首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
Reparative dentin has a wide variety of manifestations ranging from a regular, tubular form to an irregular, atubular form. However, the characteristics of reparative dentin have not been clarified. This study hypothesized that the level of bone sialoprotein (BSP) expression will increase if the newly formed reparative dentin is bone-like but the dentin sialophosphoprotein (DSPP) level will decrease. In order to test this hypothesis, the expression of BSP and DSP was examined by immunohistochemistry and the expression of BSP was measured by in situ hybridization in an animal model. The pulps of 12 maxillary right first molars from twelve male rats were exposed and capped with MTA. In addition, in order to understand the role of transforming growth factor-beta 1 (TGF-β1) during reparative dentinogenesis, the expression of BSP and DSPP mRNA was analyzed by RT-PCR in a human dental pulp cell culture, and the transforming growth factor-beta 1 receptors (TβRI) and Smad 2/3 were examined by immunofluorescence in an animal model. DSP was expressed in the normal odontoblasts and odontoblast-like cells of the reparative dentin. Interestingly, BSP was strongly expressed in the odontoblast-like cells of reparative dentin. The level of the TβRI and Smad 2/3 proteins was higher in the reparative dentin than in the normal dentin. TGF-β1 up-regulated BSP in the human pulp cell cultures. This suggests that reparative dentin has both dentinogenic and osteogenic characteristics that are mediated by TGF-β1.  相似文献   

2.
Pulp regeneration using human dental pulp stem cells (hDPSCs) maintains tooth vitality compared with conventional root canal therapy. Our previous study demonstrated that preameloblast-conditioned medium (PA-CM) from murine apical bud cells induces the odontogenic differentiation of hDPSCs and promoted dentin formation in mouse subcutaneous tissue. The purpose of the present study is to evaluate the effects of PA-CM with human whole pulp cells on pulp regeneration in an empty root canal space. Human pulp cells were seeded in the pulp cavities of 5 mm-thick human tooth segments with or without PA-CM treatment, and then transplanted subcutaneously into immunocompromised mice. In the pulp cell-only group, skeletal muscle with pulp-like tissue was generated in the pulp cavity. A reparative dentin-like structure with entrapped cells lined the existing dentin wall. However, in the PA-CM-treated group, only pulp-like tissue was regenerated without muscle or a reparative dentin-like structure. Moreover, human odontoblast-like cells exhibited palisade arrangement around the pulp, and typical odontoblast processes elongated into dentinal tubules. The results suggest that PA-CM can induce pulp regeneration of human pulp cells with physiological structures in an empty root canal space.  相似文献   

3.
Recently, transgenic mice that carry a Green Fluorescent Protein (GFP) reporter gene fused to 2.3 kb fragment of rat Col1a1 regulatory sequences (pOBCol2.3GFPemd) were generated. In the present study, we have examined the patterns of expression of Col1a1-2.3-GFP during odontoblast differentiation in this transgenic line. We report that Col1a1-2.3-GFP is expressed in newly differentiated odontoblasts secreting predentin and fully differentiated odontoblasts. The pattern of expression of Col1a1-2.3-GFP in odontoblasts is correlated with that of dentin sialophosphoprotein (DSPP). Col1a1-2.3-GFP is also expressed in the osteoblasts and osteocytes of alveolar bone. The pattern of expression of Col1a1-2.3-GFP in osteocytes is correlated with the expression of Dmp1. These observations indicate the 2.3 kb rat Col1a1 promoter fragment has sufficient strength and specificity to monitor the stage-specific changes during both odontoblast and osteoblast differentiation. We also used coronal pulp tissues isolated from postnatal pOBCol2.3GFPemd transgenic animals to follow their differentiation after transplantation under the kidney capsule. Our observations provide direct evidence that the dental pulp contains competent progenitor cells capable of differentiating into new generations of odontoblast-like cells which express high levels of Col1a1-2.3-GFP and DSPP and secrete tubular containing reparative dentin. We also report that the dental pulp is capable of giving rise to atubular bone-like tissue containing osteocytes expressing high levels of Col1a1-2.3-GFP and Dmp1. Our studies indicate that pOBCol2.3GFPemd transgenic animals provide a powerful tool for direct examination of the underlying mechanisms and the signaling pathways involved in dentin regeneration and repair, stem cell properties and heterogeneity of the dental pulp.  相似文献   

