首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Four distinct DNA fragments encoding xylanase activities, pBX1.2, pXC30.2, pX14 and LX31, were cloned from plasmid and γ libraries constructed using genomic DNA from Fibrobacter succinogenes S85. pBX1.2 contained an insert which was homologous, and mapped similarly to that previously cloned in pBX1 while the three remaining clones pX14, pXC30 in plasmids, and LX31 in lambda, represented new xylanase activities. The X14 xylanase was a 73 kDa exo-type xylanase, which was exported to the periplasm of the Escherichia coli host, and produced large quantities of xylose and xylobiose from oat spelt xylan. The XC30 xylanase, also exported in E. coli, was a 77 kDa protein which exhibited both xylanase and endoglucanase activities, and a low cellobiosidase activity. The LX31 enzyme was a 58 kDa endoxylanase that produced a mixture of xylooligosaccharides. Zymograms of isoelectric focusing gels showed that the X14 xylanase had a neutral pI, XC30 contained acidic, neutral and basic enzymic components, while BX1 and LX31 were acidic. These results indicate that, in addition to the many other elements of its polysaccharide-degrading repertoire, F. succinogenes S85 possesses at least four distinct xylanases.  相似文献   

2.
Fibrobacter succinogenes is one of the most active cellulolytic bacteria ever isolated from the rumen, but enzymes from F. succinogenes capable of hydrolyzing native (insoluble) cellulose at a rapid rate have not been identified. However, the genome sequence of F. succinogenes is now available, and it was hoped that this information would yield new insights into the mechanism of cellulose digestion. The genome has a single family 45 beta-glucanase gene, and some of the enzymes in this family have good activity against native cellulose. The gene encoding the family 45 glycosyl hydrolase from F. succinogenes S85 was cloned into Escherichia coli JM109(DE3) using pMAL-c2 as a vector. Recombinant E. coli cells produced a soluble fusion protein (MAL-F45) that was purified on a maltose affinity column and characterized. MAL-F45 was most active on carboxymethylcellulose between pH 6 and 7 and it hydrolyzed cellopentaose and cellohexaose but not cellotetraose. It also cleaved p-nitrophenyl-cellopentose into cellotriose and p-nitrophenyl-cellobiose. MAL-F45 produced cellobiose, cellotriose and cellotetraose from acid swollen cellulose and bacterial cellulose, but the rate of this hydrolysis was much too low to explain the rate of cellulose digestion by growing cultures. Because the F. succinogenes S85 genome lacks dockerin and cohesin sequences, does not encode any known processive cellulases, and most of its endoglucanase genes do not encode carbohydrate binding modules, it appears that F. succinogenes has a novel mechanism of cellulose degradation.  相似文献   

3.
The effect of condensed tannins from birdsfoot trefoil (Lotus corniculatus L.) on the cellulolytic rumen bacterium Fibrobacter succinogenes S85 was examined. Condensed tannins inhibited endoglucanase activity in the extracellular culture fluid, at concentrations as low as 25 μg ml-1. In contrast, cell-associated endoglucanase activity increased in concentrations of condensed tannins between 100 and 300 μg ml-1. Inhibition of endoglucanase activity in both the extracellular and the cell-associated fractions was virtually complete at 400 μg of condensed tannins ml-1. Despite the sharp decline in extracellular endoglucanase activity with increasing concentrations of condensed tannins, filter paper digestion declined only moderately between 0 and 200 μg of condensed tannins ml-1. However, at 300 μg ml-1, filter paper digestion was dramatically reduced and at 400 μg ml-1, almost no filter paper was digested. F. succinogenes S85 was seen to form digestive grooves on the surface of cellulose, and at 200 μg ml-1, digestive pits were formed which penetrated into the interior of cellulose fibers. Cells grown with condensed tannins (100 to 300 μg ml-1) possessed large amounts of surface material, and although this material may have been capsular carbohydrate, its osmiophilic nature suggested that it had arisen from the formation of tannin-protein complexes on the cell surface. The presence of electron-dense extracellular material suggested that similar complexes were formed with extracellular protein.  相似文献   

