首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 21 毫秒
1.
Interleukin-18 (IL-18), originally called interferon-gamma (IFN-gamma)-inducing factor is a novel cytokine which exhibits pleiotropic immunomodulatory activities such as the activation of natural killer (NK) cells and cytotoxic T lymphocytes (CTL). In this study, the efficacy of IL-18 on viral infection in mice was investigated. IL-18 treatment significantly suppressed pock formation on the tails of BALB/c mice inoculated intravenously with vaccinia virus when the cytokine was administered intraperitoneally on days 0, 2 and 4 after infection. Sequentially, NK and CTL activity of the infected mice were significantly augmented by IL-18 injection. The in vivo anti-vaccinia virus activity of IL-18 was only partially inhibited by treating the infected mice with anti-asialo GM1 antibody. When infected mice were injected with anti-IFN-gamma antibody only, severe deterioration of health and significant body weight loss were observed, suggesting that IFN-gamma is very important in protecting mice against vaccinia virus infection. Interestingly, IL-18 injection visibly improved the severe vaccinia virus-induced symptoms in mice treated with anti-IFN-gamma antibody, even though a pivotal involvement of IFN-gamma in IL-18-mediated anti-vaccinia virus effect is not yet determined. Taken together, these results indicate that the IL-18-elicited anti-vaccinia virus effect in the acute phase of infection would be raised by the sum of various host defence mechanisms including NK cells and CTL, and not from a specific immunocompetent cell population or effector molecule.  相似文献   

2.
The immunosuppressive effect of Cyclosporin A on T-cell-mediated antiviral immune responses was examined. When administered intraperitoneally CS-A abrogated anti-vaccinia virus, anti-lymphocytic choriomeningitis virus (LCMV), and anti-vesicular stomatitis virus (VSV) T-cell responses in a dose-dependent fashion. Usually 50-60 mg/kg were efficient in suppressing primary T-cell responses completely. In contrast, 10-20 mg/kg often enhanced T-cell responses significantly when compared with controls. Suppression was observed if CS-A treatment was started before virus injection and up to 12 hr after infection; CS-A given 24 hr after the virus still suppressed T-cell activity partially. A 50 mg/kg dose of CS-A suppressed secondary anti-vaccinia virus or anti-VSV T-cell responses in vivo by a factor of about 10. This dose suppressed the primary T-cell-dependent footpad swelling induced by local LCMV infection and prevented T-cell-mediated immunopathological death due to LCM when LCMV was injected intracerebrally. In addition, clearance of LCMV was delayed drastically by CS-A treatment. When added to cultures of in vivo-primed antiviral T cells that were restimulated in vitro, CS-A inhibited both proliferation as well as generation of virus-specific cytotoxic T cells in a dose-dependent way. The results show that in CS-A-treated mice primary and secondary antiviral T-cell responses are strongly inhibited; acute viral infections with cytopathic viruses may therefore be more dramatic. In contrast immunopathological T-cell-mediated disease caused by noncytopathic viruses such as LCMV may be prevented or attenuated.  相似文献   

3.
The role of gamma interferon (IFN-gamma) in the permanent control of infection with a noncytopathic virus was studied by comparing immune responses in wild-type and IFN-gamma-deficient (IFN-gamma -/-) mice infected with a slowly invasive strain of lymphocytic choriomeningitis virus (LCMV Armstrong). While wild-type mice rapidly cleared the infection, IFN-gamma -/- mice became chronically infected. Virus persistence in the latter mice did not reflect failure to generate cytotoxic T-lymphocyte (CTL) effectors, as an unimpaired primary CTL response was observed. Furthermore, while ex vivo CTL activity gradually declined in wild-type mice, long-standing cytolytic activity was demonstrated in IFN-gamma -/- mice. The prolonged effector phase in infected IFN-gamma -/- mice was associated with elevated numbers of CD8(+) T cells. Moreover, a higher proportion of these cells retained an activated phenotype and was actively cycling. However, despite the increased CD8(+) T-cell turnover, which might have resulted in depletion of the memory CTL precursor pool, no evidence for exhaustion was observed. In fact, at 3 months postinfection we detected higher numbers of LCMV-specific CTL precursors in IFN-gamma -/- mice than in wild-type mice. These findings indicate that in the absence of IFN-gamma, CTLs cannot clear the infection and are kept permanently activated by the continuous presence of live virus, resulting in a delicate new balance between viral load and immunity. This interpretation of our findings is supported by mathematical modeling describing the effect of eliminating IFN-gamma-mediated antiviral activity on the dynamics between virus replication and CTL activity.  相似文献   

