首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
Reproduction of the in vivo motions of joints has become possible with improvements in robot technology and in vivo measuring techniques. A motion analysis system has been used to measure the motions of the tibia and femur of the ovine stifle joint during normal gait. These in vivo motions are then reproduced with a parallel robot. To ensure that the motion of the joint is accurately reproduced and that the resulting data are reliable, the testing frame, the data acquisition system, and the effects of limitations of the testing platform need to be considered. Of the latter, the stiffness of the robot and the ability of the control system to process sequential points on the path of motion in a timely fashion for repeatable path accuracy are of particular importance. Use of the system developed will lead to a better understanding of the mechanical environment of joints and ligaments in vivo.  相似文献   

2.
Although alterations in knee joint loading resulting from injury have been shown to influence the development of osteoarthritis, actual in vivo loading conditions of the joint remain unknown. A method for determining in vivo ligament loads by reproducing joint specific in vivo kinematics using a robotic testing apparatus is described. The in vivo kinematics of the ovine stifle joint during walking were measured with 3D optical motion analysis using markers rigidly affixed to the tibia and femur. An additional independent single degree of freedom measuring device was also used to record a measure of motion. Following sacrifice, the joint was mounted in a robotic/universal force sensor test apparatus and referenced using a coordinate measuring machine. A parallel robot configuration was chosen over the conventional serial manipulator because of its greater accuracy and stiffness. Median normal gait kinematics were applied to the joint and the resulting accuracy compared. The mean error in reproduction as determined by the motion analysis system varied between 0.06 mm and 0.67 mm and 0.07 deg and 0.74 deg for the two individual tests. The mean error measured by the independent device was found to be 0.07 mm and 0.83 mm for the two experiments, respectively. This study demonstrates the ability of this system to reproduce in vivo kinematics of the ovine stifle joint in vitro. The importance of system stiffness is discussed to ensure accurate reproduction of joint motion.  相似文献   

3.
Musculoskeletal modeling and simulations have vast potential in clinical and research fields, but face various challenges in representing the complexities of the human body. Soft tissue artifact from skin-mounted markers may lead to non-physiological representation of joint motions being used as inputs to models in simulations. To address this, we have developed adaptive joint constraints on five of the six degree of freedom of the knee joint based on in vivo tibiofemoral joint motions recorded during walking, hopping and cutting motions from subjects instrumented with intra-cortical pins inserted into their tibia and femur. The constraint boundaries vary as a function of knee flexion angle and were tested on four whole-body models including four to six knee degrees of freedom. A musculoskeletal model developed in OpenSim simulation software was constrained to these in vivo boundaries during level gait and inverse kinematics and dynamics were then resolved. Statistical parametric mapping indicated significant differences (p < 0.05) in kinematics between bone pin constrained and unconstrained model conditions, notably in knee translations, while hip and ankle flexion/extension angles were also affected, indicating the error at the knee propagates to surrounding joints. These changes to hip, knee, and ankle kinematics led to measurable changes in hip and knee transverse plane moments, and knee frontal plane moments and forces. Since knee flexion angle can be validly represented using skin mounted markers, our tool uses this reliable measure to guide the five other degrees of freedom at the knee and provide a more valid representation of the kinematics for these degrees of freedom.  相似文献   

4.
An unbiased understanding of foot kinematics has been difficult to achieve due to the complexity of foot structure and motion. We have developed a protocol for evaluation of foot kinematics during barefoot walking based on a multi-segment foot model. Stereophotogrammetry was used to measure retroreflective markers on three segments of the foot plus the tibia. Repeatability was evaluated between-trial, between-day and between-tester using two subjects and two testers. Subtle patterns and ranges of motion between segments of the foot were consistently detected. We found that repeatability between different days or different testers is primarily subject to variability of marker placement more than inter-tester variability or skin movement. Differences between inter-segment angle curves primarily represent a shift in the absolute value of joint angles from one set of trials to another. In the hallux, variability was greater than desired due to vibration of the marker array used. The method permits objective foot measurement in gait analysis using skin-mounted markers. Quantitative and objective characterisation of the kinematics of the foot during activity is an important area of clinical and research evaluation. With this work we hope to have provided a firm basis for a common protocol for in vivo foot study.  相似文献   