4.
Cells of the anaerobic ruminal bacterium Fibrobacter succinogenes subsp. succinogenes S85 (formerly Bacteroides succinogenes) exhibit arylesterase activity. When cells were grown on cellulose, it was found that 69% of the total esterase activity was extracellular while 65% was nonsedimentable upon centrifugation of the culture supernatant at 100,000 x g. Disruption of the cells by various different methods failed to increase the esterase activity, indicating that the substrate was fully accessible to esterase enzymes in intact cells. During growth of cells with either glucose or cellulose as the sole carbon source, the increase in acetylesterase activity corresponded to an increase in cell density, suggesting constitutive production. The enzyme(s) hydrolyzed alpha-naphthyl, p-nitrophenyl, and 4-methylumbelliferyl derivatives of acetic acid; xylose tetraacetate; glucose pentaacetate; acetylxylan; and a polymer composed of ferulic acid, arabinose, and xylose in molar proportions of 1:1.1:2.2 (FAX). These data demonstrate the presence of an acetylxylan esterase and a ferulic acid esterase. The cleavage of FAX also documents the presence of an alpha-l-arabinofuranosidase.  相似文献   

5.
6.
The distribution of endoglucanase activities in cultures of Fibrobacter succinogenes subsp. succinogenes S85 grown on different carbon sources was examined by a variety of biochemical and immunological techniques. Total culture endoglucanase activity was primarily cell associated and was expressed constitutively, although synthesis of endoglucanase 1 (EG1) was repressed by cellobiose. Western immunoblotting showed that EG1 and EG3 were released into the culture fluid during growth, while EG2 remained largely associated with the cell. Subcellular localization showed low endoglucanase activity in the periplasmic fraction and similar, high levels in the cytoplasmic and membrane fractions. Western immunoblotting showed that EG2 was absent from the periplasmic fraction. Data from immunoelectron microscopy with either polyclonal or monoclonal antibody to EG2 revealed a high density of gold labeling at sites where there was a disruption in the regular features of the cell surface, such as in blebbing or physical tearing of the membrane. When cells were grown on cellulose, there was a high density of labeling on the cellulose but not on the cells, indicating that EG2 has limited exposure at the cell surface. On the basis of these data, export of enzymes from their intracellular locations appears to occur via three different mechanisms: a specific secretory pathway independent of cellulose, a secretory mechanism which is mediated by contact with cellulose, and a generalized blebbing process that occurs irrespective of the carbon source.  相似文献   

7.
M McGavin  J Lam    C W Forsberg 《Applied microbiology》1990,56(5):1235-1244
The distribution of endoglucanase activities in cultures of Fibrobacter succinogenes subsp. succinogenes S85 grown on different carbon sources was examined by a variety of biochemical and immunological techniques. Total culture endoglucanase activity was primarily cell associated and was expressed constitutively, although synthesis of endoglucanase 1 (EG1) was repressed by cellobiose. Western immunoblotting showed that EG1 and EG3 were released into the culture fluid during growth, while EG2 remained largely associated with the cell. Subcellular localization showed low endoglucanase activity in the periplasmic fraction and similar, high levels in the cytoplasmic and membrane fractions. Western immunoblotting showed that EG2 was absent from the periplasmic fraction. Data from immunoelectron microscopy with either polyclonal or monoclonal antibody to EG2 revealed a high density of gold labeling at sites where there was a disruption in the regular features of the cell surface, such as in blebbing or physical tearing of the membrane. When cells were grown on cellulose, there was a high density of labeling on the cellulose but not on the cells, indicating that EG2 has limited exposure at the cell surface. On the basis of these data, export of enzymes from their intracellular locations appears to occur via three different mechanisms: a specific secretory pathway independent of cellulose, a secretory mechanism which is mediated by contact with cellulose, and a generalized blebbing process that occurs irrespective of the carbon source.  相似文献   