4.
Antiviral immune responses in CTLA4 transgenic mice.   总被引:3,自引:2,他引:1       下载免费PDF全文
The role of B7 binding CD28 in the regulation of T- and B-cell responses against viral antigens was assessed in transgenic mice expressing soluble CTLA4-Hgamma1 (CTLA4-Ig tg mice) that blocks B7-CD28 interactions. The results indicate that transgenic soluble CTLA4 does not significantly alter cytotoxic T-cell responses against replicating lymphocytic choriomeningitis virus (LCMV) or vaccinia virus but drastically impairs the induction of cytotoxic T-cell responses against abortively replicating vesicular stomatitis virus (VSV). While the T-independent neutralizing immunoglobulin M (IgM) responses were within normal ranges, the switch to IgG was reduced 4- to 16-fold after immunization with abortively replicating VSV and more than 30-fold after immunization with an inert VSV glycoprotein antigen in transgenic mice. IgG antibody responses to LCMV, as detected by enzyme-linked immunosorbent assay and by neutralizing action, were reduced about 3- to 20-fold and more than 50-fold, respectively. These results suggest that responses in CTLA4-Ig tg mice are mounted according to their independence of T help. While immune responses to nonreplicating or poorly replicating antigens are in general most dependent on T help and B7-CD28 interactions, they are most impaired in CTLA4-Ig tg mice. The results of the present experiments also indicate that highly replicating viruses, because of greater quantities of available antigens and by inducing as-yet-undefined factors and/or cell surface changes, are capable of compensating for the decrease in T help caused by the blocking effects of soluble CTLA4.  相似文献   

5.
CD8(+) T-cell responses control lymphocytic choriomeningitis virus (LCMV) infection in H-2(b) mice. Although antigen-specific responses against LCMV infection are well studied, we found that a significant fraction of the CD8(+) CD44(hi) T-cell response to LCMV in H-2(b) mice was not accounted for by known epitopes. We screened peptides predicted to bind major histocompatibility complex class I and overlapping 15-mer peptides spanning the complete LCMV proteome for gamma interferon (IFN-gamma) induction from CD8(+) T cells derived from LCMV-infected H-2(b) mice. We identified 19 novel epitopes. Together with the 9 previously known, these epitopes account for the total CD8(+) CD44(hi) response. Thus, bystander T-cell activation does not contribute appreciably to the CD8(+) CD44(hi) pool. Strikingly, 15 of the 19 new epitopes were derived from the viral L polymerase, which, until now, was not recognized as a target of the cellular response induced by LCMV infection. The L epitopes induced significant levels of in vivo cytotoxicity and conferred protection against LCMV challenge. Interestingly, protection from viral challenge was best correlated with the cytolytic potential of CD8(+) T cells, whereas IFN-gamma production and peptide avidity appear to play a lesser role. Taken together, these findings illustrate that the LCMV-specific CD8(+) T-cell response is more complex than previously appreciated.  相似文献   

6.
The question of whether virus-induced immunosuppression includes the antibody response against the infecting virus itself was evaluated in a model situation. Transgenic mice expressing the T-cell receptor (TCR) specific for peptide 32-42 of lymphocytic choriomeningitis virus (LCMV) glycoprotein 1 presented by Db reacted with a strong transgenic cytotoxic T-lymphocyte (CTL) response starting on day 3 after infection with a high dose (10(6) PFU intravenously [i.v.]) of the WE strain of LCMV (LCMV-WE); LCMV-specific antibody production in the spleen was suppressed in these mice. Low-dose (10(2) PFU i.v.) infection resulted in an antiviral antibody response comparable to that of the transgene-negative littermates. The induction of suppression of LCMV-specific antibody responses was specifically mediated by CD8+ TCR transgenic CTLs, since the LCMV-8.7 variant virus (which is not recognized by transgenic TCR-expressing CTLs because of a point mutation) did not induce suppression. In addition, treatment with CD8 monoclonal antibody in vivo abrogated suppression. Once suppression had been established, it was found to be nonspecific. The abrogation of antibody responses depended on the relative kinetics of the antibody response involved and the kinetics of the anti-LCMV CTL response. Analysis of T- and B-cell subpopulations showed no significant changes, but immunohistochemical analysis of spleens revealed extensive destruction of follicular organization in lymphoid tissue by day 4 in transgenic mice infected with LCMV-WE but not in those infected with the CTL escape mutant LCMV-8.7. Impairment of antigen presentation rather than of T or B cells was also suggested by adoptive transfer experiments, showing that transferred infected macrophages may improve the anti-LCMV antibody response in LCMV-immunosuppressed transgenic recipients; also, T and B cells from suppressed transgenic mice did respond in irradiated and virus-infected nontransgenic mice with antibody formation to LCMV. Such virus-triggered, T-cell-mediated immunopathology causing the suppression of B cells and of protective antibody responses, including those against the infecting virus itself, may permit certain viruses to establish persistent infections.  相似文献   

