首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The p-nitrophenyl phosphatase activity of muscle carbonic anhydrase   总被引:6,自引:0,他引:6  
Carbonic anhydrase III from rabbit muscle, a newly discovered major isoenzyme of carbonic anhydrase, has been found to be also a p-nitrophenyl phosphatase, an activity which is not associated with carbonic anhydrases I and II. The p-nitrophenyl phosphatase activity has been shown to chromatograph with the CO2 hydratase activity; both activities are associated with each of its sulfhydryl oxidation subforms; and both activities follow the same pattern of pH stability. This phosphomonoesterase activity of carbonic anhydrase III has an acidic pH optimum (<5.3); its true substrate appears to be the phosphomonoanion with a Km of 2.8 mm. It is competitively inhibited by the typical acid phosphatase inhibitors phosphate (Ki = 1.22 × 10?3M), arsenate (Ki = 1.17 × 10?3M), and molybdate (Ki = 1.34 × 10?7M), with these inhibitors having no effect on the CO2 hydratase or the p-nitrophenyl acetate esterase activities of carbonic anhydrase III. The p-nitrophenyl acetate esterase activity of carbonic anhydrase III, on the other hand, has the sigmoidal pH profile with an inflection at neutral pH, typical of carbonic anhydrases for all of their substrates, and is inhibitable by acetazolamide (a highly specific carbonic anhydrase inhibitor) to the same degree as the CO2 hydratase activity. The acid phosphatase-like activity of carbonic anhydrase III is slightly inhibited by acetazolamide at acidic pH, and inhibited to nearly the same degree at neutral pH. These data are taken to suggest that the phosphatase activity follows a mechanism different from that of the CO2 hydratase and p-nitrophenyl acetate esterase activities and that there is some overlap of the binding sites.  相似文献   

2.
The inhibition by cupric ions of the hydration of CO2 catalyzed by carbonic anhydrase II is interesting because of the results of Tuet al. obtained at chemical equilibrium, indicating that Cu2+ inhibits specifically a proton transfer in the catalytic pathway. We have measured this inhibition at steady state, using stopped-flow methods. The inhibition by Cu2+ of the hydration of CO2 catalyzed by carbonic anhydrase II had aK I near 1×10?6 M atpH 7.0 and gave inhibition that is noncompetitive atpH 6.0 and mixed, but close to uncompetitive, atpH 6.8. ThepH dependence of this binding is consistent with a binding site for Cu2+ on the enzyme with apK a near 7. The binding interaction between Cu2+ and the fluorescent inhibitor 5-dimethylaminonaphthalene-l-sulfonamide on carbonic anhydrase II was noncompetitive, indicating that the binding site for Cu2+ is distinct from the coordination sphere of zinc in which the actual interconversion of CO2 and HCO 3 ? and the binding of sulfonamides takes place.  相似文献   

3.
The α-carbonic anhydrase gene from Helicobacter pylori strain 26695 has been cloned and sequenced. The full-length protein appears to be toxic to Escherichia coli, so we prepared a modified form of the gene lacking a part that presumably encodes a cleavable signal peptide. This truncated gene could be expressed in E. coli yielding an active enzyme comprising 229 amino acid residues. The amino acid sequence shows 36% identity with that of the enzyme from Neisseria gonorrhoeae and 28% with that of human carbonic anhydrase II. The H. pylori enzyme was purified by sulfonamide affinity chromatography and its circular dichroism spectrum and denaturation profile in guanidine hydrochloride have been measured. Kinetic parameters for CO2 hydration catalyzed by the H. pylori enzyme at pH 8.9 and 25°C are kcat=2.4×105 s−1, KM=17 mM and kcat/KM=1.4×107 M−1 s−1. The pH dependence of kcat/KM fits with a simple titration curve with pKa=7.5. Thiocyanate yields an uncompetitive inhibition pattern at pH 9 indicating that the maximal rate of CO2 hydration is limited by proton transfer between a zinc-bound water molecule and the reaction medium in analogy to other forms of the enzyme. The 4-nitrophenyl acetate hydrolase activity of the H. pylori enzyme is quite low with an apparent catalytic second-order rate constant, kenz, of 24 M−1 s−1 at pH 8.8 and 25°C. However, with 2-nitrophenyl acetate as substrate a kenz value of 665 M−1 s−1 was obtained under similar conditions.  相似文献   

