首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The irregular xylem3 (irx3) mutant of Arabidopsis has a severe deficiency in secondary cell wall cellulose deposition that leads to collapsed xylem cells. The irx3 mutation has been mapped to the top arm of chromosome V near the marker nga106. Expressed sequence tag clone 75G11, which exhibits sequence similarity to cellulose synthase, was found to be tightly linked to irx3, and genomic clones containing the gene corresponding to clone 75G11 complemented the irx3 mutation. Thus, the IRX3 gene encodes a cellulose synthase component that is specifically required for the synthesis of cellulose in the secondary cell wall. The irx3 mutant allele contains a stop codon that truncates the gene product by 168 amino acids, suggesting that this allele is null. Furthermore, in contrast to radial swelling1 (rsw1) plants, irx3 plants show no increase in the accumulation of beta-1,4-linked glucose in the noncrystalline cell wall fraction. IRX3 and RSW1 fall into a distinct subgroup (Csa) of Arabidopsis genes showing homology to bacterial cellulose synthases.  相似文献   

2.
Taylor NG  Laurie S  Turner SR 《The Plant cell》2000,12(12):2529-2540
The irregular xylem 1 (irx1) mutant of Arabidopsis has a severe deficiency in the deposition of cellulose in secondary cell walls, which results in collapsed xylem cells. This mutation has been mapped to a 140-kb region of chromosome 4. A cellulose synthase catalytic subunit was found to be located in this region, and genomic clones containing this gene complemented the irx1 mutation. IRX1 shows homology to a previously described cellulose synthase (IRX3). Analysis of the irx1 and irx3 mutant phenotypes demonstrates that both IRX1 and IRX3 are essential for the production of cellulose in the same cell. Thus, IRX1 and IRX3 define distinct classes of catalytic subunits that are both essential for cellulose synthesis in plants. This finding is supported by coprecipitation of IRX1 with IRX3, suggesting that IRX1 and IRX3 are part of the same complex.  相似文献   

3.
In the Arabidopsis mutant irx3, truncation of the AtCesA7 gene encoding a xylem-specific cellulose synthase results in reduced cellulose synthesis in the affected xylem cells and collapse of mature xylem vessels. Here we describe spectroscopic experiments to determine whether any cellulose, normal or abnormal, remained in the walls of these cells and whether there were consequent effects on other cell-wall polysaccharides. Xylem cell walls from irx3 and its wild-type were prepared by anatomically specific isolation and were examined by solid-state NMR spectroscopy and FTIR microscopy. The affected cell walls of irx3 contained low levels of crystalline cellulose, probably associated with primary cell walls. There was no evidence that crystalline cellulose was replaced by less ordered glucans. From the molecular mobility of xylans and lignin it was deduced that these non-cellulosic polymers were cross-linked together in both irx3 and the wild-type. The disorder previously observed in the spatial pattern of non-cellulosic polymer deposition in the secondary walls of irx3 xylem could not be explained by any alteration in the structure or cross-linking of these polymers and may be attributed directly to the absence of cellulose microfibrils which, in the wild-type, scaffold the organisation of the other polymers into a coherent secondary cell wall.  相似文献   

4.
The secondary cell wall in higher plants consists mainly of cellulose, lignin, and xylan and is the major component of biomass in many species. The Arabidopsis thaliana irregular xylem8 (irx8) mutant is dwarfed and has a significant reduction in secondary cell wall thickness. IRX8 belongs to a subgroup of glycosyltransferase family 8 called the GAUT1-related gene family, whose members include GAUT1, a homogalacturonan galacturonosyltransferase, and GAUT12 (IRX8). Here, we use comparative cell wall analyses to show that the irx8 mutant contains significantly reduced levels of xylan and homogalacturonan. Immunohistochemical analyses confirmed that the level of xylan was significantly reduced in the mutant. Structural fingerprinting of the cell wall polymers further revealed that irx8 is deficient in glucuronoxylan. To explore the biological function of IRX8, we crossed irx8 with irx1 (affecting cellulose synthase 8). The homozygous irx1 irx8 exhibited severely dwarfed phenotypes, suggesting that IRX8 is essential for cell wall integrity during cellulose deficiency. Taken together, the data presented show that IRX8 affects the level of glucuronoxylan and homogalacturonan in higher plants and that IRX8 provides an important link between the xylan polymer and the secondary cell wall matrix and directly affects secondary cell wall integrity.  相似文献   