7.
The activities of cytokines were determined in cerebrospinal fluid (CSF) and serum of mice persistently or intracerebrally acutely infected with lymphocytic choriomeningitis (LCM) virus (LCMV). In contrast to CBA/J (LCMV carrier) mice that responded with low levels of LCMV-specific antibody, high-responder NMRI (carrier) mice showed antibody production by B cells outside of lymphoid organs. The B cells that had infiltrated the brains of LCMV carrier mice exhibited no preferential immunoglobulin isotype or subtype virus-specific antibody production. Phenotypic analysis of the brain infiltrates in virus carrier mice revealed dominance of CD4+ T cells in contrast to virtual absence of CD4+ and dominance of CD8+ in mice with acute LCM. In NMRI but not in CBA/J carrier mice, significant concentrations of interleukin-6 (IL-6) were detected in CSF and serum; IL-2, IL-4, IL-5, granulocyte-macrophage CSF (GM-CSF), and gamma interferon (IFN-gamma) were not elevated. In contrast, during acute, lethal LCM, IL-6 and IFN-gamma were found at high concentrations, and IL-4, IL-5, and GM-CSF were detectable in CSF and serum, but virus-specific antibody-producing cells were not (yet) detectable in the brain. Thus, distinct cytokine patterns are found in acute versus chronic LCMV infection of the brain: in LCM carrier mice, local random-class immunoglobulin production correlated with the absence of IL-2, IL-4, IL-5, and IFN-gamma but active secretion of IL-6.  相似文献   

8.
Antiviral immune responses in Itk-deficient mice.   总被引:1,自引:0,他引:1       下载免费PDF全文
Mice lacking Itk, a T-cell-specific protein tyrosine kinase, have reduced numbers of T cells and reduced responses to allogeneic major histocompatibility molecules. This study analyzed antiviral immune responses in mice deficient for Itk. Primary cytotoxic T-lymphocyte (CTL) responses were analyzed after infection with lymphocytic choriomeningitis virus (LCMV), vaccinia virus (VV), and vesicular stomatitis virus (VSV). Ex vivo CTL activity was consistently reduced by a factor of two to six for the different viruses. CTL responses after restimulation in vitro were similarly reduced unless exogenous cytokines were added. In the presence of interleukin-2 or concanavalin A supernatant, Itk-deficient and control mice responded similarly. Interestingly, while LCMV was completely eliminated by day 8 in both Itk-deficient and control mice, VV cleared from itk-/- mice with delayed kinetics. Antibody responses were evaluated after VSV infection. Both the T-cell-independent neutralizing immunoglobulin M (IgM) and the T-cell-dependent IgG responses were similar in Itk-deficient and control mice. Taken together, the results show that CTL responses are reduced in the absence of Itk whereas antiviral B-cell responses are not affected.  相似文献   