4.
Threat of global warming due to carbon dioxide (CO2) emissions has stimulated research into carbon sequestration and emissions reduction technologies. Alkaline scrubbing allows CO2 to be captured as bicarbonate, which can be photochemically fixed by microalgae. The carbon concentrating mechanism (CCM), of which external carbonic anhydrase is a key component, allows organisms to utilise this bicarbonate. In order to select a suitable strain for this application, a screening tool is required. The current method for determining carbonic anhydrase activity, the Wilbur and Anderson assay, was found to be unsuitable as a screening tool as the associated error was unacceptably large and tests on whole cells were inconclusive. This paper presents the development of a new, whole cell assay to measure inorganic carbon uptake and external carbonic anhydrase activity, based on classical pH drift experiments. Spirulina platensis was successfully used to develop a correlation between the specific carbon uptake (C) and the specific pH change (dpH). The relationship is described by the following: C[mmol C (g dry algae)?1?h?1]?=?0.064?×?(dpH). Inhibitor and salt dissociation tests validated the activity and presence of external carbonic anhydrase and allowed correlation between the Wilbur and Anderson assay and the new whole cell assay. Screening tests were conducted on S. platensis, Scenedesmus sp., Chlorella vulgaris and Dunaliella salina that were found to have carbon uptake rates of 5.76, 5.86, 3.86 and 2.15 mmol C (g dry algae)?1?h?1, respectively. These results corresponded to the species' known bicarbonate utilisation abilities and validated the use of the assay as a screening tool.  相似文献   

5.
We have measured the exchange of 18O between CO2 and H2O in stirred suspensions of Chlorella vulgaris (UTEX 263) using a membrane inlet to a mass spectrometer. The depletion of 18O from CO2 in the fluid outside the cells provides a method to study CO2 and HCO3 kinetics in suspensions of algae that contain carbonic anhydrase since 18O loss to H2O is catalyzed inside the cells but not in the external fluid. Low-CO2 cells of Chlorella vulgaris (grown with air) were added to a solution containing 18O enriched CO2 and HCO3 with 2 to 15 millimolar total inorganic carbon. The observed depletion of 18O from CO2 was biphasic and the resulting 18C content of CO2 was much less than the 18O content of HCO3 in the external solution. Analysis of the slopes showed that the Fick's law rate constant for entry of HCO3 into the cell was experimentally indistinguishable from zero (bicarbonate impermeable) with an upper limit of 3 × 10−4 s−1 due to our experimental errors. The Fick's law rate constant for entry of CO2 to the sites of intracellular carbonic anhydrase was large, 0.013 per second, but not as great as calculated for no membrane barrier to CO2 flux (6 per second). The experimental value may be explained by a nonhomogeneous distribution of carbonic anhydrase in the cell (such as membrane-bound enzyme) or by a membrane barrier to CO2 entry into the cell or both. The CO2 hydration activity inside the cells was 160 times the uncatalyzed CO2 hydration rate.  相似文献   

6.
Oxygen-18 exchange techniques were applied to the dehydration of bicarbonate catalyzed by human carbonic anhydrase C. The rates of depletion of oxygen-18 from labeled bicarbonate were measured for both the catalyzed and uncatalyzed reactions at pH 9.4 and 25 °C. The equilibrium dissociation constant of the enzyme-substrate complex K is 0.321 ± 0.040 m and kenz = k2Km is (8.3 ± 1.9) × 105m?1 sec?1 under these conditions. On the basis of these results it is demonstrated that the oxygen-18 exchange technique is capable of measuring K and kenz for the carbonic anhydrase catalyzed dehydration of bicarbonate at a high pH range in which other kinetic techniques are not effective.It was also shown that the oxygen-18 exchange technique is an effective micromethod for the determination of carbonic anhydrase. Rates of isotopic depletion of labeled bicarbonate (in solutions of the enzyme) which fall outside the limits of error for the uncatalyzed rate of depletion demonstrate that this technique can detect concentrations of human carbonic anhydrase C as low as 5 × 10?11m.  相似文献   

