首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
2.
S Mallory  M Sommer    A M Arvin 《Journal of virology》1997,71(11):8279-8288
The contributions of the glycoproteins gI (ORF67) and gE (ORF68) to varicella-zoster virus (VZV) replication were investigated in deletion mutants made by using cosmids with VZV DNA derived from the Oka strain. Deletion of both gI and gE prevented virus replication. Complete deletion of gI or deletions of 60% of the N terminus or 40% of the C terminus of gI resulted in a small plaque phenotype as well as reduced yields of infectious virus. Melanoma cells infected with gI deletion mutants formed abnormal polykaryocytes with a disrupted organization of nuclei. In the absence of intact gI, gE became localized in patches on the cell membrane, as demonstrated by confocal microscopy. A truncated N-terminal form of gI was transported to the cell surface, but its expression did not restore plaque morphology or infectivity. The fusogenic function of gH did not compensate for gI deletion or the associated disruption of the gE-gI complex. These experiments demonstrated that gI was dispensable for VZV replication in vitro, whereas gE appeared to be required. Although VZV gI was dispensable, its deletion or mutation resulted in a significant decrease in infectious virus yields, disrupted syncytium formation, and altered the conformation and distribution of gE in infected cells. Normal cell-to-cell spread and replication kinetics were restored when gI was expressed from a nonnative locus in the VZV genome. The expression of intact gI, the ORF67 gene product, is required for efficient membrane fusion during VZV replication.  相似文献   

3.
4.
5.
To investigate the role of varicella-zoster virus (VZV) open reading frame 47 (ORF47) protein kinase during infection, a VZV mutant was generated in which two contiguous stop codons were introduced into ORF47, thus eliminating expression of the ORF47 kinase. ORF47 kinase was not essential for the growth of VZV in cultured cells, and the growth rate of the VZV mutant lacking ORF47 protein was indistinguishable from that of parental VZV. Nuclear extracts from cells infected with parental VZV contained several phosphorylated proteins which were not detected in extracts from cells infected with the ORF47 mutant. The herpes simplex virus type 1 (HSV-1) UL13 protein (the homolog of VZV ORF47 protein) is responsible for the posttranslational processing associated with phosphorylation of HSV-1 ICP22 (the homolog of VZV ORF63 protein). Immunoprecipitation of 32P-labeled proteins from cells infected with parental virus and those infected with ORF47 mutant virus yielded similar amounts of the VZV phosphoproteins encoded by ORF4, ORF62, ORF63, and ORF68 (VZV gE), and the electrophoretic migration of these proteins was not affected by the lack of ORF47 kinase. Therefore, while the VZV ORF47 protein is capable of phosphorylating several cellular or viral proteins, it is not required for phosphorylation of the ORF63 protein in virus-infected cells.  相似文献   

6.
Kenyon TK  Cohen JI  Grose C 《Journal of virology》2002,76(21):10980-10993
Like all alphaherpesviruses, varicella-zoster virus (VZV) infection proceeds by both cell-cell spread and virion production. Virions are enveloped within vacuoles located near the trans-Golgi network (TGN), while in cell-cell spread, surface glycoproteins fuse cells into syncytia. In this report, we delineate a potential role for serine/threonine phosphorylation of the cytoplasmic tail of the predominant VZV glycoprotein, gE, in these processes. The fact that VZV gE (formerly called gpI) is phosphorylated has been documented (E. A. Montalvo and C. Grose, Proc. Natl. Acad. Sci. USA 83:8967-8971, 1986), although respective roles of viral and cellular protein kinases have never been delineated. VZV ORF47 is a viral serine protein kinase that recognized a consensus sequence similar to that of casein kinase II (CKII). During open reading frame 47 (ORF47)-specific in vitro kinase assays, ORF47 phosphorylated four residues in the cytoplasmic tail of VZV gE (S593, S595, T596, and T598), thus modifying the known phosphofurin acidic cluster sorting protein 1 domain. CKII phosphorylated gE predominantly on the two threonine residues. In wild-type-virus-infected cells, where ORF47-mediated phosphorylation predominated, gE endocytosed and relocalized to the TGN. In cells infected with a VZV ORF47-null mutant, internalized VZV gE recycled to the plasma membrane and did not localize to the TGN. The mutant virus also formed larger syncytia than the wild-type virus, linking CKII-mediated gE phosphorylation with increased cell-cell spread. Thus, ORF47 and CKII behaved as "team players" in the phosphorylation of VZV gE. Taken together, the results showed that phosphorylation of VZV gE by ORF47 or CKII determined whether VZV infection proceeded toward a pathway likely involved with either virion production or cell-cell spread.  相似文献   