5.
Recessive mutations at three loci cause the collapse of mature xylem cells in inflorescence stems of Arabidopsis. These irregular xylem (irx) mutations were identified by screening plants from a mutagenized population by microscopic examination of stem sections. The xylem cell defect was associated with an up to eightfold reduction in the total amount of cellulose in mature inflorescence stems. The amounts of cell wall-associated phenolics and polysaccharides were unaffected by the mutations. Examination of the cell walls by using electron microscopy demonstrated that the decreases in cellulose content of irx lines resulted in an alteration of the spatial organization of cell wall material. This suggests that a normal pattern of cellulose deposition may be required for assembly of lignin or polysaccharides. The reduced cellulose content of the stems also resulted in a decrease in stiffness of the stem material. This is consistent with the irregular xylem phenotype and suggests that the walls of irx plants are not resistant to compressive forces. Because lignin was implicated previously as a major factor in resistance to compressive forces, these results suggest either that cellulose has a direct role in providing resistance to compressive forces or that it is required for the development of normal lignin structure. The irx plants had a slight reduction in growth rate and stature but were otherwise normal in appearance. The mutations should be useful in facilitating the identification of factors that control the synthesis and deposition of cellulose and other cell wall components.  相似文献   

6.
In higher plants, cellulose is synthesized by cellulose synthase complexes, which contain multiple isoforms of cellulose synthases (CESAs). Among the total 10 CESA genes in Arabidopsis, recessive mutations at three of them cause the collapse of mature xylem cells in inflorescence stems of Arabidopsis (irx1cesa8, irx3cesa7 and irx5cesa4). These CESA genes are considered secondary cell wall CESAs. The others (the function CESA10 is still unknown) are thought to be specialized for cellulose synthesis in the primary cell wall. A split-ubiquitin membrane yeast two-hybrid system was used to assess interactions among four primary CESAs (CESA1, CESA2, CESA3, CESA6) and three secondary CESAs (CESA4, CESA7, CESA8). Our results showed that primary CESAs could physically interact with secondary CESAs in a limited fashion. Analysis of transgenic lines showed that CESA1 could partially rescue irx1cesa8 null mutants, resulting in complementation of the plant growth defect, collapsed xylem and cellulose content deficiency. These results suggest that mixed primary and secondary CESA complexes are functional using experimental set-ups.  相似文献   

7.
Samuga A  Joshi CP 《Gene》2002,296(1-2):37-44
We report here the molecular cloning and characterization of a new full-length cellulose synthase (CesA) cDNA, PtrCesA2 from aspen (Populus tremuloides) trees. The predicted PtrCesA2 protein shows a high degree of identity/similarity (87%/91%) to the predicted gene product of Arabidopsis AtCesA7 gene that has been associated with secondary cell wall development. Previously, a mutation in AtCesA7 gene (irx3) was correlated with a significant decrease in the amount of cellulose synthesized (about 70%) and genetic complementation of irx3 mutant with a wild-type AtCesA7 gene restored the normal phenotype. This is the first report of a full-length AtCesA7 ortholog from any non-Arabidopsis species. Interestingly, PtrCesA2 shares only 64% identity with our earlier reported PtrCesA1 from aspen suggesting its structural distinctness from the only other known CesA member from the aspen genome. PtrCesA1 is a xylem-specific and tension stress responsive gene that is highly similar to another Arabidopsis gene, AtCesA8 which also has been associated with secondary wall development. Moreover, AtCesA7 and AtCesA8 are suggested to be part of the same cellulose synthase complex. Isolation of PtrCesA2 from a xylem library enriched in cells with active secondary wall synthesis, PtrCesA2 expression levels similar to PtrCesA1 and high similarity of PtrCesA1 and PtrCesA2 to AtCesA8 and AtCesA7, respectively, suggest that both these aspen genes might be involved in the secondary wall development in aspen woody tissues. Availability of two aspen CesA orthologs will now enable us to examine if PtrCesA1 and PtrCesA2 functionally interact during aspen wood development that has long-term implications on genetic improvement of forest trees.  相似文献   