7.
The hydrolyses of p-nitrotrifluoroacetanilide catalyzed by water and imidazole were examined at 70°C. The pH-rate constant profile of the hydrolysis in H2O was examined in the pH range 0.0–11.4. The hydrolysis was independent of pH in the region from pH 1.0 to 4.5, presumably a water-catalyzed reaction. The rate constant and the D2O solvent isotope effect for this reaction were 1.0 × 10?4 sec?1 and 3.7, respectively. Both natural imidazole and imidazolium cation catalyzed hydrolysis. The rate constant of the hydrolysis catalyzed by neutral imidazole was determined to be 5.4 × 10?3M?1 sec?1 and the D2O solvent isotope effect was 1.8.  相似文献   

8.
Nine resonances in the 270 MHz proton magnetic resonance spectrum of human carbonic anhydrase B have been identified with imidazole C(2) protons of histidine residues, six of which are observed to titrate with pKa values in the range 4.7 to 7.4. The behaviour of the nine resonances has been studied in the presence of the inhibitors, iodide, cyanide, acetate, hexacyanochromate, and imidazole. Measurements have also been made of the enzyme in its apo, cobalt, and mono-alkylated forms. Used in conjunction with the crystal structure, these results have enabled the tentative assignment of all nine resonances to particular histidine residues in the amino-acid sequence. Three of the active-site histidines at positions 64, 67, and 200 have low pKa values and cannot be directly linked to the activity of the enzyme. However, the resonances assigned to the three metal-liganding histidines do exhibit changes on anion binding and with pH, which parallel changes in the esterase activity. These results are consistent with the model of an ionizable water molecule bound to the zinc ion.Linewidth measurements of the resonances of the histidine residues on the enzyme surface are used to estimate pseudo-first-order rate constants of the order of 4 × 103 s?1 for D+ exchange between imidazole N and solvent in the absence of buffer. These rates are observed to increase in the presence of small amounts of the buffers Tris and imidazole.  相似文献   

9.
A carbonic anhydrase (CA, EC 4.2.1.1) from red blood cells of pigeons (Columba livia var. domestica), clCA, was purified to homogeneity. Its kinetic parameters for the CO2 hydration reaction were measured. With a kcat/Km of 1.1?×?108 M?1 s?1, and a kcat of 1.3?×?106 s?1, clCA has a high activity, similar to that of the human isoform hCA II. A group of 25 aromatic/heterocyclic sulfonamides incorporating the sulfanilamide, homosulfanilamide, benzene-1,3-disulfonamide, and acetazolamide scaffolds showed variable inhibitory activity against the pigeon enzyme, with KIs in the range of 1.9–3460?nM. Red blood cells of pigeons, like those of ostriches, contain thus just one CA isoform, unlike the blood of mammals, which normally contain two isoforms, one of low (CA I-like) and one of very high activity (CA II-like). However, from the sulfonamide inhibition viewpoint, the pigeon enzyme was more similar to hCA II than to the ostrich enzyme.  相似文献   

10.
Mitochondrial carbonic anhydrase VA (CAVA) catalyzes the hydration of carbon dioxide to produce proton and bicarbonate which is primarily expressed in the mitochondrial matrix of liver, and involved in numerous physiological processes including lipogenesis, insulin secretion from pancreatic cells, ureagenesis, gluconeogenesis, and neuronal transmission. To understand the effect of pH on the structure, function, and stability of CAVA, we employed spectroscopic techniques such as circular dichroism, fluorescence, and absorbance measurements in wide range of pH (from pH 2.0 to pH 11.5). CAVA showed an aggregation at acidic pH range from pH 2.0 to pH 5.0. However, it remains stable and maintains its secondary structure in the pH range, pH 7.0–pH 11.5. Furthermore, this enzyme has an appreciable activity at more than pH 7.0 (7.0 < pH ≤ 11.5) with maximum activity at pH 9.0. The maximal values of kcat and kcat/Km at pH 9.0 are 3.7?×?106 s?1 and 5.5?×?107 M?1 s?1, respectively. However, this enzyme loses its activity in the acidic pH range. We further performed 20-ns molecular dynamics simulation of CAVA to see the dynamics at different pH values. An excellent agreement was observed between in silico and in vitro studies. This study provides an insight into the activity of CAVA in the pH range of subcellular environment.  相似文献   