4.
Recent studies have documented that TGF-beta1 takes part in dental pulp tissue repair. Moreover, dental pulp cells have the potential to differentiate into odontoblast-like cells and produce reparative dentine in this process. However, the molecular mechanisms and potential interactions between TGF-beta1 and dental pulp cells are not clear due to the complexity of the pulp/dentine microenvironment. In this study, we investigated the induction of TGF-beta1 on the dental pulp cells in cell culture, tissue culture and three-dimensional culture patterns. These results demonstrated that TGF-beta1 significantly increased the proliferation of cells and activity of ALPase. Dental pulp cells cultured in the presence of TGF-beta1 formed mineralization nodules. In the organ culture, dental pulp cells treated with TGF-beta1 differentiated into odontoblast-like cells and formed a pulp-dentinal complex; and TGF-beta1 significantly induced synthesis of dentine relative proteins DSPP, DMP-1. The dental pulp cells share some characteristics of the odontoblast, such as a parallel arrangement with columnar form and a unilateral cell process. Together, these data indicate that TGF-beta1 can make dental pulp cells differentiated into odontoblast-like cells and form the pulp-dentinal complex. Moreover, these results suggest that TGF-beta1 is an important regulatory factor in odontoblast differentiation during tooth development and pulp repair.  相似文献   

5.
In this study, starting from human dental pulp cells cultured in vitro, we simulated reparative dentinogenesis using a medium supplemented with different odontogenic inductors. The differentiation of dental pulp cells in odontoblast-like cells was evaluated by means of staining, and ultramorphological, biochemical and biomolecular methods. Alizarin red staining showed mineral deposition while transmission electron microscopy revealed a synthesis of extracellular matrix fibers during the differentiation process. Biochemical assays demonstrated that the differentiated phenotype expressed odontoblast markers, such as Dentin Matrix Protein 1 (DMP1) and Dentin Sialoprotein (DSP), as well as type I collagen. Quantitative data regarding the mRNA expression of DMP1, DSP and type I collagen were obtained by Real Time PCR. Immunofluorescence data demonstrated the various localizations of DSP and DMP1 during odontoblast differentiation. Based on our results, we obtained odontoblast-like cells which simulated the reparative dentin processes in order to better investigate the mechanism of odontoblast differentiation, and dentin extracellular matrix deposition and mineralization.Key words: dental tissue, in vitro differentiation, DMP1, DSP, type I collagen  相似文献   

6.
We have proposed the new hypothesis that dental pulp stem cells play crucial roles in the pulpal healing process following exogenous stimuli in cooperation with progenitors. This study aimed to establish an in vitro culture system for evaluating dentin–pulp complex regeneration with special reference to the differentiation capacity of slow-cycling long-term label-retaining cells (LRCs). Three intraperitoneal injections of BrdU were given to pregnant ICR mice to map LRCs in the mature tissues of born animals. The upper bilateral first molars of 3-week-old mice were extracted and divided into two pieces and cultured for 0, 1, 3, 5 and 7 days using the Trowel’s method. We succeeded in establishing an in vitro culture system for evaluating dentin–pulp complex regeneration, where most odontoblasts were occasionally degenerated and lost nestin immunoreactivity because of the separation of cell bodies from cellular processes in the dentin matrix by the beginning of in vitro culture. Numerous dense LRCs mainly resided in the center of the dental pulp associating with blood vessels throughout the experimental periods. On postoperative days 1–3, the periphery of the pulp tissue including the odontoblast layer showed degenerative features. By Day 7, nestin-positive odontoblast-like cells were arranged along the pulp–dentin border and dense LRCs were committed in the odontoblast-like cells. These results suggest that dense LRCs in the center of the dental pulp associating with blood vessels were supposed to be dental pulp stem/progenitor cells possessing regenerative capacity for forming newly differentiated odontoblast-like cells.  相似文献   