9.
The kinetic study of immunosuppression caused by infection of mice with lymphocytic choriomeningitis virus WE (LCMV-WE) was assessed in DBA/2 (H-2d) and C57BL/6 (H-2b) mice. Infection with LCMV caused suppression of the Day 4 IgM response (complete in DBA/2 and incomplete in C57BL/6) and completely suppressed IgG responses on Days 9 and 42 to vesicular stomatitis virus (VSV) injected 2-11 days after LCMV. Suppression was partial when VSV was injected 16-28 days after LCMV-WE infection. The observed suppression between Day 2 and Day 11 was complete and nonspecific as revealed by the fact that these mice could not mount a secondary response to VSV when reinjected with the same VSV 42 days later. Nonspecificity of suppression was further indicated by the finding that the kinetics of recovery from suppression of the anti-VSV response were comparable for the VSV serotype used during the 2- to 11-day period after LCMV infection as for the serologically noncross-reactive second VSV serotype; both anti-VSV responses had recovered by Days 56-82 after LCMV infection. Once an anti-VSV antibody response was established, a subsequent LCMV-WE infection had no suppressive effect on Day 2 or Day 42 after a primary VSV infection. Also, the capacity of VSV-primed mice that were LCMV infected to respond to VSV in a secondary challenge infection with the same VSV was not impaired.  相似文献   

10.
Antiviral immune responses of mice lacking interleukin-2 (IL-2) or IL-4 or both IL-2 and IL-4 (IL-2/4) were compared by using different viruses. Primary cytotoxic T-lymphocyte (CTL) responses against lymphocytic choriomeningitis virus (LCMV) were only moderately reduced in mice lacking IL-2 and were normal in mice lacking IL-4. Mice deficient in both interleukins exhibited variable and more strongly reduced but nevertheless in vivo protective LCMV-specific CTL responses. Similar results were obtained with vaccinia virus. Upon virus-specific restimulation in vitro, spleen cells from IL-2- and IL-2/4-deficient mice failed to generate CTL responses against virus-infected target cells, whereas the response of mice deficient in only IL-4 was comparable to that of control mice. The addition of IL-2 during in vitro restimulation completely restored the responses of both IL-2 and IL-2/4-deficient mice. T-helper-cell-independent immunoglobulin M and T-helper-cell-dependent immunoglobulin G antibody responses against vesicular stomatitis virus glycoprotein were within normal ranges for the various mutant mice. After LCMV infection, specific antibody responses against LCMV nucleoprotein were reduced four- to eightfold. These results show that mice lacking IL-2/4 have an overall tendency to exhibit more severely reduced CTL responses than IL-2- or IL-4-deficient mice. Nevertheless, and surprisingly, in vivo protective immune responses were mounted in the absence of IL-2/4, suggesting that besides a minor contribution from IL-4, other interleukins compensate in vivo for the lack of IL-2 in IL-2-deficient mice.  相似文献   

11.
The role of negatively signaling NK cell receptors of the Ly49 family on the specificity of the acute CD8(+) cytotoxic T-lymphocyte (CTL) response was investigated in lymphocytic choriomeningitis virus (LCMV)-infected C57BL/6 mice. Activated CD8(+) T cells coexpressing Ly49G2 expanded during LCMV infection, and T-cell receptor analyses by flow cytometry and CDR3 spectratyping revealed a unique polyclonal T-cell population in the Ly49G2(+) fraction. These cells lysed syngeneic targets infected with LCMV or coated with two of three LCMV immunodominant peptides examined. Transfection of these sensitive targets with H2D(d), a ligand for Ly49G2, inhibited lysis. This was reversed by antibody to Ly49G2, indicating effective negative signaling. LCMV characteristically induces an anti-H2(d) allospecific T-cell response that includes T-cell clones cross-reactive between allogeneic and LCMV-infected syngeneic targets. The CD8(+) Ly49G2(+) population mediated no allospecific killing, nor was any NK-like killing observed against YAC-1 cells. This study shows that CD8(+) Ly49G2(+) cells participate in the virus-induced CTL response but lyse a more restricted range of targets than the rest of the virus-induced CTL population.  相似文献   

12.
We investigated the expression of an acquired host resistance against Staphylococcus aureus infection in mice. When C57BL/6 mice were immunized with viable S. aureus and challenged with S. aureus eight weeks later, the elimination of S. aureus from the spleen and liver was enhanced in the immunized mice compared with the nonimmunized mice. When gamma interferon (IFN-gamma(-/-)) mice were immunized and challenged, the bacterial numbers in the organs of immunized mice were comparable to those in the nonimmunized mice, suggesting that IFN-gamma plays a critical role in an acquired host resistance against S. aureus infection. IFN-gamma(-/-) mice produced the lower level of anti-S. aureus immunoglobulin M (IgM) and IgG2a antibodies compared with C57BL/6 mice. To elucidate the role of IFN-gamma produced during a challenge with S. aureus, a single injection of anti-IFN-gamma monoclonal antibody to mice was carried out 1 h before challenge. An acquired resistance against S. aureus infection was inhibited by injecting with anti-IFN-gamma monoclonal antibody. However, anti-IFN-gamma monoclonal antibody treatment failed to modulate anti-S. aureus IgM, IgG1 or IgG2a responses in these animals. These results demonstrated that IFN-gamma is required for an acquired resistance against S. aureus infection in mice. However, IFN-gamma induced during the challenge failed to affect the secondary antibody responses.  相似文献   