5.
Standard registration techniques of bone morphology to motion analysis data often lead to unsatisfactory motion simulation because of discrepancies during the location of anatomical landmarks in the datasets. This paper describes an iterative registration method of a three-dimensional (3D) skeletal model with both 6 degrees-of-freedom joint kinematics and standard motion analysis data. The method is demonstrated in this paper on the lower limb. The method includes two steps. A primary registration allowed synchronization of in vitro kinematics of the knee and ankle joints using flexion/extension angles from in vivo gait analysis. Results from primary registration were then improved by a so-called advanced registration, which integrated external constraints obtained from experimental gait pre-knowledge. One cadaver specimen was analyzed to obtain both joint kinematics of knee and ankle joints using 3D electrogoniometry, and 3D bone morphology from medical imaging data. These data were registered with motion analysis data from a volunteer during the execution of locomotor tasks. Computer graphics output was implemented to visualize the results for a motion of sitting on a chair. Final registration results allowed the observation of both in vivo motion data and joint kinematics from the synchronized specimen data. The method improved interpretation of gait analysis data, thanks to the combination of realistic 3D bone models and joint mechanism. This method should be of interest both for research in gait analysis and medical education. Validation of the overall method was performed using RMS of the differences between bone poses estimated after registration and original data from motion analysis.  相似文献   

6.
A three-dimensional kinematic and dynamic model of the lower limb   总被引:7,自引:0,他引:7  
A model describing the kinematics and dynamics of the lower limb is presented. The lower limb is modeled as a sequence of four rigid links connected by three universal rotary joints representing the hip, knee and ankle joints. Each joint is modeled as a sequence of three single axis rotational joints thus ascribing to the lower limb a total of 12 degrees of freedom. A method is described to measure the gait variables so that all nine angles can be computed based on the positions of nine markers placed on the subject during a gait study. The gait variables are then used in an iterative Newton-Euler formulation to compute the moments exerted about the axes of each joint during gait.  相似文献   

7.
8.
This paper presents a kinematic analysis of the locomotion of a gecko,and experimental verification of the kinematicmodel.Kinematic analysis is important for parameter design,dynamic analysis,and optimization in biomimetic robot research.The proposed kinematic analysis can simulate,without iteration,the locomotion of gecko satisfying the constraint conditionsthat maintain the position of the contacted feet on the surface.So the method has an advantage for analyzing the climbing motionof the quadruped mechanism in a real time application.The kinematic model of a gecko consists of four legs based on 7-degreesof freedom spherical-revolute-spherical joints and two revolute joints in the waist.The motion of the kinematic model issimulated based on measurement data of each joint.The motion of the kinematic model simulates the investigated real gecko’smotion by using the experimental results.The analysis solves the forward kinematics by considering the model as a combinationof closed and open serial mechanisms under the condition that maintains the contact positions of the attached feet on the ground.The motions of each joint are validated by comparing with the experimental results.In addition to the measured gait,three othergaits are simulated based on the kinematic model.The maximum strides of each gait are calculated by workspace analysis.Theresult can be used in biomimetic robot design and motion planning.  相似文献   

9.
The ovine stifle joint is a promising animal model for investigation of joint mechanobiology. A method for in vivo measurement of dynamic 3-D kinematics of the ovine stifle joint is described (accuracy: 0.36 +/- 0.39 mm). Inter-subject variability in kinematics is greater than both intra-subject and inter-session variability. For future studies in which joint kinematics are measured prior to and following controlled orthopaedic interventions, pooling of data should be avoided and each subject should act as its own control.  相似文献   

10.
The human finger contains tendon/ligament mechanisms essential for proper control. One mechanism couples the movements of the interphalangeal joints when the (unloaded) finger is flexed with active deep flexor. This study’s aim was to accurately determine in a large finger sample the kinematics and variability of the coupled interphalangeal joint motions, for potential clinical and finger model validation applications. The data could also be applied to humanoid robotic hands. Sixty-eight fingers were measured in seventeen hands in nine subjects. Fingers exhibited great joint mobility variability, with passive proximal interphalangeal hyperextension ranging from zero to almost fifty degrees. Increased measurement accuracy was obtained by using marker frames to amplify finger segment motions. Gravitational forces on the marker frames were not found to invalidate measurements. The recorded interphalangeal joint trajectories were highly consistent, demonstrating the underlying coupling mechanism. The increased accuracy and large sample size allowed for evaluation of detailed trajectory variability, systematic differences between flexion and extension trajectories, and three trigger types, distinct from flexor tendon triggers, involving initial flexion deficits in either proximal or distal interphalangeal joint. The experimental methods, data and analysis should advance insight into normal and pathological finger biomechanics (e.g., swanneck deformities), and could help improve clinical differential diagnostics of trigger finger causes. The marker frame measuring method may be useful to quantify interphalangeal joints trajectories in surgical/rehabilitative outcome studies. The data as a whole provide the most comprehensive collection of interphalangeal joint trajectories for clinical reference and model validation known to us to date.  相似文献   

