box like sequence was found 112 bases upstream from the translation start site (ATG). The site of the poly (A) tail was found 54 bases downstream from the translation stop site (TGA), since cDNA of DUR1, 2c was synthesized from mRNA and sequenced. The nucleotide sequences of the urea amidolyase gene from Saccharomyces cerevisiae and DUR1, 2c were very similar to each other (65.3%), as were the deduced amino acid sequences (67.2%). The molecular weight of DUR1, 2c was calculated to be 200,700. This value corresponded to the result obtained from SDS-polyacrylamide gel electrophoresis of the purified enzyme. The enzyme functions in a dimeric form. Three important regions were found in the amino acid sequence of urea amidolyase through the homology search. It was predicted that each region was equivalent to the active site of allophanate hydrolase, that of urea carboxylase, and the biotin-binding site. This was verified by deletion analysis of the DUR1, 2c gene in S. cerevisiae. The function of the upstream region of the C. utilis gene is also discussed.  相似文献   

17.
Antibodies raised against rat hepatic epoxide hydrolase (EC 3.3.2.3) and glutathione S-transferases (EC 2.5.1.18) B, C and E were used to determine the presence and localizations of these epoxide-metabolizing enzymes in testes of sexually immature and mature Wistar and Holtzman rats. Unlabeled antibody peroxidase-antiperoxidase staining for each enzyme was readily detected in rat testes at the light microscopic level. Although significant strain-related differences were not apparent, staining intensity for certain enzymes differed markedly between Leydig cells and seminiferous tubules. Leydig cells of immature and mature rats were stained much intensely for epoxide hydrolase and glutathione S-transferase B and E than were seminiferous tubules, whereas Sertoli cells, spermatogonia, spermatocytes and spermatids, as well as Leydig cells, were stained intensely by the anti-glutathione S-transferase C. Age-related differences in staining for glutathione S-transferase B were not obvious, while the anti-glutathione S-transferase C stained seminiferous tubules more intensely in immature rats, and antibodies to expoxide hydrolase and glutathione S-transferases C and E stained Leydig cells much more intensely in mature rats. These observations thus demonstrate that testes of both sexually immature and mature rats contain epoxide hydrolase and glutathione S-transferases. Except for glutathione S-transferase C in immature rats, Leydig cells appear to contain much higher levels of enzymes than do seminiferous tubules. During sexual maturation, the testicular level of glutathione S-transferase B appears to remain constant, while levels of epoxide hydrolase and glutathione S-transferases C and E increase within Leydig cells and the level of glutathione S-transferase C decreases within seminiferous tubules.  相似文献   

18.
Summary The RNA polymerase inhibitor, lomofungin has been used to determine the half life of specific synthetic capacities (invertase and -glucosidase) as well as that for gross protein synthesis. In both cases the studies conclude that cognate messenger RNAs decay with a half life of approximately 20 minutes. This antibiotic has been used to determine the half life of allophanate hydrolase specific synthetic capacity. We find that it decays with a half life of about three minutes; a value that agrees with the decay rates of allophanate hydrolase synthetic capacity following removal of inducer. These observations argue that mRNA may be metabolized by two separate routes in Saccharomyces.  相似文献   

19.
The riboflavin biosynthesis pathway has been shown to be essential in many pathogens and is absent in humans. Therefore, enzymes involved in riboflavin synthesis are considered as potential antibacterial drug targets. The enzyme 3,4-dihydroxy-2-butanone-4-phosphate synthase (DHBPS) catalyzes one of the two committed steps in the riboflavin pathway and converts d-ribulose 5-phosphate (Ru5P) to l-3,4-dihydroxy-2-butanone 4-phosphate and formate. Moreover, DHBPS is shown to be indispensable for Mycobacterium, Salmonella, and Helicobacter species. Despite the essentiality of this enzyme in bacteria, no inhibitor has been identified hitherto. Here, we describe kinetic and crystal structure characterization of DHBPS from Vibrio cholerae (vDHBPS) with a competitive inhibitor 4-phospho-d-erythronohydroxamic acid (4PEH) at 1.86-Å resolution. In addition, we also report the structural characterization of vDHBPS in its apo form and in complex with its substrate and substrate plus metal ions at 1.96-, 1.59-, and 2.04-Å resolution, respectively. Comparison of these crystal structures suggests that 4PEH inhibits the catalytic activity of DHBPS as it is unable to form a proposed intermediate that is crucial for DHBPS activity. Furthermore, vDHBPS structures complexed with substrate and metal ions reveal that, unlike Candida albicans, binding of substrate to vDHBPS induces a conformational change from an open to closed conformation. Interestingly, the position of second metal ion, which is different from that of Methanococcus jannaschii, strongly supports an active role in the catalytic mechanism. Thus, the kinetic and structural characterization of vDHBPS reveals the molecular mechanism of inhibition shown by 4PEH and that it can be explored further for designing novel antibiotics.  相似文献   

20.
CAZy glycoside hydrolase family GH3 consists primarily of stereochemistry-retaining β-glucosidases but also contains a subfamily of β-N-acetylglucosaminidases. Enzymes from this subfamily were recently shown to use a histidine residue within a His-Asp dyad contained in a signature sequence as their catalytic acid/base residue. Reasons for their use of His rather than the Glu or Asp found in other glycosidases were not apparent. Through studies on a representative member, the Nag3 β-N-acetylglucosaminidase from Cellulomonas fimi, we now show that these enzymes act preferentially as glycoside phosphorylases. Their need to accommodate an anionic nucleophile within the enzyme active site explains why histidine is used as an acid/base catalyst in place of the anionic glutamate seen in other GH3 family members. Kinetic and mechanistic studies reveal that these enzymes also employ a double-displacement mechanism involving a covalent glycosyl-enzyme intermediate, which was directly detected by mass spectrometry. Phosphate has no effect on the rates of formation of the glycosyl-enzyme intermediate, but it accelerates turnover of the N-acetylglucosaminyl-enzyme intermediate ∼3-fold, while accelerating turnover of the glucosyl-enzyme intermediate several hundredfold. These represent the first reported examples of retaining β-glycoside phosphorylases, and the first instance of free β-GlcNAc-1-phosphate in a biological context.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号