8.
Growing cultures of Fibrobacter succinogenes S85 digested cellulose at a rapid rate, but nongrowing cells and cell extracts did not have detectable crystalline cellulase activity. Cells that had been growing exponentially on cellobiose initiated cellulose digestion and succinate production immediately, and cellulose-dependent succinate production could be used as an index of enzyme activity against crystalline cellulose. Cells incubated with cellulose never produced detectable cellobiose, and cells that were preincubated for a short time with thiocellobiose lost their ability to digest cellulose (competitive inhibition [K(infi)] of only 0.2 mg/ml or 0.56 mM). Based on these results, the crystalline cellulases of F. succinogenes were very sensitive to feedback inhibition. Different cellulose sources bound different amounts of Congo red, and the binding capacity was HCl-regenerated cellulose > ball-milled cellulose > Sigmacel > Avicel > filter paper. Congo red binding capacity was highly correlated with the maximum rates of metabolism of cellulose digestion and inversely related to K(infm). Congo red (250 (mu)g/ml) did not inhibit the growth of F. succinogenes S85 on cellobiose, but this concentration of Congo red inhibited the rate of ball-milled cellulose digestion. A Lineweaver-Burk plot of ball-milled cellulose digestion rate versus the amount of cellulose indicated that Congo red was a competitive inhibitor of cellulose digestion (K(infi) was 250 (mu)g/ml).  相似文献   

9.
We show for the first time the occurrence of maltodextrin-1-Phosphate (MD-1P) (DP2) in F. succinogenes S85, a rumen bacterium specialized in cellulolysis which is not able to use maltose and starch. MD-1P were found in intra and extracellular medium of resting cells incubated with glucose. We used 2D 1H NMR technique and TLC to identify their structure and quantify their production with time. It was also shown that these phosphorylated oligosaccharides originated both from exogenous glucose and endogenous glycogen.  相似文献   

10.
Fibrobacter succinogenes S85 is an anaerobic non-cellulosome utilizing cellulolytic bacterium originally isolated from the cow rumen microbial community. Efforts to elucidate its cellulolytic machinery have resulted in the proposal of numerous models which involve cell-surface attachment via a combination of cellulose-binding fibro-slime proteins and pili, the production of cellulolytic vesicles, and the entry of cellulose fibers into the periplasmic space. Here, we used a combination of RNA-sequencing, proteomics, and transmission electron microscopy (TEM) to further clarify the cellulolytic mechanism of F. succinogenes. Our RNA-sequence analysis shows that genes encoding type II and III secretion systems, fibro-slime proteins, and pili are differentially expressed on cellulose, relative to glucose. A subcellular fractionation of cells grown on cellulose revealed that carbohydrate active enzymes associated with cellulose deconstruction and fibro-slime proteins were greater in the extracellular medium, as compared to the periplasm and outer membrane fractions. TEMs of samples harvested at mid-exponential and stationary phases of growth on cellulose and glucose showed the presence of grooves in the cellulose between the bacterial cells and substrate, suggesting enzymes work extracellularly for cellulose degradation. Membrane vesicles were only observed in stationary phase cultures grown on cellulose. These results provide evidence that F. succinogenes attaches to cellulose fibers using fibro-slime and pili, produces cellulases, such as endoglucanases, that are secreted extracellularly using type II and III secretion systems, and degrades the cellulose into cellodextrins that are then imported back into the periplasm for further digestion by β-glucanases and other cellulases.  相似文献   

