首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 759 毫秒
1.

An integrated metabolic–polymerization–macroscopic model, describing the microbial production of polyhydroxybutyrate (PHB) in Azohydromonas lata bacteria, was developed and validated using a comprehensive series of experimental measurements. The model accounted for biomass growth, biopolymer accumulation, carbon and nitrogen sources utilization, oxygen mass transfer and uptake rates and average molecular weights of the accumulated PHB, produced under batch and fed-batch cultivation conditions. Model predictions were in excellent agreement with experimental measurements. The validated model was subsequently utilized to calculate optimal operating conditions and feeding policies for maximizing PHB productivity for desired PHB molecular properties. More specifically, two optimal fed-batch strategies were calculated and experimentally tested: (1) a nitrogen-limited fed-batch policy and (2) a nitrogen sufficient one. The calculated optimal operating policies resulted in a maximum PHB content (94% g/g) in the cultivated bacteria and a biopolymer productivity of 4.2 g/(l h), respectively. Moreover, it was demonstrated that different PHB grades with weight average molecular weights of up to 1513 kg/mol could be produced via the optimal selection of bioprocess operating conditions.

  相似文献   

2.
The development of an accurate model representation of the fermentative production of polyhydroxybutyrate (PHB) is a prerequisite for the optimal operation and control of the microbial process. In the present work, a macroscopic model is developed to quantify the intracellular production of PHB in Azohydromonas lata bacteria. The proposed two-compartment structured model provides an accurate prediction of the metabolic and macroscopic phenomena occurring in A. lata bacterial cultures. Precisely, the proposed dynamic model accounts for biomass growth, polymer accumulation, carbon and nitrogen sources utilization and oxygen mass transfer rates. It is shown that the model can closely describe the time evolution of the bacterial culture via its direct comparison with experiments performed in flasks or/and a bioreactor. Moreover, it is shown that the model can be used as a simulation tool for process optimization and scaling-up studies of the PHB fermentative production in A. lata cultures.  相似文献   

3.
Ruan YJ  Zhu L  Xu XY 《Bioresource technology》2011,102(16):7599-7602
The bio-flocs technology (BFT) was applied in the sequencing batch reactor (SBR) to treat aquaculture wastewater for flocs poly-β-hydroxybutyrate (PHB) accumulation with alternant anaerobic and aerobic conditions. The statistical modeling approach was used to evaluate system performance and to optimize the flocs PHB yield at batch mode. The results show that all variables have significant impact on the response objective, as well as the interactions of the C/N ratio with the flocs biomass concentration (VSS) and anaerobic time, respectively. By process optimization, approximately 150-200 PHB/VSS (mg·g) of flocs PHB yield was achieved in the range of 4-7 g/l of flocs biomass concentration, 15-18 of the C/N ratio and 50-85 min of anaerobic time in the BFT systems. The results demonstrated that a suitable flocs PHB yield can be obtained via optimizing the ex-situ operating strategy, which have potential prebiotic value and practical implication for the sustainable aquaculture.  相似文献   

4.
In the present work, an integrated dynamic metabolic/polymerization kinetic model is developed for the prediction of the intracellular accumulation profile and the molecular weight distribution of poly(3-hydroxybutyrate) (P(3HB) or PHB) produced in microbial cultures. The model integrates two different length/time scales by combining a polymerization kinetic model with a metabolic one. The bridging point between the two models is the concentration of the monomer unit (i.e. 3-hydroxybutyryl-CoA) produced during the central aerobic carbon metabolism. The predictive capabilities of the proposed model are assessed by the comparison of the calculated biopolymer concentration and number average molecular weight with available experimental data obtained from batch and fed-batch cultures of Alcaligenes eutrophus and Alcaligenes latus. The accuracy of the proposed model was found to be satisfactory, setting this model a valuable tool for the design of the process operating profile for the production of different polymer grades with desired molecular properties.  相似文献   