8.
Cellulose is synthesized by the so called rosette protein complex and the catalytic subunits of this complex are the cellulose synthases (CESAs). It is thought that the rosette complexes in the primary and secondary cell walls each contains at least three different non-redundant cellulose synthases. In addition to the CESA proteins, cellulose biosynthesis almost certainly requires the action of other proteins, although few have been identified and little is known about the biochemical role of those that have been identified. One of these proteins is KORRIGAN (KOR1). Mutant analysis of this protein in Arabidopsis thaliana showed altered cellulose content in both the primary and secondary cell wall. KOR1 is thought to be required for cellulose synthesis acting as a cellulase at the plasma membrane–cell wall interface. KOR1 has recently been shown to interact with the primary cellulose synthase rosette complex however direct interaction with that of the secondary cell wall has never been demonstrated. Using various methods, both in vitro and in planta, it was shown that KOR1 interacts specifically with only two of the secondary CESA proteins. The KOR1 protein domain(s) involved in the interaction with the CESA proteins were also identified by analyzing the interaction of truncated forms of KOR1 with CESA proteins. The KOR1 transmembrane domain has shown to be required for the interaction between KOR1 and the different CESAs, as well as for higher oligomer formation of KOR1.  相似文献   

9.
To identify loci in Arabidopsis involved in the control of transpirational water loss and transpiration efficiency (TE) we carried out an infrared thermal imaging-based screen. We report the identification of a new allele of the Arabidopsis CesA7 cellulose synthase locus designated AtCesA7(irx3-5) involved in the control of TE. Leaves of the AtCesA7(irx3-5) mutant are warmer than the wild type (WT). This is due to reduced stomatal pore widths brought about by guard cells that are significantly smaller than the WT. The xylem of the AtCesA7(irx3-5) mutant is also partially collapsed, and we suggest that the small guard cells in the mutant result from decreased water supply to the developing leaf. We used carbon isotope discrimination to show that TE is increased in AtCesA7(irx3-5) when compared with the WT. Our work identifies a new class of genes that affects TE and raises the possibility that other genes involved in cell wall biosynthesis will have an impact on water use efficiency.  相似文献   

10.
In nature, angiosperm trees develop tension wood on the upper side of their leaning trunks and drooping branches. Development of tension wood is one of the straightening mechanisms by which trees counteract leaning or bending of stem and resume upward growth. Tension wood is characterized by the development of a highly crystalline cellulose-enriched gelatinous layer next to the lumen of the tension wood fibers. Thus experimental induction of tension wood provides a system to understand the process of cellulose biosynthesis in trees. Since KORRIGAN endoglucanases (KOR) appear to play an important role in cellulose biosynthesis in Arabidopsis, we cloned PtrKOR, a full-length KOR cDNA from aspen xylem. Using RT-PCR, in situ hybridization, and tissue-print assays, we show that PtrKOR gene expression is significantly elevated on the upper side of the bent aspen stem in response to tension stress while KOR expression is significantly suppressed on the opposite side experiencing compression stress. Moreover, three previously reported aspen cellulose synthase genes, namely, PtrCesA1, PtrCesA2, and PtrCesA3 that are closely associated with secondary cell wall development in the xylem cells exhibited similar tension stress-responsive behavior. Our results suggest that coexpression of these four proteins is important for the biosynthesis of highly crystalline cellulose typically present in tension wood fibers. Their simultaneous genetic manipulation may lead to industrially relevant improvement of cellulose in transgenic crops and trees.Suchita Bhandari and Takeshi Fujino contributed equally to this research.  相似文献   

11.
12.
During secondary cell wall formation, developing xylem vessels deposit cellulose at specific sites on the plasma membrane. Bands of cortical microtubules mark these sites and are believed to somehow orientate the cellulose synthase complexes. We have used live cell imaging on intact roots of Arabidopsis to explore the relationship between the microtubules, actin and the cellulose synthase complex during secondary cell wall formation. The cellulose synthase complexes are seen to form bands beneath sites of secondary wall synthesis. We find that their maintenance at these sites is dependent upon underlying bundles of microtubules which localize the cellulose synthase complex (CSC) to the edges of developing cell wall thickenings. Thick actin cables run along the long axis of the cells. These cables are essential for the rapid trafficking of complex-containing organelles around the cell. The CSCs appear to be delivered directly to sites of secondary cell wall synthesis and it is likely that transverse actin may mark these sites.  相似文献   