11.
Fibrobacter succinogenes S85 is unable to grow with lactose as the source of carbohydrate, although it does exhibit low beta-galactosidase (EC 3.2.1.23) activity. Spontaneous mutants of strain S85 able to grow on lactose were isolated after spreading cells on a chemically defined agar medium with lactose as the carbohydrate source. A lactose-catabolizing isolate, designated L2, exhibited a sodium dodecyl sulfate-polyacrylamide gel electrophoresis protein profile and an immunoblot profile with polyclonal antibodies to whole cells of S85 which were identical to those observed for S85. Strain L2 exhibited both cell-associated and extracellular beta-galactosidase activity with either p-nitrophenyl-beta-D-galactopyranoside or lactose as the substrate. The cell-associated enzyme exhibited the greatest activity in the periplasmic space. Enzyme production was partially inhibited by glucose. The beta-galactosidase was activated by divalent cations and exhibited a pH optimum of 6.5. Analysis of the extracellular culture fluid revealed that glucose derived from the hydrolysis of lactose was used for growth, but galactose was not metabolized further. Cells were unable to take up the lactose analog, methyl-beta-D-thiogalactopyranoside. These data suggest that beta-galactosidase of F. succinogenes L2 cleaves lactose outside the cells and that the glucose released is catabolized while the galactose accumulates in the extracellular culture fluid.  相似文献   

12.
Fibrobacter succinogenes subsp. succinogenes S85 initiated growth on microcrystalline cellulose without a lag whether inoculated from a glucose, cellobiose, or cellulose culture. During growth on cellulose, there was no accumulation of soluble carbohydrate. When the growth medium contained either glucose or cellobiose in combination with microcrystalline cellulose, there was a lag in cellulose digestion until all of the soluble sugar had been utilized, suggesting an end product feedback mechanism that affects cellulose digestion. Cl-stimulated cellobiosidase and periplasmic cellodextrinase were produced under all growth conditions tested, indicating constitutive synthesis. Both cellobiosidases were cell associated until the stationary phase of growth, whereas proteins antigenically related to the Cl-stimulated cellobiosidase and a proportion of the endoglucanase were released into the extracellular culture fluid during growth, irrespective of the substrate. Immunoelectron microscopy of cells with a polyclonal antibody to Cl-stimulated cellobiosidase as the primary antibody and 10-nm-diameter gold particles conjugated to goat anti-rabbit antibodies as the second antibody revealed protrusions of the outer surface which were selectively labeled with gold, suggesting that Cl-stimulated cellobiosidase was located on the protrusions. These data support the contention that the protrusions have a role in cellulose hydrolysis; however, this interpretation is complicated by reactivity of the antibodies with a large number of other proteins that possess related antigenic epitopes.  相似文献   

13.
Fibrobacter succinogenes S85 cultures that were cellobiose-limited converted cellobiose to succinate and acetate, produced little glucose or cellotriose, maintained an intracellular ATP concentration of 4.1 mM and a membrane potential of 140 mV for 24 h, did not lyse at a rapid rate once they had reached stationary phase, and had a most probable number of viable cells that was greater than 106/ml. When the cellobiose concentration was increased 6-fold (5 mM to 30 mM), ammonia was depleted and the cultures left 10 mM cellobiose. Cultures provided with excess cellobiose produced succinate and acetate while they were growing, but there was little increase in fermentation acids after the ammonia was depleted and growth ceased. The stationary-phase, cellobiose-excess cultures had a lysis rate that was 7-fold faster than that of the cellobiose-limited cultures, and the most probable number was only 3.3 × 103 cells/ml. The stationary-phase, cellobiose-excess cultures had 2.5 times as much cellular polysaccharide as the cellobiose-limited cultures, but the intracellular ATP and membrane potential were very low (0.1 mM and 40 mV respectively). Methylglyoxal, a potentially toxic end-product of carbohydrate fermentation, could not be detected, and fresh inocula grew rapidly in spent medium that was supplemented with additional ammonia. Stationary-phase, cellobiose-excess cultures converted cellobiose to glucose and cellotriose, but the apparent K m of cellotriose formation was 15-fold lower than the K m of glucose production (0.7 mM compared to 10 mM). Received: 26 June 1997 / Received revision: 12 August 1997 / Accepted: 29 August 1997  相似文献   