13.
The effector function of CD8 T cells is mediated via cell-mediated cytotoxicity and production of cytokines like gamma interferon (IFN-gamma) and tumor necrosis factor alpha (TNF-alpha). While the roles of perforin-dependent cytotoxicity, IFN-gamma, and TNF-alpha in controlling acute viral infections are well studied, their relative importance in defense against chronic viral infections is not well understood. Using mice deficient for TNF receptor (TNFR) I and/or II, we show that TNF-TNFR interactions have a dual role in mediating viral clearance and downregulating CD8 and CD4 T-cell responses during a chronic lymphocytic choriomeningitis virus (LCMV) infection. While wild-type (+/+) and TNFR II-deficient (p75(-/-)) mice cleared LCMV from the liver and lung, mice deficient in TNFR I (p55(-/-)) or both TNFR I and TNFR II (double knockout [DKO]) exhibited impaired viral clearance. The inability of p55(-/-) and DKO mice to clear LCMV was not a sequel to either suboptimal activation of virus-specific CD8 or CD4 T cells or impairment in trafficking of LCMV-specific CD8 T cells to the liver and lung. In fact, the expansion of LCMV-specific CD8 and CD4 T cells was significantly higher in DKO mice compared to that in +/+, p55(-/-), and p75(-/-) mice. TNFR deficiency did not preclude the physical deletion of CD8 T cells specific for nucleoprotein 396 to 404 but delayed the contraction of CD8 T-cell responses to the epitopes GP33-41 and GP276-285 in the viral glycoprotein. The antibody response to LCMV was not significantly altered by TNFR deficiency. Taken together, these findings have implications in development of immunotherapy in chronic viral infections of humans.  相似文献   

14.
Previously, we demonstrated that memory cell-mediated immune responses can be generated in Pichinde virus (PV)-primed mice after secondary challenge in vivo with homologous virus. Further, treatment of mice with cyclophosphamide (CY) before primary infection with PV abrogated the generation of H-2-restricted, virus-specific cytotoxic T lymphocytes (CTL), and rechallenge of these mice was followed by neither a primary nor a secondary CTL response. Here, we demonstrate that this CY-induced block in memory anti-PV CTL generation was not due to establishment of a persistent infection. Interestingly, this CY-induced block in memory anti-PV CTL generation was overcome by secondarily coinfecting mice with PV and lymphocytic choriomeningitis virus (LCMV) or PV and Tacaribe virus. Secondary infection with LCMV or Tacaribe virus alone did not elicit anti-PV CTL. Coinfection resulted in the generation of a PV-specific memory CTL response as judged by maximal activity on day 4 after rechallenge. Co-infection with PV and vesicular stomatitis virus, an unrelated rhabdovirus, did not efficiently restore memory anti-PV CTL responses. Memory anti-PV CTL responses were also restored when interleukin 2 (IL 2)-containing supernatants were injected i.p. after rechallenge of CY-treated mice with PV. To demonstrate that IL 2 was the responsible lymphokine in these preparations, highly purified IL 2 was added to in vitro cultures of spleen cells from CY-treated PV-primed mice. In the presence of PV-infected syngeneic macrophages, addition of purified IL 2 resulted in a dose-dependent restoration of H-2-restricted anti-PV CTL activity. The CTL precursor (CTLp) frequency of CY-treated PV-primed mice was markedly decreased from that of normal PV-primed mice. Thus, the long-lasting block in the ability to generate a PV-specific memory CTL response after CY treatment appears to be due to both a lack of helper T cell activity and a significant reduction of CTLp. However, this block may be overcome by coinfecting with viruses that cross-react at the helper T cell level or by exogenous treatment with highly purified IL 2.  相似文献   