7.
The trafficking of varicella-zoster virus (VZV) gH was investigated under both infection and transfection conditions. In initial endocytosis assays performed in infected cells, the three glycoproteins gE, gI, and gB served as positive controls for internalization from the plasma membrane. Subsequently, we discovered that gH in VZV-infected cells was also internalized and followed a similar trafficking pattern. This observation was unexpected because all herpesvirus gH homologues have short endodomains not known to contain trafficking motifs. Further investigation demonstrated that VZV gH, when expressed alone with its chaperone gL, was capable of endocytosis in a clathrin-dependent manner, independent of gE, gI, or gB. Upon inspection of the short gH cytoplasmic tail, we discovered a putative tyrosine-based endocytosis motif (YNKI). When the tyrosine was replaced with an alanine, endocytosis of gH was blocked. Utilizing an endocytosis assay dependent on biotin labeling, we further documented that endocytosis of VZV gH was antibody independent. In control experiments, we showed that gE, gI, and gB also internalized in an antibody-independent manner. Alignment analysis of the VZV gH cytoplasmic tail to other herpesvirus gH homologues revealed two important findings: (i) herpes simplex virus type 1 and 2 homologues lacked an endocytosis motif, while all other alphaherpesvirus gH homologues contained a potential motif, and (ii) the VZV gH and simian varicella virus gH cytoplasmic tails were likely longer in length (18 amino acids) than predicted in the original sequence analyses (12 and 16 amino acids, respectively). The longer tails provided the proper context for a functional endocytosis motif.  相似文献   

8.
9.
10.
Herpes simplex virus type 1 (HSV-1) glycoprotein C (gC) blocks complement activation, and glycoprotein E (gE) interferes with IgG Fc-mediated activities. While evaluating gC- and gE-mediated immune evasion in human immunodeficiency virus (HIV)-HSV-1-coinfected subjects, we noted that antibody alone was more effective at neutralizing a strain with mutations in gC and gE (gC/gE) than a wild-type (WT) virus. This result was unexpected since gC and gE are postulated to interfere with complement-mediated neutralization. We used pooled human immunoglobulin G (IgG) from HIV-negative donors to confirm the results and evaluated mechanisms of the enhanced antibody neutralization. We demonstrated that differences in antibody neutralization cannot be attributed to the concentrations of HSV-1 glycoproteins on the two viruses or to the absence of an IgG Fc receptor on the gC/gE mutant virus or to enhanced neutralization of the mutant virus by antibodies that target only gB, gD, or gH/gL, which are the glycoproteins involved in virus entry. Since sera from HIV-infected subjects and pooled human IgG contain antibodies against multiple glycoproteins, we determined whether differences in neutralization become apparent when antibodies to gB, gD, or gH/gL are used in combination. Neutralization of the gC/gE mutant was greatly increased compared that of WT virus when any two of the antibodies against gB, gD, or gH/gL were used in combination. These results suggest that gC and gE on WT virus provide a shield against neutralizing antibodies that interfere with gB-gD, gB-gH/gL, or gD-gH/gL interactions and that one function of virus neutralization is to prevent interactions between these glycoproteins.  相似文献   