5.
The Polyhydroxybutyrate (PHB) producer, Bacillus licheniformis MSBN12 was isolated from the marine sponge Callyspongia diffusa. The PHB production of B. licheniformis MSBN12 was optimized using a four-factor Box-Behnken design to find the interactive effects of variables such as palm jaggery, wheat bran, seawater, and incubation temperature. The maximum yield of PHB (6.38 g/L) was achieved through response surface methodology-based optimization and the optimized conditions were further used for the batch and fed-batch fermentation. Maximum biomass was reached at 48 and 36 h of incubation with PHB accumulation of 62.91 and 67.16 % (w/w of dry cells) for batch and fed-batch process. The production of PHB under fed-batch process with B. licheniformis MSBN12 was increased threefold over shake flask culture when palm jaggery as sole carbon source. The ¹H NMR data was extrapolated with peaks of the PHB reference standard and confirmed as PHB analog.  相似文献   

6.
《Process Biochemistry》1999,34(2):109-114
The effects of phosphate supply and aeration on cell growth and PHB accumulation were investigated in Azotobacter chroococcum 23 with the aim of increasing PHB production. Phosphate limitation favoured PHB formation in Azotobacter chroococcum 23, but inhibited growth. Azotobacter chroococcum 23 cells demonstrated intensive uptake of orthophosphate during exponential growth. At the highest phosphate concentration (1·5 g/litre) and low aeration the amount of intracellular orthophosphate/g residual biomass was highest. Under conditions of fed-batch fermentation the possibility of controlling the PHB production process by the phosphate level in the cultivation medium was demonstrated. A 36 h fed-batch fermentation resulted in a biomass yield of 110 g/litre with a PHB cellular concentration of 75% dry weight, PHB content 82·5 g/litre, PHB yield YP/S = 0·24 g/g and process productivity 2·29 g/litre·h.  相似文献   

7.
We report here the results from a glasshouse trial of several transgenic sugarcane ( Saccharum spp. hybrids) lines accumulating the bacterial polyester polyhydroxybutyrate (PHB) in plastids. The aims of the trial were to characterize the spatio-temporal pattern of PHB accumulation at a whole-plant level, to identify factors limiting PHB production and to determine whether agronomic performance was affected adversely by PHB accumulation. Statistical analysis showed that a vertical PHB concentration gradient existed throughout the plant, the polymer concentration being lowest in the youngest leaves and increasing with leaf age. In addition, there was a horizontal gradient along the length of a leaf, with the PHB concentration increasing from the youngest part of the leaf (the base) to the oldest (the tip). The rank order of the lines did not change over time. Moreover, there was a uniform spatio-temporal pattern of relative PHB accumulation among the lines, despite the fact that they showed marked differences in absolute PHB concentration. Molecular analysis revealed that the expression of the transgenes encoding the PHB biosynthesis enzymes was apparently coordinated, and that there were good correlations between PHB concentration and the abundance of the PHB biosynthesis enzymes. The maximum recorded PHB concentration, 1.77% of leaf dry weight, did not confer an agronomic penalty. The plant height, total aerial biomass and culm-internode sugar content were not affected relative to controls. Although moderate PHB concentrations were achieved in leaves, the maximum total-plant PHB yield was only 0.79% (11.9 g PHB in 1.51 kg dry weight). We combine the insights from our statistical and molecular analyses to discuss possible strategies for increasing the yield of PHB in sugarcane.  相似文献   

8.
The potential of Pseudomonas pseudoflava to produce poly-beta-hydroxyalkanoates (PHAs) from pentoses was studied. This organism was able to use a hydrolysate from the hemicellulosic fraction of poplar wood as a carbon and energy source for its growth. However, in batch cultures, growth was inhibited completely at hydrolysate concentrations higher than 30% (vol/vol). When P. pseudoflava was grown on the major sugars present in hemicelluloses in batch cultures, poly-beta-hydroxybutyric acid (PHB) accumulated when glucose, xylose, or arabinose was the sole carbon source, with the final PHB content varying from 17% (wt/wt) of the biomass dry weight on arabinose to 22% (wt/wt) of the biomass dry weight on glucose and xylose. Specific growth rates were 0.58 h on glucose, 0.13 h on xylose, and 0.10 h on arabinose, while the specific PHB production rates based on total biomass ranged from 0.02 g g h on arabinose to 0.11 g g h on glucose. PHB weight-average molecular weights were 640,000 on arabinose and 1,100,000 on glucose and xylose. The absolute amount of PHB in the cells decreased markedly when nitrogen limitation was relaxed by feeding ammonium sulfate at the end of the PHB accumulation stage of the arabinose and xylose fermentations. Copolymers of beta-hydroxybutyric and beta-hydroxyvaleric acids were produced when propionic acid was added to shake flasks containing 10 g of glucose liter. The beta-hydroxyvaleric acid monomer content attained a maximum of 45 mol% when the initial propionic acid concentration was 2 g liter.  相似文献   