13.
Xylan, the major hemicellulosic polysaccharide in Arabidopsis secondary cell walls, requires a number of glycosyltransferases (GT) to catalyse formation of the various glycosidic linkages found in the polymer. In this study, we characterized IRX10 and IRX10-like ( IRX10-L ), two highly homologous genes encoding members of the glycosyltransferase family 47 (GT47). T-DNA insertions in IRX10 gave a mild irregular xylem (irx) phenotype consistent with a minor defect in secondary cell-wall synthesis, whereas plants containing mutations in IRX10-L showed no change. However, irx10 irx10-L double mutant plants showed a much more severe irx and whole-plant phenotype, suggesting considerable functional redundancy between these two genes. Detailed biochemical analysis of the irx10 irx10-L double mutant showed a large reduction of xylan in the secondary cell walls, consistent with a specific defect in xylan biosynthesis. Furthermore, the irx10 irx10-L mutant retains the unique oligosaccharide found at the reducing end of Arabidopsis xylan, but shows a severe reduction in β(1,4) xylosyltransferase activity. These characteristics are similar to those of irx9 and irx14 , mutants that are believed to be defective in xylan chain elongation, and suggests that IRX10 and IRX10-L also play a role in elongation of the xylan backbone.  相似文献   

14.
15.
A homozygous recessive mutant of Arabidopsis thaliana has been selected which displays altered patterns of cellulose deposition. The mutant was selected because leaf and stem trichomes lacked the strong birefringence under polarized light which is characteristic of plant cells which contain highly ordered cellulose in their secondary cell walls. Compared with wild-type A. thaliana, this mutant (designated tbr for trichome birefringence) also displays reduced birefringence in the xylem of the leaf. Direct chemical analyses of root, stem, and leaf tissues, including isolated leaf trichomes, support the conclusion that tbr is impaired in its ability to deposit secondary wall cellulose in specific cell types, most notably in trichomes where the secondary wall appears to be totally absent. Altered patterns of wound-induced callose deposition in trichomes and surrounding cells is another trait which also co-segregates with the tbr mutation.  相似文献   

16.
Mutations of Arabidopsis thaliana IRREGULAR XYLEM8 (IRX8) and IRX9 were previously shown to cause a collapsed xylem phenotype and decreases in xylose and cellulose in cell walls. In this study, we characterized IRX8 and IRX9 and performed chemical and structural analyses of glucuronoxylan (GX) from irx8 and irx9 plants. IRX8 and IRX9 are expressed specifically in cells undergoing secondary wall thickening, and their encoded proteins are targeted to the Golgi, where GX is synthesized. 1H-NMR spectroscopy showed that the reducing end of Arabidopsis GX contains the glycosyl sequence 4-beta-D-Xylp-(1-->4)-beta-D-Xylp-(1-->3)-alpha-L-Rhap-(1-->2)-alpha-D-GalpA-(1-->4)-D-Xylp, which was previously identified in birch (Betula verrucosa) and spruce (Picea abies) GX. This indicates that the reducing end structure of GXs is evolutionarily conserved in woody and herbaceous plants. This sequence is more abundant in irx9 GX than in the wild type, whereas irx8 and fragile fiber8 (fra8) plants are nearly devoid of it. The number of GX chains increased and the GX chain length decreased in irx9 plants. Conversely, the number of GX chains decreased and the chain length heterodispersity increased in irx8 and fra8 plants. Our results suggest that IRX9 is required for normal GX elongation and indicate roles for IRX8 and FRA8 in the synthesis of the glycosyl sequence at the GX reducing end.  相似文献   