11.
12.
Varicella-zoster virus (VZV) is a ubiquitous, highly cell-associated, and exclusively human neurotropic alphaherpesvirus. VZV infection is initiated by membrane fusion, an event dependent in part on VZV glycoproteins gH and gL. Consistent with its location on the virus envelope, the gH/gL complex is a target of neutralizing antibodies produced after virus infection. One week after immunizing a 59-year-old VZV-seropositive man with Zostavax, we sorted his circulating blood plasma blasts and amplified expressed immunoglobulin variable domain sequences by single-cell PCR. Sequence analysis identified two plasma blast clones, one of which was used to construct a recombinant monoclonal antibody (rec-RC IgG). The rec-RC IgG colocalized with VZV gE on the membranes of VZV-infected cells and neutralized VZV infection in tissue culture. Mass spectrometric analysis of proteins immunoprecipitated by rec-RC IgG identified both VZV gH and gL. Transfection experiments showed that rec-RC IgG recognized a VZV gH/gL protein complex but not individual gH or gL proteins. Overall, our recombinant monoclonal anti-VZV antibody effectively neutralizes VZV and recognizes a conformational epitope within the VZV gH/L protein complex. An unlimited supply of this antibody provides the opportunity to analyze membrane fusion events that follow virus attachment and to identify multiple epitopes on VZV-specific proteins.  相似文献   

13.
The gH glycoprotein of varicella-zoster virus (VZV) is a major fusogen. The realigned short cytoplasmic tail of gH (18 amino acids) harbors a functional endocytosis motif (YNKI) that mediates internalization in both VZV-infected and transfected cells (T. J. Pasieka, L. Maresova, and C. Grose, J. Virol. 77: 4194-4202, 2003). During subsequent confocal microscopy studies of endocytosis-deficient gH mutants, we observed that cells transfected with the gH tail mutants exhibited marked fusion. Therefore, we postulated that VZV gH endocytosis served to regulate cell-to-cell fusion. Subsequent analyses of gH+gL transfection fusion assays by the Kolmogorov-Smirnov statistical test demonstrated that expression of the endocytosis-deficient gH mutants resulted in a statistically significant enhancement of cell-to-cell fusion (P < 0.0001) compared to wild-type gH. On the other hand, coexpression of VZV gE, another endocytosis-competent VZV glycoprotein, was able to temper the fusogenicity of the gH endocytosis mutants by facilitating internalization of the mutant gH protein from the cell surface. When the latter results were similarly analyzed, there was no longer any enhanced fusion by the endocytosis-deficient gH mutant protein. In summary, these studies support a role for gH endocytosis in regulating the cell surface expression of gH and thereby regulating gH-mediated fusion. The data also confirm and extend prior observations of a gE-gH interaction during viral glycoprotein trafficking in a VZV transfection system.  相似文献   

14.
15.
Complex genetic and biochemical interactions between HOX proteins and members of the TALE (i.e., PBX and MEIS) family have been identified in embryonic development, and some of these interactions also appear to be important for leukemic transformation. We have previously shown that HOXA9 collaborates with MEIS1 in the induction of acute myeloid leukemia (AML). In this report, we demonstrate that HOXB3, which is highly divergent from HOXA9, also genetically interacts with MEIS1, but not with PBX1, in generating AML. In addition, we show that the HOXA9 and HOXB3 genes play key roles in establishing all the main characteristics of the leukemias, while MEIS1 functions only to accelerate the onset of the leukemic transformation. Contrasting the reported functional similarities between PREP1 and MEIS1, such as PBX nuclear retention, we also show that PREP1 overexpression is incapable of accelerating the HOXA9-induced AML, suggesting that MEIS1 function in transformation must entail more than PBX nuclear localization. Collectively, these data demonstrate that MEIS1 is a common leukemic collaborator with two structurally and functionally divergent HOX genes and that, in this collaboration, the HOX gene defines the identity of the leukemia.  相似文献   

16.
17.
Autophagy and the effects of its inhibition or induction were investigated during the entire infectious cycle of varicella-zoster virus (VZV), a human herpesvirus. As a baseline, we first enumerated the number of autophagosomes per cell after VZV infection compared with the number after induction of autophagy following serum starvation or treatment with tunicamycin or trehalose. Punctum induction by VZV was similar in degree to punctum induction by trehalose in uninfected cells. Treatment of infected cells with the autophagy inhibitor 3-methyladenine (3-MA) markedly reduced the viral titer, as determined by assays measuring both cell-free virus and infectious foci (P < 0.0001). We next examined a virion-enriched band purified by density gradient sedimentation and observed that treatment with 3-MA decreased the amount of VZV gE, while treatment with trehalose increased the amount of gE in the same band. Because VZV gE is the most abundant glycoprotein, we selected gE as a representative viral glycoprotein. To further investigate the role of autophagy in VZV glycoprotein biosynthesis as well as confirm the results obtained with 3-MA inhibition, we transfected cells with ATG5 small interfering RNA to block autophagosome formation. VZV-induced syncytium formation was markedly reduced by ATG5 knockdown (P < 0.0001). Further, we found that both expression and glycan processing of VZV gE were decreased after ATG5 knockdown, while expression of the nonglycosylated IE62 tegument protein was unchanged. Taken together, our cumulative results not only documented abundant autophagy within VZV-infected cells throughout the infectious cycle but also demonstrated that VZV-induced autophagy facilitated VZV glycoprotein biosynthesis and processing.  相似文献   