7.
Dental pulp elaborates both bone and dentin under pathological conditions such as tooth replantation/transplantation. This study aims to clarify the expression of granulocyte macrophage colony-stimulating factor (GM-CSF) and osteopontin (OPN) in the process of reparative dentin formation by allogenic tooth transplantation using in situ hybridization for OPN and immunohistochemistry for GM-CSF and OPN at both levels of light and electron microscopes. Following the extraction of the mouse molar, the roots and pulp floor were resected and immediately allografted into the sublingual region. On days 1 to 3, immunocompetent cells such as macrophages and dendritic cells expressed both GM-CSF and OPN, and some of them were arranged along the pulp-dentin border and extended their cellular processes into the dentinal tubules. On days 5 to 7, tubular dentin formation commenced next to the preexisting dentin at the pulp horn where nestin-positive odontoblast-like cells were arranged. Until day 14, bone-like tissue formation occurred in the pulp chamber, where OPN-positive osteoblasts surrounded the bone matrix. These results suggest that the secretion of GM-CSF and OPN by immunocompetent cells such as macrophages and dendritic cells plays a role in the maturation of dendritic cells and the differentiation of odontoblasts, respectively, in the regenerated pulp tissue following tooth transplantation.  相似文献   

8.
9.
Dental pulp cells play an important role in maintaining dental mineralized tissue throughout life. Supplementary mineralization such as reparative dentin and pulp stone frequently occurs after primary dentin formation. Dental pulp cells are thought to be closely associated with such mineralization. We found that clonal rat dental pulp cells, RDP4-1 and RPC-C2A, produce and secrete osteopontin, but do not synthesize phosphophoryn which is a major noncollagenous protein found in dentin. The dental pulp osteopontin was highly phosphorylated and identified by thrombin susceptibility and immunoprecipitation with osteopontin/2ar antibody. Osteopontin synthesis markedly increased by 12-O-tetradecanoylphorbol-13-acetate (TPA) as observed in many osteoblastic cells. This study indicates that these cells can produce osteopontin as a major phosphoprotein and suggests that the synthesis of osteopontin could be used as a characteristic marker of dental pulp cells.  相似文献   

10.
Recently, we demonstrated that a pulse of BrdU given to prenatal animals reveals the existence of slow-cycling long-term label-retaining cells (LRCs), putative adult stem or progenitor cells, which reside in the dental pulp. This study aims to clarify responses of LRCs to allogenic tooth transplantation into mouse maxilla using prenatal BrdU-labeling, in situ hybridization for osteopontin and periostin, and immunohistochemistry for BrdU, nestin, and osteopontin. The upper-right first molars were allografted in the original socket between BrdU-labeled and non-labeled mice or between GFP transgenic and wild-type mice. Tooth transplantation caused degeneration of the odontoblast layer, resulting in the disappearance of nestin-positive reactions in the dental pulp. On postoperative days 5–7, tertiary dentin formation commenced next to the preexisting dentin where nestin-positive odontoblast-like cells were arranged in the successful cases. In BrdU-labeled transplanted teeth, dense LRCs were maintained in the center of the dental pulp beneath the odontoblast-like cells including LRCs, whereas LRCs disappeared in the area surrounding the bone-like tissue. In contrast, LRCs were not recognized in the pulp chamber of non-labeled transplants through the experimental period. Tooth transplantation using GFP mice demonstrated that the donor cells constituted the dental pulp of the transplant except for endothelial cells and some migrated cells, and the periodontal tissue was replaced by host-derived cells except for epithelial cell rests of Malassez. These results suggest that the maintenance of BrdU label-retaining dental pulp cells play a role in the regeneration of odontoblast-like cells in the process of pulpal healing following tooth transplantation.  相似文献   