11.
《Free radical research》2013,47(1-2):11-15
A kinetic model has been used to estimate the rate constant for the reaction of superoxide (O2/OOH) with the superoxide spin adduct of 5.5-dimethylpyrroline-N-oxide. DMPO/OOH. This rate constant is estimated to be 4.9 (± 2.2) × 106 M?1 s?1, pH 7.4 and 25°C.  相似文献   

12.
A recombinant carbonic anhydrase (CA, EC 4.2.1.1) from the soil-dwelling bacterium Enterobacter sp. B13 was cloned and purified by Co2+ affinity chromatography. Bioinformatic analysis showed that the new enzyme (denominated here B13-CA) belongs to the β-class CAs and to possess 95% homology with the ortholog enzyme from Escherichia coli encoded by the can gene, whereas its sequence homology with the other such enzyme from E. coli (encoded by the cynT gene) was of 33%. B13-CA was characterized kinetically as a catalyst for carbon dioxide hydration to bicarbonate and protons. The enzyme shows a significant catalytic activity, with the following kinetic parameters at 20?°C and pH of 8.3: kcat of 4.8?×?105?s?1 and kcat/Km of 5.6?×?107 M?1?×?s?1. This activity was potently inhibited by acetazolamide which showed a KI of 78.9?nM. Although only this compound was investigated for the moment as B13-CA inhibitor, further studies may reveal new classes of inhibitors/activators of this enzyme which may show biomedical or environmental applications, considering the posssible role of this enzyme in CaCO3 biomineralization processes.  相似文献   

13.
Carboxysomes are proteinaceous microcompartments that encapsulate carbonic anhydrase (CA) and ribulose 1,5-bisphosphate carboxylase/oxygenase (Rubisco); carboxysomes, therefore, catalyze reversible HCO3 ? dehydration and the subsequent fixation of CO2. The N- and C-terminal domains of the β-carboxysome scaffold protein CcmM participate in a network of protein–protein interactions that are essential for carboxysome biogenesis, organization, and function. The N-terminal domain of CcmM in the thermophile Thermosynechococcus elongatus BP-1 is also a catalytically active, redox regulated γ-CA. To experimentally determine if CcmM from a mesophilic cyanobacterium is active, we cloned, expressed and purified recombinant, full-length CcmM from Nostoc sp. PCC 7120 as well as the N-terminal 209 amino acid γ-CA-like domain. Both recombinant proteins displayed ethoxyzolamide-sensitive CA activity in mass spectrometric assays, as did the carboxysome-enriched TP fraction. NstCcmM209 was characterized as a moderately active and efficient γ-CA with a k cat of 2.0 × 104 s?1 and k cat/K m of 4.1 × 106 M?1 s?1 at 25 °C and pH 8, a pH optimum between 8 and 9.5 and a temperature optimum spanning 25–35 °C. NstCcmM209 also catalyzed the hydrolysis of the CO2 analog carbonyl sulfide. Circular dichroism and intrinsic tryptophan fluorescence analysis demonstrated that NstCcmM209 was progressively and irreversibly denatured above 50 °C. NstCcmM209 activity was inhibited by the reducing agent tris(hydroxymethyl)phosphine, an effect that was fully reversed by a molar excess of diamide, a thiol oxidizing agent, consistent with oxidative activation being a universal regulatory mechanism of CcmM orthologs. Immunogold electron microscopy and Western blot analysis of TP pellets indicated that Rubisco and CcmM co-localize and are concentrated in Nostoc sp. PCC 7120 carboxysomes.  相似文献   

14.
The carboxylase activities of crude carboxysome preparations obtained from the wild-type Synechococcus elongatus strain PCC 7942 strain and the mutant defective in the carboxysomal carbonic anhydrase (CA) were compared. The carboxylation reaction required high concentrations of bicarbonate and was not even saturated at 50 mM bicarbonate. With the initial concentrations of 50 mM and 25 mM for bicarbonate and ribulose-1,5-bisphosphate (RuBP), respectively, the initial rate of RuBP carboxylation by the mutant carboxysome (0.22 μmol mg?1 protein min?1) was only 30 % of that observed for the wild-type carboxysomes (0.71 μmol mg?1 protein min?1), indicating the importance of the presence of CA in efficient catalysis by ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco). While the mutant defective in the ccmLMNO genes, which lacks the carboxysome structure, could grow under aeration with 2 % (v/v) CO2 in air, the mutant defective in ccaA as well as ccmLMNO required 5 % (v/v) CO2 for growth, indicating that the cytoplasmically localized CcaA helped utilization of CO2 by the cytoplasmically localized Rubisco by counteracting the action of the CO2 hydration mechanism. The results predict that overexpression of Rubisco would hardly enhance CO2 fixation by the cyanobacterium at CO2 levels lower than 5 %, unless Rubisco is properly organized into carboxysomes.  相似文献   