18.
19.
AbdB-like HOX proteins form DNA-binding complexes with the TALE superclass proteins MEIS1A and MEIS1B, and trimeric complexes have been identified in nuclear extracts that include a second TALE protein, PBX. Thus, soluble DNA-independent protein-protein complexes exist in mammals. The extent of HOX/TALE superclass interactions, protein structural requirements, and sites of in vivo cooperative interaction have not been fully explored. We show that Hoxa13 and Hoxd13 expression does not overlap with that of Meis1-3 in the developing limb; however, coexpression occurs in the developing male and female reproductive tracts (FRTs). We demonstrate that both HOXA13 and HOXD13 associate with MEIS1B in mammalian and yeast cells, and that HOXA13 can interact with all MEIS proteins but not more diverged TALE superclass members. In addition, the C-terminal domains (CTDs) of MEIS1A (18 amino acids) and MEIS1B (93 amino acids) are necessary for HOXA13 interaction; for MEIS1B, this domain was also sufficient. We also show by yeast two-hybrid assay that MEIS proteins can interact with anterior HOX proteins, but for some, additional N-terminal MEIS sequences are required for interaction. Using deletion mutants of HOXA13 and HOXD13, we provide evidence for multiple HOX peptide domains interacting with MEIS proteins. These data suggest that HOX:MEIS interactions may extend to non-AbdB-like HOX proteins in solution and that differences may exist in the MEIS peptide domains utilized by different HOX groups. Finally, the capability of multiple HOX domains to interact with MEIS C-terminal sequences implies greater complexity of the HOX:MEIS protein-protein interactions and a larger role for variation of HOX amino-terminal sequences in specificity of function.  相似文献   