11.
We propose a novel methodology for predicting human gait pattern kinematics based on a statistical and stochastic approach using a method called Gaussian process regression (GPR). We selected 14 body parameters that significantly affect the gait pattern and 14 joint motions that represent gait kinematics. The body parameter and gait kinematics data were recorded from 113 subjects by anthropometric measurements and a motion capture system. We generated a regression model with GPR for gait pattern prediction and built a stochastic function mapping from body parameters to gait kinematics based on the database and GPR, and validated the model with a cross validation method. The function can not only produce trajectories for the joint motions associated with gait kinematics, but can also estimate the associated uncertainties. Our approach results in a novel, low-cost and subject-specific method for predicting gait kinematics with only the subject's body parameters as the necessary input, and also enables a comprehensive understanding of the correlation and uncertainty between body parameters and gait kinematics.  相似文献   

12.
This paper describes the development of a novel algorithm for deriving finger segmental center of rotation (COR) locations during flexion-extension from measured surface marker motions in vivo. The algorithm employs an optimization routine minimizing the time-variance of the internal link lengths, and incorporates an empirically quantifiable relationship between the local movement of a surface marker around a joint (termed "surface marker excursion") and the joint flexion-extension. The latter relationship constrains and simplifies the optimization routine to make it computationally tractable. To empirically investigate this relationship and test the proposed algorithm, an experiment was conducted, in which hand cylinder-grasping movements were performed by 24 subjects (12 males and 12 females). Spherical retro-reflective markers were placed at various surface landmarks on the dorsal aspect of each subject's right (grasping) hand, and were measured during the movements by an opto-electronic system. Analysis of experimental data revealed a highly linear relationship between the "surface marker excursion" and the marker-defined flexion-extension angle: the average R(2) in linear regression ranged from 0.89 to 0.97. The algorithm successfully determined the CORs of the distal interphalangeal, proximal interphalangeal, and metacarpophalangeal joints of digits 2-5 during measured motions. The derived CORs appeared plausible as examined in terms of the physical locations relative to surface marker trajectories and the congruency across different joints and individuals.  相似文献   

13.
The problems related to kinematic redundancy in both task and joint space were investigated for arm prehension movements in this paper. After a detailed analysis of kinematic redundancy of the arm, it is shown that the redundancy problem is ill posed only for the control of hand orientation. An experiment was then designed to investigate the influence of hand orientation on the control of arm movements. Since movements must be made within the limits of the joints, the influence of these limits was also analyzed quantitatively. The results of the experiment confirm that the increase of movement time because of the change of object orientation is due to the lengthening of the deceleration phase disproportionately to the rest of the movement. The variation of hand path due to the change of object orientation was observed as being surprisingly small for some subjects as opposed to the large range of object orientation, implying that hand path and hand orientation could be controlled separately, thus simplifying the computational problem of inverse kinematics. Moreover, the observations from the present experiment strongly suggest that a functional segmentation of the proximal and distal joints exists and that the control of wrist motion is dissociated from the rest of joint motions. The contribution of each joint in the control of arm movements could be determined through the principle of minimum energy and minimum discomfort under the constraints of the joint limits. A simplified inverse kinematics model was tested. It shows that these hypotheses can be easily implemented in a geometric algorithm and be used to predict arm prehension postures reasonably well under the constraints of joint limits. Received: 6 August 1998 / Accepted in revised form: 16 December 1998  相似文献   

14.
15.
The dynamics of the center of mass (CoM) during walking and running at various gait conditions are well described by the mechanics of a simple passive spring loaded inverted pendulum (SLIP). Due to its simplicity, however, the current form of the SLIP model is limited at providing any further information about multi-segmental lower limbs that generate oscillatory CoM behaviors and their corresponding ground reaction forces. Considering that the dynamics of the CoM are simply achieved by mass-spring mechanics, we wondered whether any of the multi-joint motions could be demonstrated by simple mechanics. In this study, we expand a SLIP model of human locomotion with an off-centered curvy foot connected to the leg by a springy segment that emulates the asymmetric kinematics and kinetics of the ankle joint. The passive dynamics of the proposed expansion of the SLIP model demonstrated the empirical data of ground reaction forces, center of mass trajectories, ankle joint kinematics and corresponding ankle joint torque at various gait speeds. From the mechanically simulated trajectories of the ankle joint and CoM, the motion of lower-limb segments, such as thigh and shank angles, could be estimated from inverse kinematics. The estimation of lower limb kinematics showed a qualitative match with empirical data of walking at various speeds. The representability of passive compliant mechanics for the kinetics of the CoM and ankle joint and lower limb joint kinematics implies that the coordination of multi-joint lower limbs during gait can be understood with a mechanical framework.  相似文献   