15.
Cytotoxic T lymphocytes (CTL) play an important role in recovery from a number of viral infections. They are also implicated in virus-induced immunopathology as best demonstrated in lymphocytic choriomeningitis virus (LCMV) infection of adult immunocompetent mice. In the present study, the structure of the T-cell receptor (TCR) in LCMV-specific CTL in C57BL/6 (B6) mice was investigated. Spleen T cells obtained from LCMV-infected mice were cultured in vitro with virus-infected stimulator cells and then stained with anti-TCR V beta antibodies. A skewing of V beta usage was noticeable in T cells enriched for their reactivity to LCMV, suggesting that particular V segments are important for the recognition of LCMV T-cell epitopes in B6 mice. To gain more detailed information on the structure of the TCR specific for LCMV epitopes, we studied CTL clones. It has been shown that approximately 90% of LCMV-reactive CTL clones generated in H-2b mice are specific for a short peptide fragment of the LCMV glycoprotein, residues 278 to 286, recognized in the context of the class I major histocompatibility complex molecule, Db. Four CTL clones possessing the specificity were randomly selected from a collection of clones, and their TCR genes were isolated by cDNA cloning or by the anchored polymerase chain reaction. All four clones were found to use V alpha gene segments belonging to the V alpha 4 subfamily. By RNA blot analysis, two more clones with the same specificity were also shown to express the V alpha 4 mRNA. In contrast, three different V beta gene segments were used among the four clones examined. J beta 2.1 was used by three of the clones. Although amino acid sequences in the V(D)J junctional regions were dissimilar, aspartic acid was found in the V alpha J alpha and/or V beta D beta J beta junctions of all four of these clones, suggesting that this residue is involved in binding the LCMV fragment. Restricted usage of V alpha and possibly J beta segments in the CTL response to a major T-cell epitope of LCMV raises the possibility that immunopathology in LCMV infection can be treated with antibodies directed against such TCR segments. Thus, similar analysis of the TCR in other virus infections is warranted and may lead to therapeutic strategies for immunopathology due to virus infections.  相似文献   

16.
Infection of H-2b mice with lymphocytic choriomeningitis virus (LCMV) generates an H-2Db-restricted cytotoxic T-lymphocyte (CTL) response whose subdominant component is directed against the GP92-101 (CSANNSHHYI) epitope. The aim of this study was to identify the functional parameters accounting for this subdominance. We found that the two naturally occurring (genetically encoded and posttranslationally modified) forms of LCMV GP92-101 were immunogenic, did not act as T-cell antagonists, and bound efficiently to but were unable to form stable complexes with H-2Db, a crucial factor for immunodominance. Thus, the H-2Db-restricted subdominant CTL response to LCMV resulted not from altered T-cell activation but from impaired major histocompatibility complex presentation properties.  相似文献   

17.
Identification of a single viral T-cell epitope, associated with greater than 95% of the virus-specific cytotoxic T-lymphocyte (CTL) activity in BALB/c (H-2d) mice (J. L. Whitton, A. Tishon, H. Lewicki, J. Gebhard, T. Cook, M. Salvato, E. Joly, and M. B. A. Oldstone, J. Virol. 63:4303-4310, 1989), permitted us to design a CTL vaccine and test its ability to protect against a lethal virus challenge. Here we show that a single immunization with a recombinant vaccinia virus-lymphocytic choriomeningitis virus (LCMV) vaccine (VVNPaa1-201) expressing the immunodominant epitope completely protected H-2d mice from lethal infection with LCMV but did not protect H-2b mice. Furthermore, we show that the success or failure of immunization was determined entirely by the host class I major histocompatibility glycoproteins. The difference in outcome between mice of these two haplotypes was consistent with the presence or absence in the immunizing sequences of an epitope for CTL recognition and is correlated with the induction of LCMV-specific H-2-restricted CTL in H-2d mice. Protection is not conferred by a humoral immune response, since LCMV-specific antibodies were not detectable in sera from VVNPaa1-201-immunized mice. In addition, passive transfer of sera from vaccinated mice did not confer protection upon naive recipients challenged with LCMV. Hence, the molecular dissection of viral proteins can uncover immunodominant CTL epitope(s) that can be engineered into vaccines that elicit CTL. A single CTL epitope can protect against a lethal virus infection, but the efficacy of the vaccine varies in a major histocompatibility complex-dependent manner.  相似文献   