9.
The halobacterium Haloferax mediterranei accumulates poly(beta-hydroxybutyrate) (PHB) as intracellular granules. The conditions for PHB production in batch and continuous cultures have been studied and optimized. Phosphate limitation is essential for PHB accumulation in large quantities. Glucose and starch are the best carbon sources. With 2% starch, 0.00375% KH(2)PO(4), and 0.2% NH(4)Cl in batch culture, a production of ca. 6 g of PHB per liter was reached, being 60% of the total biomass dry weight, and giving a yield over the carbon source of 0.33 g/g. The PHB production in continuous cultures was stable over a 3-month period. Our results demonstrate that H. mediterranei is an interesting candidate for industrial production of biological polyesters.  相似文献   

10.
Methanotrophic bacteria possess a unique set of enzymes enabling them to oxidize, degrade and transform organic molecules and synthesize new compounds. Therefore, they have great potential in environmental biotechnology. The application of these unique properties was demonstrated in three case studies: (i) Methane escaping from leaky gas pipes may lead to massive mortality of trees in urban areas. Lack of oxygen within the soil surrounding tree roots caused by methanotrophic activity was identified as one of the reasons for this phenomenon. The similarity between metabolic reactions performed by the key enzymes of methanotrophs (methane monooxygenase) and ammonium oxidizers (ammonium monooxygenase) might offer a solution to this problem by applying commercially available nitrification and urease inhibitors. (ii) Methanotrophs are able to co‐metabolically degrade contaminants such as low‐molecular‐weight‐chlorinated hydrocarbons in soil and water in the presence of methane. Batch and continuous trichloroethylene degradation experiments in laboratory‐scale reactors using Methylocystis sp. GB 14 were performed, partly with cells entrapped in a polymer matrix. (iii) Using a short, two‐stage pilot‐scale process, the intracellular polymer accumulation of poly‐β‐hydroxybutyrate (PHB) in methanotrophs reached a maximum of 52%. Interestingly, an ultra‐high‐molecular‐weight PHB of 3.1 MDa was accumulated under potassium deficiency. Under strictly controlled conditions (temperature, pH and methane supply) this process can be nonsterile because of the establishment of a stable microbial community (dominant species Methylocystis sp. GB 25 ≥86% by biomass). The possibility to substitute methane with biogas from renewable sources facilitates the development of a methane‐based PHB production process that yields a high‐quality biopolymer at competitive costs.  相似文献   

11.
The production of poly-beta-hydroxybutyrate (PHB) by Alcaligenes eutrophus DSM 545 in a cyclone bioreactor was compared using various culture methods: batch, fed-batch, and self-cycling fermentation (SCF) with and without extended periods of nutrient deprivation. SCF is a semi-continuous method that results in a nutrient limitation for every successive generation of cells and, therefore, may have advantages for products whose formation follow secondary metabolite kinetics. Use of the SCF technique without extended nutrient deprivation produced a PHB concentration of 1.2 g L(-1) as 40% of the biomass dry weight. With nitrogen deprivation for 4 or 6 h, the concentration of PHB decreased when compared to the standard SCF technique. However, nitrogen deprivation periods of 8 h resulted in an increase in PHB concentration to 2.7 g L(-1) or 59% of the biomass dry weight. The nutrient cycling may act to repress PHB accumulation during periods of nitrogen deprivation, unless a time threshold has been reached, after which PHB accumulation occurs as in normal batch culture. (c) 1997 John Wiley & Sons, Inc. Biotechnol Bioeng 55: 815-820, 1997.  相似文献   