11.
12.
Human adult dental pulp stem cells (hDPSCs) are a unique precursor population isolated from postnatal dental pulp and have the ability to regenerate a reparative dentin-like complex. In this study, we investigated the role of Asporin in hDPSCs, which was identified as a matrix protein in our previous dentin proteomic analysis. We isolated a clonogenic, highly proliferative population of cells from adult human dental pulp. These isolated hDPSCs were confirmed by fluorescence activated cell sorting (FACS) using stem cell-specific markers and have shown multilineage differentiation potential. The localization of Asporin was identified by immunohistochemistry in the globular calcification region in the junction of predentin and dentin. The gene and protein expression levels of Asporin were enhanced at the early stage of and then reduced during the late stage of differentiation of hDPSCs in mineralization media. ASPN knock-down using a lentiviral system suppressed the mineralization of hDPSCs. These results suggest that ASPN plays positive roles in the mineralization of hDPSCs and predentin to dentin.  相似文献   

13.
Dental pulp elaborates both bone and dentin under pathological conditions such as tooth replantation/transplantation. This study aims to clarify the capability of dental pulp to elaborate bone tissue in addition to dentin by allogenic tooth transplantation using immunohistochemistry and histochemistry. After extraction of the molars of 3-week-old mice, the roots and pulp floor were resected and immediately allografted into the sublingual region in a littermate. In addition, we studied the contribution of donor and host cells to the regenerated pulp tissue using a combination of allogenic tooth transplantation and lacZ transgenic ROSA26 mice. On Days 5–7, tubular dentin formation started next to the preexisting dentin at the pulp horn where nestin-positive odontoblast-like cells were arranged. Until Day 14, bone-like tissue formation occurred in the pulp chamber, where intense tartrate-resistant acid phosphatase–positive cells appeared. Furthermore, allogenic transplantation using ROSA26 mice clearly showed that both donor and host cells differentiated into osteoblast-like cells with the assistance of osteoclast-lineage cells, whereas newly differentiated odontoblasts were exclusively derived from donor cells. These results suggest that the odontoblast and osteoblast lineage cells reside in the dental pulp and that both donor and host cells contribute to bone-like tissue formation in the regenerated pulp tissue. (J Histochem Cytochem 56:1075–1086, 2008)  相似文献   

14.
Under pathological conditions, dental pulp elaborates both bone and dentin matrix in which the contribution of periodontal tissue cannot be excluded. This study has aimed to clarify the capability of dental pulp to deposit bone matrix in an auto-graft experiment by using (1) immunohistochemistry for 5-bromo-2′-deoxyuridine (BrdU) and nestin and (2) histochemistry for tartrate-resistant acid phosphatase (TRAP). Following the extraction of the molars of 3-week-old mice, the roots and pulp floor were resected and immediately transplanted into the sublingual region. On Days 5–7, tubular dentin formation commenced next to the pre-existing dentin at the pulp horn in which nestin-positive odontoblast-like cells were arranged. Up until Day 14, bone-like tissue formation occurred in the pulp chamber in which intense TRAP-positive cells appeared. These results suggest that odontoblast- and osteoblast-lineage cells reside in the dental pulp. Overall, specific dental pulp regeneration should provide fundamental knowledge for the realization of human tooth regeneration in the near future.This work was supported in part by a grant from MEXT to promote the 2001-multidisciplinary research project (in 2001–2005), KAKENHI (B) (no. 16390523 to H.O.) from MEXT, and the Japan-Korea Joint Research Project from JSPS and KOSEF (no. F01-2005-000-10212-0).  相似文献   

15.
During the dental pulp repair process, dental pulp cells (DPCs) migrate to the site of injury and differentiate into odontoblasts or odontoblast-like cells. Although migration of DPCs is an important reparative process, the underlying mechanism remains unknown. The objective of this study was to determine the roles of lysophosphatidic acid (LPA) and the Rho-associated kinase (ROCK) pathway in the migration and morphology of dental pulp cells and alpha smooth muscle actin expression in vitro. We demonstrated that both LPA and ROCK inhibition enhanced cell motility and that their combined effects significantly increased migration rate. LPA induced fine cytoskeleton assembly and increased the level of alpha smooth muscle actin (α-SMA). ROCK inhibition by Y-27632 and ROCK-(1+2) small interfering RNA (siRNA) resulted in less actin cytoskeleton formation, a lower α-SMA level, a star-like cellular morphology and membrane ruffling. LPA and ROCK inhibition induced activation of another Rho GTPase, Rac, which may explain how LPA and ROCK inhibition increases cellmigration and lamellipodium formation.  相似文献   

