首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Proneural bHLH activators are expressed in all neuroectodermal regions prefiguring events of central and peripheral neurogenesis. Drosophila Sc is a prototypical proneural activator that heterodimerizes with the E-protein Daughterless (Da) and is antagonized by, among others, the E(spl) repressors. We determined parameters that regulate Sc stability in Drosophila S2 cells. We found that Sc is a very labile phosphoprotein and its turnover takes place via at least three proteasome-dependent mechanisms. (i) When Sc is in excess of Da, its degradation is promoted via its transactivation domain (TAD). (ii) In a DNA-bound Da/Sc heterodimer, Sc degradation is promoted via an SPTSS phosphorylation motif and the AD1 TAD of Da; Da is spared in the process. (iii) When E(spl)m7 is expressed, it complexes with Sc or Da/Sc and promotes their degradation in a manner that requires the corepressor Groucho and the Sc SPTSS motif. Da/Sc reciprocally promotes E(spl)m7 degradation. Since E(spl)m7 is a direct target of Notch, the mutual destabilization of Sc and E(spl) may contribute in part to the highly conserved anti-neural activity of Notch. Sc variants lacking the SPTSS motif are dramatically stabilized and are hyperactive in transgenic flies. Our results propose a novel mechanism of regulation of neurogenesis, involving the stability of key players in the process.  相似文献   

2.
TheEnhancer of split andachaete-scute gene complexes [E(spl)-C and AS-C] encode helix-loop-helix proteins required for neurogenesis inDrosophila. Using a heterologous bacterial system, we show that (i) the bHLH domains of the proteins encoded by the two gene complexes differ in their ability to form homo- and/or heterodimers; (ii) the bHLH domains of the E(spl)-C proteins m5, m7 and m8 interact with the bHLH domains of the Ac and Sc proteins. These bHLH domains form an interaction network which may represent the molecular mechanism whereby the competent state of the proneural cells is maintained until the terminal determination to neuroblast occurs. Also, the pattern of interactions of the bHLH domains of certain proteins encoded by the two gene complexes may explain their functional redundancy.  相似文献   

3.
TheEnhancer of split andachaete-scute gene complexes [E(spl)-C and AS-C] encode helix-loop-helix proteins required for neurogenesis inDrosophila. Using a heterologous bacterial system, we show that (i) the bHLH domains of the proteins encoded by the two gene complexes differ in their ability to form homo- and/or heterodimers; (ii) the bHLH domains of the E(spl)-C proteins m5, m7 and m8 interact with the bHLH domains of the Ac and Sc proteins. These bHLH domains form an interaction network which may represent the molecular mechanism whereby the competent state of the proneural cells is maintained until the terminal determination to neuroblast occurs. Also, the pattern of interactions of the bHLH domains of certain proteins encoded by the two gene complexes may explain their functional redundancy.  相似文献   

4.
5.
6.
7.
We have identified a novel subfamily of mammalian hairy/Enhancer of split (E(spl))-related basic helix-loop-helix (bHLH) genes together with a putative Drosophila homologue. While hairy/E(spl) proteins are characterized by an invariant proline residue in the basic domain and a carboxyterminal groucho-binding WRPW motif, our genes encode a carboxyterminal KPYRPWG sequence and were thus designated as Hey genes (Hairy/E(spl)-related with YRPW motif). Furthermore, they bear a unique C-terminal TE(I/V)GAF motif and the characteristic proline is changed in all Hey family members to glycine. RNA in situ hybridization analysis revealed specific expression of Hey1 during development of the nervous system, the somites, the heart and the craniofacial region. Hey2 is similarly expressed in the somites whereas it shows a complementary expression in the heart, the craniofacial region and the nervous system. The diversity of expression patterns implies unique functions in neurogenesis, somitogenesis and organogenesis.  相似文献   

8.
9.
Tribolium castaneum is a well-characterised model insect, whose short germ-band mode of embryonic development is characteristic of many insect species and differs from the exhaustively studied Drosophila. Mechanisms of early neurogenesis, however, show significant conservation with Drosophila, as a characteristic pattern of neuroblasts arises from neuroectoderm proneural clusters in response to the bHLH activator Ash, a homologue of Achaete–Scute. Here we study the expression and function of two other bHLH proteins, the bHLH-O repressors E(spl)1 and E(spl)3. Their Drosophila homologues are expressed in response to Notch signalling and antagonize the activity of Achaete–Scute proteins, thus restricting the number of nascent neuroblasts. E(spl)1 and 3 are the only E(spl) homologues in Tribolium and both show expression in the cephalic and ventral neuroectoderm during embryonic neurogenesis, as well as a dynamic pattern of expression in other tissues. Their expression starts early, soon after Ash expression and is dependent on both Ash and Notch activities. They act redundantly, since a double E(spl) knockdown (but not single knockdowns) results in neurogenesis defects similar to those caused by Notch loss-of-function. A number of other activities have been evolutionarily conserved, most notably their ability to interact with proneural proteins Scute and Daughterless.  相似文献   

10.
In Drosophila, protein kinase CK2 regulates a diverse array of developmental processes. One of these is cell-fate specification (neurogenesis) wherein CK2 regulates basic-helix-loop-helix (bHLH) repressors encoded by the Enhancer of Split Complex (E(spl)C). Specifically, CK2 phosphorylates and activates repressor functions of E(spl)M8 during eye development. In this study we describe the interaction of CK2 with an E(spl)-related bHLH repressor, Deadpan (Dpn). Unlike E(spl)-repressors which are expressed in cells destined for a non-neural cell fate, Dpn is expressed in the neuronal cells and is thought to control the activity of proneural genes. Dpn also regulates sex-determination by repressing sxl, the primary gene involved in sex differentiation. We demonstrate that Dpn is weakly phosphorylated by monomeric CK2α, whereas it is robustly phosphorylated by the embryo-holoenzyme, suggesting a positive role for CK2β. The weak phosphorylation by CK2α is markedly stimulated by the activator polylysine to levels comparable to those with the holoenzyme. In addition, pull down assays indicate a direct interaction between Dpn and CK2. This is the first demonstration that Dpn is a partner and target of CK2, and raises the possibility that its repressor functions might also be regulated by phosphorylation.  相似文献   

11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号