15.
A new γ-carbonic anhydrase (CA, EC 4.1.1.1) was cloned and characterized kinetically in the genome of the bacterial pathogen Burkholderia pseudomallei, the etiological agent of melioidosis, an endemic disease of tropical and sub-tropical regions of the world. The catalytic activity of this new enzyme, BpsCAγ, is significant with a kcat of 5.3 × 105 s?1 and kcat/Km of 2.5 × 107 M?1 × s?1 for the physiologic CO2 hydration reaction. The inhibition constant value for this enzyme for 39 sulfonamide inhibitors was obtained. Acetazolamide, benzolamide and metanilamide were the most effective (KIs of 149–653 nM) inhibitors of BpsCAγ activity, whereas other sulfonamides/sulfamates such as ethoxzolamide, topiramate, sulpiride, indisulam, sulthiame and saccharin were active in the micromolar range (KIs of 1.27–9.56 μM). As Burkholderia pseudomallei is resistant to many classical antibiotics, identifying compounds that interfere with crucial enzymes in the B. pseudomallei life cycle may lead to antibiotics with novel mechanisms of action.  相似文献   

16.
《Process Biochemistry》2014,49(12):2114-2121
The codon-optimized carbonic anhydrase gene of Persephonella marina EX-H1 (PMCA) was expressed and characterized. The gene with the signal peptide removed, PMCA(sp−), resulted in the production of approximately five times more purified protein than from the intact gene PMCA using an Escherichia coli expression system. PMCA(sp−) is formed as homo-dimer complex. PMCA(sp−) has a wide pH tolerance (optimum pH 7.5) and a high thermostability even at 100 °C (88 min of thermal deactivation half-life). The melting temperature for PMCA(sp−) was 84.5 °C. The apparent kcat and Km values for CO2 hydration were 3.2 × 105 s−1 and 10.8 mM. The activity of the PMCA(sp−) enzyme was enhanced by Zn2+, Co2+, and Mg2+, but was strongly inhibited by Cu2+, Fe3+, Al3+, Pb2+, Ag+, and Hg2+. PMCA(sp−) readily catalyzed the hydration of CO2, precipitating CaCO3 as calcite in the presence of Ca2+.  相似文献   

17.
The carbonic anhydrase superfamily (CA, EC 4.2.1.1) of metalloenzymes is present in all three domains of life (Eubacteria, Archaea, and Eukarya), being an interesting example of convergent/divergent evolution, with its seven families (α-, β-, γ-, δ-, ζ-, η-, and θ-CAs) described so far. CAs catalyse the simple, but physiologically crucial reaction of carbon dioxide hydration to bicarbonate and protons. Recently, our groups characterised the α-CA from the thermophilic bacterium, Sulfurihydrogenibium yellowstonense finding a very high catalytic activity for the CO2 hydration reaction (kcat?=?9.35?×?105?s?1 and kcat/Km?=?1.1?×?108?M?1?s?1) which was maintained after heating the enzyme at 80?°C for 3?h. This highly thermostable SspCA was covalently immobilised within polyurethane foam and onto the surface of magnetic Fe3O4 nanoparticles. Here, we describe a one-step procedure for immobilising the thermostable SspCA directly on the surface membrane of Escherichia coli, using the INPN domain of Pseudomonas syringae. This strategy has clear advantages with respect to other methods, which require as the first step the production and the purification of the biocatalyst, and as the second step the immobilisation of the enzyme onto a specific support. Our results demonstrate that thermostable SspCA fused to the INPN domain of P. syringae ice nucleation protein (INP) was correctly expressed on the outer membrane of engineered E. coli cells, affording for an easy approach to design biotechnological applications for this highly effective thermostable catalyst.  相似文献   