16.
Thumb opposition plays a vital role in hand function. Kinematically, thumb opposition results from composite movements from multiple joints moving in multiple directions. The purpose of this study was to examine the coordination of thumb joints during opposition tasks. A total of 15 female subjects with asymptomatic hands were studied. Three-dimensional angular kinematics of the carpometacarpal (CMC), metacarpophalangeal (MCP) and interphalangeal (IP) joints were obtained by a marker-based motion analysis system. Thumb opposition revealed coordination among joints in a specific direction (inter-joint coordination) and among different directions within a joint (intra-joint coordination). In particular, linear couplings existed between the flexion and pronation at the CMC joint, and between the flexion of the CMC joint and flexion of the MCP joint. Principal component analysis showed that only two principal components adequately represented the thumb opposition data of seven movement directions. A term functional degrees of freedom by virtue of principal component analysis was proposed to uncover the extent of movement coordination in functional tasks.  相似文献   

17.
The International Society of Biomechanics (ISB) has recommended a standardisation for the motion reporting of almost all human joints. This study proposes an adaptation for the trapeziometacarpal joint. The definition of the segment coordinate system of both trapezium and first metacarpal is based on functional anatomy. The definition of the joint coordinate system (JCS) is guided by the two degrees of freedom of the joint, i.e. flexion-extension about a trapezium axis and abduction-adduction about a first metacarpal axis. The rotations obtained using three methods are compared on the same data: the fixed axes sequence proposed by Cooney et al., the mobile axes sequence proposed by the ISB and our alternative mobile axes sequence. The rotation amplitudes show a difference of 9 degrees in flexion-extension, 2 degrees in abduction-adduction and 13 degrees in internal-external rotation. This study emphasizes the importance of adapting the JCS to the functional anatomy of each particular joint.  相似文献   

18.
Gait analysis in orthopaedic and neurological examinations is important; however, few studies assess gait variability at different walking speeds in patients with varying degrees of hip osteoarthritis. We aimed to clarify (1) how different controlled speeds and (2) various severities of hip osteoarthritis influence gait variability. Gait variability was described by the standard deviation (SD) of the spatial–temporal and mean standard deviation (MeanSD) of angular parameters. The spatial positions of the anatomical points for calculating gait parameters were determined in 20 healthy elderly controls and 20 patients with moderate and 20 patients with severe hip osteoarthritis with a zebris CMS-HS ultrasound-based motion analysis system at three walking speeds. The SD of the spatial–temporal and MeanSD of angular parameters of gait, which together describe gait variability, significantly depended on speed and osteoarthritis severity. The lowest variability in the gait was found near the self-selected walking speeds. Hip joint degeneration significantly worsened variability on the affected side, with non-affected joints and the pelvis compensating by increasing flexibility and adapting to step-by-step motions. Particular attention must be paid to improving gait stability and the reliability of limb movements in the presence of and increasing severity of osteoarthritis.  相似文献   

19.
Upper extremity musculoskeletal disorders represent an important health issue across all industry sectors; as such, the need exists to develop models of the hand that provide comprehensive biomechanics during occupational tasks. Previous optical motion capture studies used a single marker on the dorsal aspect of finger joints, allowing calculation of one and two degree-of-freedom (DOF) joint angles; additional algorithms were needed to define joint centers and the palmar surface of fingers. We developed a 6DOF model (6DHand) to obtain unconstrained kinematics of finger segments, modeled as frusta of right circular cones that approximate the palmar surface. To evaluate kinematic performance, twenty subjects gripped a cylindrical handle as a surrogate for a powered hand tool. We hypothesized that accessory motions (metacarpophalangeal pronation/supination; proximal and distal interphalangeal radial/ulnar deviation and pronation/supination; all joint translations) would be small (less than 5° rotations, less than 2mm translations) if segment anatomical reference frames were aligned correctly, and skin movement artifacts were negligible. For the gripping task, 93 of 112 accessory motions were small by our definition, suggesting this 6DOF approach appropriately models joints of the fingers. Metacarpophalangeal supination was larger than expected (approximately 10°), and may be adjusted through local reference frame optimization procedures previously developed for knee kinematics in gait analysis. Proximal translations at the metacarpophalangeal joints (approximately 10mm) were explained by skin movement across the metacarpals, but would not corrupt inverse dynamics calculated for the phalanges. We assessed performance in this study; a more rigorous validation would likely require medical imaging.  相似文献   

20.
The kinematics of the hand and fingers were studied during various keystrokes in typing. These movements were defined by 17 degrees of freedom of motion, and methods were developed to identify simplifying strategies inthe execution of the task. Most of the analysis was restrictedto the 11 degrees of freedom of the fingers, neglecting thumband wrist motion. Temporal characteristics of the motion weredefined by computing principal components, and it was found thatonly a few (two to four) principal components were needed tocharacterize motion of each of the degrees of freedom.Hierarchical relationships among patterns within and betweendifferent degrees of freedom were identified using clusteranalysis. There was a considerable amount of consistency eachtime a given keystroke was executed by a subject, and thisrepeatability may imply a reduction in the number of degrees offreedom independently controlled by the nervous system. However,there also appears to be considerable flexibility in thecoordination of the many joints of the hand when examined acrossdifferent keys and across different subjects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号