14.
An acetylxylan esterase (EC 3.1.1.6) was purified to apparent homogeneity from the nonsedimentable extracellular culture fluid of Fibrobacter succinogenes S85 grown on cellulose. This enzyme had an apparent molecular mass of 55 kDa and an isoelectric point of 4.0. The temperature and pH optima were 45 degrees C and 7.0, respectively. The apparent Km and Vmax were 2.7 mM and 9,100 U/mg, respectively, for the hydrolysis of alpha-naphthyl acetate. The enzyme cleaved acetyl residues from birchwood acetylxylan but did not hydrolyze carboxymethylcellulose, larchwood xylan, ferulic acid-arabinose-xylose polymer, p-nitrophenyl-alpha-L-arab-inofuranoside, or longer-chain naphthyl fatty acid esters. The esterase enzyme may play a role in enhancing hemicellulose degradation by F. succinogenes, thereby allowing it greater access to cellulose present in forage cell walls.  相似文献   

15.
Fibrobacter succinogenes subsp. succinogenes S85, formerly Bacteroides succinogenes, adheres to crystalline cellulose present in the culture medium. When the cells are suspended in buffer, adhesion is enhanced by increasing the ionic strength. Heat, glutaraldehyde, trypsin, and pronase treatments markedly reduce the extent of adhesion. Treatment with dextrinase, modification of amino and carboxyl groups with Formalin or other chemical agents, and inclusion of either albumin (1%) or Tween 80 (0.5%) do not decrease the degree of adhesion. Adherence-defective mutants isolated by their inability to bind to cellulose exhibited different growth characteristics. Class 1 mutants grew on glucose, cellobiose, amorphous cellulose, and crystalline cellulose. Class 3 mutants grew on glucose and cellobiose but not on amorphous or crystalline cellulose. No substantial changes were detected in the endoglucanase, cellobiosidase, and cellobiase activities of the wild type and the mutants. These data suggest that adhesion to crystalline cellulose is specific and that it involves surface proteins.  相似文献   

16.
Fibrobacter succinogenes S85 is unable to grow with lactose as the source of carbohydrate, although it does exhibit low beta-galactosidase (EC 3.2.1.23) activity. Spontaneous mutants of strain S85 able to grow on lactose were isolated after spreading cells on a chemically defined agar medium with lactose as the carbohydrate source. A lactose-catabolizing isolate, designated L2, exhibited a sodium dodecyl sulfate-polyacrylamide gel electrophoresis protein profile and an immunoblot profile with polyclonal antibodies to whole cells of S85 which were identical to those observed for S85. Strain L2 exhibited both cell-associated and extracellular beta-galactosidase activity with either p-nitrophenyl-beta-D-galactopyranoside or lactose as the substrate. The cell-associated enzyme exhibited the greatest activity in the periplasmic space. Enzyme production was partially inhibited by glucose. The beta-galactosidase was activated by divalent cations and exhibited a pH optimum of 6.5. Analysis of the extracellular culture fluid revealed that glucose derived from the hydrolysis of lactose was used for growth, but galactose was not metabolized further. Cells were unable to take up the lactose analog, methyl-beta-D-thiogalactopyranoside. These data suggest that beta-galactosidase of F. succinogenes L2 cleaves lactose outside the cells and that the glucose released is catabolized while the galactose accumulates in the extracellular culture fluid.  相似文献   

17.
Conditions promoting maximal in vitro activity of the particulate NADH:fumarate reductase from Fibrobacter succinogenes were determined. This system showed a pH optimum of 6.0 in K+ MES buffer only when salt (NaCl or KCl) was present. Salt stimulated the activity eightfold at the optimal concentration of 150m M. This effect was due to stimulation of fumarate reductase activity as salt had little effect on NADH: decylubiquinone oxidoreductase (NADH dehydrogenase). The stimulation of fumarate reductase by salt at pH 6.0 was not due to removal of oxaloacetate from the enzyme. Kinetic parameters for several inhibitors were also measured. NADH dehydrogenase was inhibited by rotenone at a single site with a K i of 1 M. 2-Heptyl-4-hydroxyquinonline-N-oxide (HOQNO) inhibited NADH: fumarate reductase with a K i of 0.006 M, but NADH dehydrogenase exhibited two HOQNO inhibition constants of approximately 1 M and 24 M. Capsaicin and laurylgallate each inhibited NADH dehydrogenase by only 20% at 100 M. NADH dehydrogenase gave K m values of 1 M for NADH and 4 M for reduced hypoxanthine adenine dinucleotide.Published with the approval of the Director of the Agricultural Experiment Station, North Dakota State University, as journal article no. 2201  相似文献   