12.
Producing poly-3-hydroxybutyrate with a high molecular mass from methane   总被引:1,自引:0,他引:1  
Poly-3-hydroxybutyrate (PHB) and other polyesters can be produced by various species of bacteria. Of the possible carbon sources, methane could provide a suitable substrate for the production of PHB. Methane is cheap and plentiful - not only as natural gas, but also as biogas. The methanotrophic strain Methylocystis sp. GB 25 DSMZ 7674 is able to accumulate PHB in a brief non-sterile process. The studies were carried out using a 7-l and a 70-l pressure bioreactor. Cultivation was performed in two stages: a continuous growth phase (dilution rate 0.17 h(-1)) and a PHB accumulation phase under deficiency conditions of an essential nutrient (ammonium, phosphorus or magnesium) in batch culture. The PHB content of biomass was as high as 51%; efficiency was highest during the first 5 h of the product formation process. The maximum PHB yield relative to the methane consumed was estimated to be 0.55 g g(-1). The PHB produced is of very high quality, having a high molecular mass of up to 2.5x10(6) Da.  相似文献   

13.
Optimal conditions for batch cultivation of the obligate methanotroph Methylosinus trichosporium OB3b on methane without superatmospheric pressure were chosen. The yield of absolutely dry biomass after 120 h of growth reached 20 g/l. This biomass contained 30% poly-beta-hydroxybutyrate (PHB) with molecular weight 300 kDa. The growth process included the stages of biomass growth and PHB biosynthesis. The latter stage occurred under nitrogen-deficiency conditions. It was accompanied by an increase in the activity of PHB biosynthesis enzymes (beta-ketothiolase, acetoacetyl-CoA reductase, and PHB synthase) and the main NAD(P)H producer, methylenetetrahydromethanopterin dehydrogenase. The activity of PHB depolymerase increased insignificantly.  相似文献   

14.
Optimal conditions for batch cultivation of the obligate methanotroph Methylosinus trichosporium OB3b on methane without superatmospheric pressure were chosen. The yield of absolutely dry biomass after 120 h of growth reached 20 g/l. This biomass contained 30% poly-β-hydroxybutyrate (PHB) with molecular weight 300 kDa. The growth process included the stages of biomass growth and PHB biosynthesis. The latter stage occurred under nitrogen-deficiency conditions. It was accompanied by an increase in the activity of PHB biosynthesis enzymes (β-ketothiolase, acetoacetyl-CoA reductase, and PHB synthase) and the main NAD(P)H producer, methylenetetrahydromethanopterin dehydrogenase. The activity of PHB depolymerase increased insignificantly.  相似文献   

15.
In this study, polyhydroxybutyrate (PHB) – a biodegradable plastics material – was produced by activated sludge performing enhanced biological phosphorus removal (EBPR) in batch experiments under anaerobic, aerobic and anaerobic/aerobic conditions. Under anaerobic conditions, the maximum PHB content of the dry biomass was 28.8% by weight, while under aerobic or anaerobic/aerobic conditions, the maximum PHB content was about 50%. The PHB production rate with respect to the volatile suspended solids (VSS) was: (i) 70 mg/(g VSS) h under aerobic conditions that followed anaerobic conditions, (ii) 156 mg/(g VSS) h under anaerobic condition, and (iii) 200 mg/(g VSS) h under aerobic conditions with energy also supplied from polyphosphate. A side stream, with initially anaerobic conditions for PHB accumulation and phosphorus release, and then aerobic conditions for PHB accumulation, was proposed. In this side stream, biomass with a high PHB content and a high PHB production rate could be both achieved.  相似文献   

16.
We have evaluated process optimization and the interactive effects of a number of variables using a Box–Behnken design of response surface methodology (RSM). The process variables nitrate, phosphate, glucose and pH were optimized to enhance the cell growth rate, lipid accumulation and other biochemical parameters of Chlorella spp. The most significant increase in lipid production (dry cell weight basis) occurred at limited concentrations of nitrate and phosphate, 1 % glucose and pH 7.5. The addition of nitrates during the mid-lag and mid-exponential phases produced the maximum inhibitory effect on lipid accumulation and the presence of yeast extract led to a further enhancement of lipid accumulation. Of all the media tested, BG-11 was the best suited medium for algal biomass production and chlorophyll content. A significant increase in algal biomass was observed in BG-11 supplemented with bicarbonate and glucose (1 %). The maximum specific growth rate observed was on 9th day of culturing. Results of optimization of process variables through response surface methodology and optimization of various other conditions reflect cutting edge research directed towards increasing algal biomass and lipid content for biodiesel production using an efficient economical technological approach.  相似文献   