18.
CD4+ T cells play an important role in regulating the immune response; their contribution to virus clearance is variable. Mice that lack CD4+ T cells (CD4-/- mice) and are therefore unable to produce neutralizing antibodies cleared viscero-lymphotropic lymphocytic choriomeningitis virus (LCMV) strain WE when infected intravenously with a low dose (2 x 10(2) PFU) because of an effective CD8+ cytotoxic T-cell (CTL) response. In contrast, infection with a high dose (2 x 10(6) PFU) of LCMV strain WE led to expansion of antiviral CTL, which disappeared in CD4-/- mice; in contrast, CD4+ T-cell-competent mice developed antiviral memory CTL. This exhaustion of specific CTL caused viral persistence in CD4-/- mice, whereas CD4+ T-cell-competent mice eliminated the virus. After infection of CD4-/- mice with the faster-replicating LCMV strain DOCILE, abrogation of CTL response and establishment of viral persistence developed after infection with a low dose (5 x 10(2) PFU), i.e., an about 100-fold lower dose than in CD(4+)-competent control mice. These results show that absence of T help enhances establishment of an LCMV carrier state in selected situations.  相似文献   

19.
We previously demonstrated that chimeric porcine parvovirus-like particles (PPV:VLP) carrying heterologous epitopes, when injected intraperitoneally into mice without adjuvant, activate strong CD4(+) and CD8(+) T-cell responses specific for the foreign epitopes. In the present study, we investigated the immunogenicity of PPV:VLP carrying a CD8(+) T-cell epitope from the lymphocytic choriomeningitis virus (LCMV) administered by mucosal routes. Mice immunized intranasally with recombinant PPV:VLP, in the absence of adjuvant, developed high levels of PPV-specific immunoglobulin G (IgG) and/or IgA in their serum, as well as in mucosal sites such as the bronchoalveolar and intestinal fluids. Antibodies in sera from mice immunized parenterally or intranasally with PPV:VLP were strongly neutralizing in vitro. Intranasal immunization with PPV:VLP carrying the LCMV CD8(+) T-cell epitope also elicited a strong peptide-specific cytotoxic-T-cell (CTL) response. In contrast, mice orally immunized with recombinant PPV:VLP did not develop any antibody or CTL responses. We also showed that mice primed with PPV:VLP are still able to develop strong CTL responses after subsequent immunization with chimeric PPV:VLP carrying a foreign CD8(+) T-cell epitope. These results highlight the attractive potential of PPV:VLP as a safe, nonreplicating antigen carrier to stimulate systemic and mucosal immunity after nasal administration.  相似文献   

20.
CyaA, the adenylate cyclase toxin from Bordetella pertussis, can deliver its N-terminal catalytic domain into the cytosol of a large number of eukaryotic cells and particularly into professional antigen-presenting cells. We have previously identified within the primary structure of CyaA several permissive sites at which insertion of peptides does not alter the ability of the toxin to enter cells. This property has been exploited to design recombinant CyaA toxoids capable of delivering major histocompatibility complex (MHC) class I-restricted CD8(+) T-cell epitopes into antigen-presenting cells and to induce specific CD8(+) cytotoxic T-lymphocyte (CTL) responses in vivo. Here we have explored the capacity of the CyaA vector carrying several different CD8(+) T-cell epitopes to prime multiple CTL responses. The model vaccine consisted of a polyepitope made of three CTL epitopes from lymphocytic choriomeningitis virus (LCMV), the V3 region of human immunodeficiency virus gp120, and chicken ovalbumin, inserted at three different sites of the catalytic domain of genetically detoxified CyaA. Each of these epitopes was processed on delivery by CyaA and presented in vitro to specific T-cell hybridomas. Immunization of mice by CyaA toxoids carrying the polyepitope lead to the induction of specific CTL responses for each of the three epitopes, as well as to protection against a lethal viral challenge. Moreover, mice primed against the vector by mock CyaA or a recombinant toxoid were still able to develop strong CTL responses after subsequent immunization with a recombinant CyaA carrying a foreign CD8(+) CTL epitope. These results highlight the potency of the adenylate cyclase vector for induction of protective CTL responses with multiple specificity and/or broad MHC restriction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号