18.
Fibrobacter succinogenes subsp. succinogenes S85 initiated growth on microcrystalline cellulose without a lag whether inoculated from a glucose, cellobiose, or cellulose culture. During growth on cellulose, there was no accumulation of soluble carbohydrate. When the growth medium contained either glucose or cellobiose in combination with microcrystalline cellulose, there was a lag in cellulose digestion until all of the soluble sugar had been utilized, suggesting an end product feedback mechanism that affects cellulose digestion. Cl-stimulated cellobiosidase and periplasmic cellodextrinase were produced under all growth conditions tested, indicating constitutive synthesis. Both cellobiosidases were cell associated until the stationary phase of growth, whereas proteins antigenically related to the Cl-stimulated cellobiosidase and a proportion of the endoglucanase were released into the extracellular culture fluid during growth, irrespective of the substrate. Immunoelectron microscopy of cells with a polyclonal antibody to Cl-stimulated cellobiosidase as the primary antibody and 10-nm-diameter gold particles conjugated to goat anti-rabbit antibodies as the second antibody revealed protrusions of the outer surface which were selectively labeled with gold, suggesting that Cl-stimulated cellobiosidase was located on the protrusions. These data support the contention that the protrusions have a role in cellulose hydrolysis; however, this interpretation is complicated by reactivity of the antibodies with a large number of other proteins that possess related antigenic epitopes.  相似文献   

19.
The objectives of this study were to characterize Fibrobacter succinogenes glycoside hydrolases from different glycoside hydrolase families and to study their synergistic interactions. The gene encoding a major endoglucanase (endoglucanase 1) of F. succinogenes S85 was identified as cel9B from the genome sequence by reference to internal amino acid sequences of the purified native enzyme. Cel9B and two other glucanases from different families, Cel5H and Cel8B, were cloned and overexpressed, and the proteins were purified and characterized. These proteins in conjunction with two predominant cellulases, Cel10A, a chloride-stimulated cellobiosidase, and Cel51A, formerly known as endoglucanase 2 (or CelF), were assayed in various combinations to assess their synergistic interactions using ball-milled cellulose. The degree of synergism ranged from 0.6 to 3.7. The two predominant endoglucanases produced by F. succinogenes, Cel9B and Cel51A, were shown to have a synergistic effect of up to 1.67. Cel10A showed little synergy in combination with Cel9B and Cel51A. Mixtures containing all the enzymes gave a higher degree of synergism than those containing two or three enzymes, which reflected the complementarity in their modes of action as well as substrate specificities.  相似文献   

20.
In this article we compared the metabolism of phosphorylated and unphosphorylated oligosaccharides (cellodextrins and maltodextrins) in Fibrobacter succinogenes S85 resting cells incubated with the following substrates: glucose; cellobiose; a mixture of glucose and cellobiose; and cellulose. Intracellular and extracellular media were analysed by (1)H-NMR and by TLC. The first important finding is that no cellodextrins were found to accumulate in the extracellular media of cells, regardless of the substrate; this contrasts to what is generally reported in the literature. The second finding of this work is that maltodextrins of degree of polymerization > 2 are synthesized regardless of the substrate, and can be used by the bacteria. Maltotriose plays a key role in this metabolism of maltodextrin. Maltodextrin-1-phosphate was detected in all the incubations, and a new metabolite, corresponding to a phosphorylated glucose derivative, was produced in the extracellular medium when cells were incubated with cellulose. The accumulation of these phosphorylated sugars increased with the degree of polymerization of the substrate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号