20.
Varicella-zoster virus (VZV) infection is usually mild in healthy individuals but can cause severe disease in immunocompromised patients. Prophylaxis with varicella-zoster immunoglobulin can reduce the severity of VZV if given shortly after exposure. Glycoprotein H (gH) is a highly conserved herpesvirus protein with functions in virus entry and cell-cell spread and is a target of neutralizing antibodies. The anti-gH monoclonal antibody (MAb) 206 neutralizes VZV in vitro. To determine the requirement for gH in VZV pathogenesis in vivo, MAb 206 was administered to SCID mice with human skin xenografts inoculated with VZV. Anti-gH antibody given at 6 h postinfection significantly reduced the frequency of skin xenograft infection by 42%. Virus titers, genome copies, and lesion size were decreased in xenografts that became infected. In contrast, administering anti-gH antibody at 4 days postinfection suppressed VZV replication but did not reduce the frequency of infection. The neutralizing anti-gH MAb 206 blocked virus entry, cell fusion, or both in skin in vivo. In vitro, MAb 206 bound to plasma membranes and to surface virus particles. Antibody was internalized into vacuoles within infected cells, associated with intracellular virus particles, and colocalized with markers for early endosomes and multivesicular bodies but not the trans-Golgi network. MAb 206 blocked spread, altered intracellular trafficking of gH, and bound to surface VZV particles, which might facilitate their uptake and targeting for degradation. As a consequence, antibody interference with gH function would likely prevent or significantly reduce VZV replication in skin during primary or recurrent infection.Varicella-zoster virus (VZV) causes chicken pox (varicella) upon primary infection. Lifelong latency is established in neurons of the sensory ganglia, and reactivation leads to shingles (herpes zoster) (1). Disease is usually inconsequential in immunocompetent people but can be severe in immunocompromised patients. The current prophylaxis for these high-risk individuals exposed to VZV is high-titer immunoglobulin to VZV administered within 96 h of exposure. This prophylaxis does not always prevent disease, but the severity of symptoms and mortality rates are usually reduced (32).Glycoprotein H (gH) is a type 1 transmembrane protein that is required for virus-cell and cell-cell spread in all herpesviruses studied (12, 15, 24, 26). gH is an important target of the host immune system. Individuals who have had primary infection with VZV or herpes simplex virus (HSV), the most closely related human alphaherpesvirus, have humoral and cellular immunity against gH (1, 56). Immunization of mice with a recombinant vaccinia virus expressing VZV gH and its chaperone, glycoprotein L (gL), induced specific antibodies capable of neutralizing VZV in vitro (28, 37). Immunization of mice with purified HSV gH/gL protein resulted in the production of neutralizing antibodies and protected mice from HSV challenge (5, 44), and administration of an anti-HSV gH monoclonal antibody (MAb) protected mice from HSV challenge (16). Antibodies to HSV and Epstein-Barr virus gH effectively neutralize during virus penetration but not during adsorption in vitro, indicating an essential role for gH in the fusion of viral and cellular membranes but not in initial attachment of the virus to the cell (18, 33).Anti-gH MAb 206, an immunoglobulin G1 (IgG1) antibody which recognizes a conformation-dependent epitope on the mature glycosylated form of gH, neutralizes VZV infection in vitro in the absence of complement (35). MAb 206 inhibits cell-cell fusion in vitro, based on reductions in the number of infected cells and the number of infected nuclei within syncytia, and appears to inhibit the ability of virus particles to pass from the surface of an infected epithelial cell to a neighboring cell via cell extensions (8, 35, 43). When infected cells were treated with MAb 206 for 48 h postinfection (hpi), virus egress and syncytium formation were not apparent, but they were evident within 48 h after removal of the antibody, suggesting that the effect of the antibody was reversible and that there was a requirement for new gH synthesis and trafficking to produce cell-cell fusion. Conversely, nonneutralizing antibodies to glycoproteins E (gE) and I (gI), as well as an antibody to immediate-early protein 62 (IE62), had no effect on VZV spread (46).Like that of other herpesviruses, VZV entry into cells is presumed to require fusion of the virion envelope with the cell membrane or endocytosis followed by fusion. One of the hallmarks of VZV infection is cell fusion and formation of syncytia (8). Cell fusion can be detected as early as 9 hpi in vitro, although VZV spread from infected to uninfected cells is evident within 60 min (45). In vivo, VZV forms syncytia through its capacity to cause fusion of epidermal cells. Syncytia are evident in biopsies of varicella and herpes zoster skin lesions during natural infection and in SCIDhu skin xenografts (34). VZV gH is produced, processed in the Golgi apparatus, and trafficked to the cell membrane, where it might be involved in cell-cell fusion (11, 29, 35). gH then undergoes endocytosis and is trafficked back to the trans-Golgi network (TGN) for incorporation into the virion envelope (20, 31, 42). Since VZV is highly cell associated in vitro, little is known about the glycoproteins required for entry, but VZV gH is present in abundance in the skin vesicles during human chickenpox and zoster (55).Investigating the functions of gH in the pathogenesis of VZV infection in vivo is challenging because it is an essential protein and VZV is species specific for the human host. The objective of this study was to investigate the role of gH in VZV pathogenesis by establishing whether antibody-mediated interference with gH function could prevent or modulate VZV infection of differentiated human tissue in vivo, using the SCIDhu mouse model. The effects of antibody administration at early and later times after infection were determined by comparing infectious virus titers, VZV genome copies, and lesion formation in anti-gH antibody-treated xenografts. In vitro experiments were performed to determine the potential mechanism(s) of MAb 206 interference with gH during VZV replication, virion assembly, and cell-cell spread. The present study has implications for understanding the contributions of gH to VZV replication in vitro and in vivo, the mechanisms by which production of antibodies to gH by the host might restrict VZV infection, and the use of passive antibody prophylaxis in patients at high risk of serious illness caused by VZV.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号