16.
Adult human dental pulp stem cells (hDPSCs) are a unique population of precursor cells those are isolated from postnatal dental pulp and have the ability to differentiate into a variety of cell types utilized for the formation of a reparative dentin-like complex. Using LC-MS/MS proteomics approaches, we identified the proteins secreted from the differentiating hDPSCs in mineralization media. Lysyl oxidase-like 2 (LOXL2) was identified as a protein that was down-regulated in the hDPSCs that differentiate into odontoblast-like cells. The role of LOXL2 has not been studied in dental pulp stem cells. LOXL2 mRNA levels were reduced in differentiating hDPSCs, whereas the levels of other LOX family members including LOX, LOXL1, LOXL3, and LOXL4, are increased. The protein expression and secretion levels of LOXL2 were also decreased during odontogenic differentiation. Recombinant LOXL2 protein treatment to hDPSCs resulted in a dose-dependent decrease in the early differentiation and the mineralization accompanying with the lower levels of odontogenic markers such as DSPP, DMP-1 and ALP. These results suggest that LOXL2 has a negative effect on the differentiation of hDPSCs and blocking LOXL2 can promote the hDPSC differentiation to odontoblasts.  相似文献   

17.
18.
Coexpression of desmosomal proteins and vimentin has been reported in a specific mesenchymal phenotype. This study investigated the expression of vimentin-binding desmosomal proteins in human dental pulp fibroblasts (DPF) and odontoblasts. The dental pulp has no cells expressing desmocollin (DSC) 1-3, desmoglein (DSG) 1-3, junction plakoglobin (JUP), or desmoplakin (DPK) 1 and 2 except for odontoblasts expressing DPK. A confocal image by laser-scanning microscopy demonstrated the diffuse distribution of DPK in the cytoplasm throughout the odontoblast processes. In culture, the mRNA expression of JUP and DPK1, but not DSC1-3 and DSG1-3, was detected in all DPF clones tested and also in odontoblast-like cells (OB) expressing osteocalcin and dentin sialophosphoprotein mRNAs established in the differentiation medium. The DPF having the potential to differentiate into OB expressed vimentin, but not DPK before culturing in the differentiation medium, whereas OB expressed vimentin-binding DPK1. These results suggest that DPF usually expresses DPK1 mRNA, and that the DPK1 production and the bonding of vimentin to DPK1 occur in DPF with the differentiation into odontoblasts.  相似文献   

19.
Recent studies have shown that the pulp of human teeth contains a population of cells with stem cell properties and it has been suggested that these cells originate from pericytes. Molecules of the Notch signaling pathway regulate stem cell fate specification, while Rgs5 represents an excellent marker for pericytes. Pathological conditions such as dental trauma and carious lesion stimulate pulp stem cells to elaborate reparative dentin. Previous studies have shown that genes involved in the Notch pathway are activated in response to pulp injury in rodent and humans. To demonstrate the importance of pericytes as a source of stem cells during dental repair, we have studied Rgs5 and Notch3 mRNA expression by in situ hybridization in developing, adult intact and injured rodent teeth. Furthermore, we have examined the distribution of Notch3 protein in carious and injured human teeth using immunohistochemistry. Overlapping expression patterns of Rgs5 and Notch3 were observed during rodent tooth development as well as immediately after injury. Both genes were expressed in vascular structures during development and in perivascular and single capillary cells of injured teeth. However, the expression patterns of Rgs5 and Notch3 were different during tooth repair, with relatively extensive Rgs5 expression along the pericyte-vascular smooth muscle cell axis in central pulp arterioles. These results show co-expression of Rgs5 and Notch3 in pericytes of developing and injured teeth and furthermore indicate the importance of vascular-derived stem cells during pulp healing.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号