18.
Upon cardiolipin (CL) liposomes binding, horse heart cytochrome c (cytc) changes its tertiary structure disrupting the heme-Fe-Met80 distal bond, reduces drastically the midpoint potential, binds CO and NO with high affinity, displays peroxidase activity, and facilitates peroxynitrite isomerization. Here, the effect of CL liposomes on the nitrite reductase activity of ferrous cytc (cytc-Fe(II)) is reported. In the absence of CL liposomes, hexa-coordinated cytc-Fe(II) displays a very low value of the apparent second-order rate constant for the NO2 ?-mediated conversion of cytc-Fe(II) to cytc-Fe(II)-NO (k on = (7.3 ± 0.7) × 10?2 M?1 s?1; at pH 7.4 and 20.0 °C). However, CL liposomes facilitate the NO2 ?-mediated nitrosylation of cytc-Fe(II) in a dose-dependent manner inducing the penta-coordination of the heme-Fe(II) atom. The value of k on for the NO2 ?-mediated conversion of CL-cytc-Fe(II) to CL-cytc-Fe(II)-NO is 2.6 ± 0.3 M?1 s?1 (at pH 7.4 and 20.0 °C). Values of the apparent dissociation equilibrium constant for CL liposomes binding to cytc-Fe(II) are (2.2 ± 0.2) × 10?6 M, (1.8 ± 0.2) × 10?6 M, and (1.4 ± 0.2) × 10?6 M at pH 6.5, 7.4, and 8.1, respectively, and 20.0 °C. These results suggest that the NO2 ?-mediated conversion of CL-cytc-Fe(II) to CL-cytc-Fe(II)-NO could play anti-apoptotic effects impairing lipid peroxidation and therefore the initiation of the cell death program by the release of pro-apoptotic factors (including cytc) in the cytoplasm.  相似文献   

19.
We studied anionic inhibition of the reaction CO2 + OH?? HCO3? catalyzed by human red cell carbonic anhydrase B (I) and C (II), using iodide and cyanate. In the forward reaction with respect to CO2 as the substrate, inhibition was mixed but favoring noncompetitive; the back reaction, with HCO3? as the substrate, yielded strict competitive kinetics. Mean inhibition constants, KI, in the pH range 7.2–7.5 are: iodide, 0.5 mm for enzyme B and 16 mm for C; cyanate, 0.8 μm for B and 20 μm for C. When OH? was considered as the substrate for the forward reaction, cyanate and chloride behaved as competitive inhibitors. The true inhibition constant (KI0) for cyanate (calculated for infinitely low OH?) is 0.4 μm for enzyme B and 4 μm for C. Apart from the difference in anion affinity and some 10-fold higher activity of C > B, the isozymes showed similar patterns of inhibition. Data agree with generally proposed mechanisms describing the active site as ZnH2O with pKa of about 7.  相似文献   

20.
The action of phospholipase C (Bacillus cereus) toward mixed micelles of phosphatidylcholine and the nonionic surfactant Triton X-100 is analyzed according to the “surfaceas-cofactor” kinetic scheme recently proposed for characterizing the action of lipolytic enzymes [Deems, R. A., Eaton, B. R., and Dennis, E. A. (1975) J. Biol. Chem.250, 9013–9020]. According to this scheme, the enzyme first associates with the surface or mixed micelles, where the dissociation constant is KsA. The enzyme, now part of the mixed micelle surface, then binds the substrate phospholipid molecule in its active site and this binding is related to the Michaelis constant, KmB. The surface, or mixed micelles in this scheme, behaves kinetically as a cofactor in that, under initial rate conditions, the surface properties of the mixed micelles are virtually unchanged after catalysis. For phospholipase C with egg phosphatidylcholine as substrate, it was found that at pH 6.4 (the pH optimum for the enzyme) and 40 °C, V is about 2 × 103 μmol min?1 (mg of protein)?1. KsA is about 2 mm and KmB is 1 to 2 × 10?10 mol cm?2. The kinetic constants for phospholipase C are compared with those previously reported for phospholipase A2 and the membrane-bound enzyme phosphatidylserine decarboxylase determined under similar conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号