17.
Control of cellulose synthase complex localization in developing xylem   总被引:20,自引:0,他引:20       下载免费PDF全文
Cellulose synthesis in the developing xylem vessels of Arabidopsis requires three members of the cellulose synthase (CesA) gene family. In young vessels, these three proteins localize within the cell, whereas in older vessels, all three CesA proteins colocalize with bands of cortical microtubules that mark the sites of secondary cell wall deposition. In the absence of one subunit, however, the remaining two subunits are retained in the cell, demonstrating that all three CesA proteins are required to assemble a functional complex. CesA proteins with altered catalytic activity localize normally, suggesting that cellulose synthase activity is not required for this localization. Cortical microtubule arrays are required continually to maintain normal CesA protein localization. By contrast, actin microfilaments do not colocalize with the CesA proteins and are unlikely to play a direct role in their localization. Green fluorescent protein-tagged CesA reveals a novel process in which the structure and/or local environment of the cellulose synthase complex is altered rapidly.  相似文献   

18.
Dicot wood is mainly composed of cellulose, lignin and glucuronoxylan (GX). Although the biosynthetic genes for cellulose and lignin have been studied intensively, little is known about the genes involved in the biosynthesis of GX during wood formation. Here, we report the molecular characterization of two genes, PoGT8D and PoGT43B, which encode putative glycosyltransferases, in the hybrid poplar Populus alba x tremula. The predicted amino acid sequences of PoGT8D and PoGT43B exhibit 89 and 75% similarity to the Arabidopsis thaliana IRREGULAR XYLEM8 (IRX8) and IRX9, respectively, both of which have been shown to be required for GX biosynthesis. The PoGT8D and PoGT43B genes were found to be expressed in cells undergoing secondary wall thickening, including the primary xylem, secondary xylem and phloem fibers in stems, and the secondary xylem in roots. Both PoGT8D and PoGT43B are predicted to be type II membrane proteins and shown to be targeted to Golgi. Overexpression of PoGT43B in the irx9 mutant was able to rescue the defects in plant size and secondary wall thickness and partially restore the xylose content. Taken together, our results demonstrate that PoGT8D and PoGT43B are Golgi-localized, secondary wall-associated proteins, and PoGT43B is a functional ortholog of IRX9 involved in GX biosynthesis during wood formation.  相似文献   

19.
The brittle culm (bc) mutants of Gramineae plants having brittle skeletal structures are valuable materials for studying secondary cell walls. In contrast to other recessive bc mutants, rice Bc6 is a semi-dominant bc mutant with easily breakable plant bodies. In this study, the Bc6 gene was cloned by positional cloning. Bc6 encodes a cellulose synthase catalytic subunit, OsCesA9, and has a missense mutation in its highly conserved region. In culms of the Bc6 mutant, the proportion of cellulose was reduced by 38%, while that of hemicellulose was increased by 34%. Introduction of the semi-dominant Bc6 mutant gene into wild-type rice significantly reduced the percentage of cellulose, causing brittle phenotypes. Transmission electron microscopy analysis revealed that Bc6 mutation reduced the cell wall thickness of sclerenchymal cells in culms. In rice expressing a reporter construct, BC6 promoter activity was detected in the culms, nodes, and flowers, and was localized primarily in xylem tissues. This expression pattern was highly similar to that of BC1, which encodes a COBRA-like protein involved in cellulose synthesis in secondary cell walls in rice. These results indicate that BC6 is a secondary cell wall-specific CesA that plays an important role in proper deposition of cellulose in the secondary cell walls.  相似文献   

20.
The evolution of compositional polymers and their complex arrangement and deposition in the cell walls of terrestrial plants included the acquisition of key protein functions. A membrane-bound endoglucanase, termed Korrigan (KOR), has been shown to be required for proper cellulose synthesis. To date, no extensive characterization of the gymnosperm KOR has been undertaken. Characterization of the white spruce (Picea glauca) gene encoding KOR (PgKOR) shows conserved protein features such as polarized targeting signals and residues predicted to be essential for catalytic activity. The rescue of the Arabidopsis thaliana kor1-1 mutant by the expression of PgKOR suggests gene conservation, providing evidence for functional equivalence. Analyses of endogenous KOR expression in white spruce revealed the highest expression in young developing tissues, which corresponds with primary cell wall development. Additionally, RNA interference of the endogenous gymnosperm gene substantially reduced growth and structural glucose content, but had no effect on cellulose ultrastructure. Partial functional conservation of KOR in gymnosperms suggests that its role in cell wall synthesis dates back to 300 million yr ago (Mya), predating angiosperms, which arose 130 Mya, and shows that proteins contributing to proper cellulose deposition are important conserved features of vascular plants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号