17.
The halobacterium Haloferax mediterranei accumulates poly(β-hydroxybutyrate) (PHB) as intracellular granules. The conditions for PHB production in batch and continuous cultures have been studied and optimized. Phosphate limitation is essential for PHB accumulation in large quantities. Glucose and starch are the best carbon sources. With 2% starch, 0.00375% KH2PO4, and 0.2% NH4Cl in batch culture, a production of ca. 6 g of PHB per liter was reached, being 60% of the total biomass dry weight, and giving a yield over the carbon source of 0.33 g/g. The PHB production in continuous cultures was stable over a 3-month period. Our results demonstrate that H. mediterranei is an interesting candidate for industrial production of biological polyesters.  相似文献   

18.
This work describes a method for on-line monitoring of biomass production, acetate consumption and intracellular polyhydroxybutyrate (PHB) storage by mixed microbial cultures (MMC). The method is based on reliable and easily available on-line measurements, namely pH, dissolved oxygen, dissolved carbon dioxide, on-line respirometry and on-line titrimetric analysis. Biomass production refers to active biomass growth and also to the synthesis of extracellular polymeric substances (EPS). The composition and kinetics of EPS synthesis has high variability depending on the culture enrichment protocol. Since the metabolism for EPS production is rather difficult to define, it was not possible to develop a reliable estimation model based on metabolic principles only. Instead, projection of latent structures (PLS) linear regression constrained by steady state carbon balance was employed. PHB concentration and biomass production rate were directly estimated by the PLS model, whereas acetate concentration was indirectly estimated through the carbon balance. The method was validated experimentally with data of four experiments carried out in a SBR. Accurate on-line estimations were obtained with regression coefficients (r2) of 0.986 and 0.980 for biomass concentration, 0.976 and 0.999 for PHB and 0.992 and 0.999 for acetate concentration in calibration and validation, respectively. These results confirm the ability of the proposed methodology for on-line monitoring of the state variables in PHB production process by MMC.  相似文献   

19.
Polyhydroxybutyrate production from lactate using a mixed microbial culture   总被引:1,自引:0,他引:1  
In this study we investigated the use of lactate and a lactate/acetate mixture for enrichment of poly-3-hydroxybutyrate (PHB) producing mixed cultures. The mixed cultures were enriched in sequencing batch reactors (SBR) that established a feast-famine regime. The SBRs were operated under conditions that were previously shown to enable enrichment of a superior PHB producing strain on acetate (i.e., 12 h cycle length, 1 day SRT and 30°C). Two new mixed cultures were eventually enriched from activated sludge. The mixed culture enriched on lactate was dominated by a novel gammaproteobacterium. This enrichment can accumulate over 90 wt% PHB within 6 h, which is currently the best result reported for a bacterial culture in terms of the final PHB content and the biomass specific PHB production rate. The second mixed culture enriched on a mixture of acetate and lactate can produce up to 84 wt% PHB in just over 8 h. The predominant bacterial species in this culture were Plasticicumulans acidivorans and Thauera selenatis, which have both been reported to accumulate large amounts of PHB. The data suggest that P. acidivorans is a specialist on acetate conversion, whereas Thauera sp. is a specialist on lactate conversion. The main conclusion of this work is that the use of different substrates has a direct impact on microbial composition, but has no significant effect on the functionality of PHB production process.  相似文献   

20.
This study demonstrated the improved polyhydroxybutyrate (PHB) production via high cell density cultivation of Bacillus megaterium BA-019 with balanced initial total sugar concentration and carbon to nitrogen (C/N) weight ratio. In the 10 L stirred fermentor operated at 30 °C, pH 7.0, 600 rpm, and 1.0 vvm air, with the initial total sugar concentration of 60 g/L and urea at the C/N weight ratio of 10:1, 32.48 g/L cell biomass with the corresponding PHB weight content of 26.94 % and volumetric productivity of 0.73 g/L h were obtained from batch cultivation. Continuing cultivation by intermittent feeding of the sugarcane molasses along with urea at the C/N weight ratio of 12.5:1 gave much improved biomass and PHB production (90.71 g/L biomass with 45.84 % PHB content and 1.73 g/L h PHB productivity). Similar biomass and PHB yields were obtained in the 90 L stirred fermentor when using the impeller tip speed as the scale-up criterion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号