首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Individual variation and fitness are cornerstones of evolution by natural selection. The niche variation hypothesis (NVH) posits that when interspecific competition is relaxed, intraspecific competition should drive niche expansion by selection favoring use of novel resources and that among‐individual variation should confer a selective advantage. Population‐level niche expansion could be achieved by all individuals using all available resources, or by each individual using a unique combination of resources, thereby increasing among‐individual dietary niche variation. Although individual variation can lead to species‐level evolutionary and ecological change, observed variation does not ensure a beneficial outcome. We used carbon and nitrogen stable isotope analysis of claw keratin and a Bayesian stable isotope mixing model to estimate the summer (July–September) assimilated diet of individual female black Ursus americanus and brown U. arctos bears. We quantified variation in dietary niche in both populations, and assessed diet relative to percentage body fat. We hypothesized that if the NVH held, percentage body fat would be similar for individuals of the same species across much of the dietary range of observed proportional salmon contributions to individual bear diets. Although we found greater differences in dietary niches between than within species, we observed greater among‐individual dietary variation in the brown bear population. Moreover, we found that within each species individual female bears achieved similar ranges of percentage body fat at various levels of salmon in the diet. Our results provide support for the NVH. Linking individual dietary niches to measures of physiological condition related to fitness can offer new insights into eco‐evolutionary processes related to food resource use.  相似文献   

2.
Distribution theory predicts that for two species living in sympatry, the subordinate species would be constrained from using the most suitable resources (e.g., habitat), resulting in its use of less suitable habitat and spatial segregation between species. We used negative binomial generalized linear mixed models with fixed effects to estimate seasonal population-level resource selection at two spatial resolutions for female brown bears (Ursus arctos) and female American black bears (U. americanus) in southcentral Alaska during May–September 2000. Black bears selected areas occupied by brown bears during spring which may be related to spatially restricted (i.e., restricted to low elevations) but dispersed or patchy availability of food. In contrast, black bears avoided areas occupied by brown bears during summer. Brown bears selected areas near salmon streams during summer, presumably to access spawning salmon. Use of areas with high berry production by black bears during summer appeared in response to avoidance of areas containing brown bears. Berries likely provided black bears a less nutritious, but adequate food source. We suggest that during summer, black bears were displaced by brown bears, which supports distribution theory in that black bears appeared to be partially constrained from areas containing salmon, resulting in their use of areas containing less nutritious forage. Spatial segregation of brown and American black bears apparently occurs when high-quality resources are spatially restricted and alternate resources are available to the subordinate species. This and previous work suggest that individual interactions between species can result in seasonal population-level responses.  相似文献   

3.
All animals must acquire food and mates by approaching them despite possibilities of accompanying risks and thus are frequently encountered with approach-avoidance conflicts in daily lives. Behavioral individual differences in such situations may be considered as one of the most biologically fundamental personality trains. “Partitioned raisin test” was devised to assess this trait with macaque monkeys. It involved throwing raisins into groups of monkeys and observing the preferred distance of each from the human feeder, a source of possible harm. The test was administered to 4 groups of Japanese monkeys (30 total) and 3 groups of rhesus monkeys (19 total), all l-yr-old and matched in history. Individual differences in the preferred proximity to the feeder, as expressed by the Proximity Index (PI), were found in both species.PI was not correlated with a measure of dominance over the raisins. Individual differences inPI were also not due to territorial effects unrelated to the location of the feeder.PI was stable in five of the six monkeys re-tested after one year of interval in a newly organized group, where there supposedly had been a change in their social structure. Partitioned raisin test was shown to be capable of depicting individual differences related to differential approach bias in an approach-avoidance conflict situation. Although possible confounding effects by social factors need to be delineated in the following studies, the method may provide a handy and widely applicable way for the assessment of this trait with monkeys.  相似文献   

4.
Physiological indicators of social and nutritional stress can provide insight into the responses of species to changes in food availability. In coastal British Columbia, Canada, grizzly bears evolved with spawning salmon as an abundant but spatially and temporally constrained food source. Recent and dramatic declines in salmon might have negative consequences on bear health and ultimately fitness. To examine broadly the chronic endocrine effects of a salmon niche, we compared cortisol, progesterone, and testosterone levels in hair from salmon-eating bears from coastal BC (n = 75) with the levels in a reference population from interior BC lacking access to salmon (n = 42). As predicted, testosterone was higher in coastal bears of both sexes relative to interior bears, possibly reflecting higher social density on the coast mediated by salmon availability. We also investigated associations between the amount of salmon individual bears consumed (as measured by stable isotope analysis) and cortisol and testosterone in hair. Also as predicted, cortisol decreased with increasing dietary salmon and was higher after a year of low dietary salmon than after a year of high dietary salmon. These findings at two spatial scales suggest that coastal bears might experience nutritional or social stress in response to on-going salmon declines, providing novel insights into the effects of resource availability on fitness-related physiology.  相似文献   

5.
The interest in animal personality, broadly defined as consistency of individual behavioural traits over time and across contexts, has increased dramatically over the last years. Individual differences in behaviour are no longer recognised as noise around a mean but rather as adaptive variation and thus, essentially, raw material for evolution. Animal personality has been considered evolutionary conserved and has been shown to be present in all vertebrates including fish. Despite the importance of evolutionary and comparative aspects in this field, few studies have actually documented consistency across situations in fish. In addition, most studies are done with individually housed fish which may pose additional challenges when interpreting data from social species. Here, we investigate, for the first time in fish, whether individual differences in behavioural responses to a variety of challenges are consistent over time and across contexts using both individual and grouped-based tests. Twenty-four juveniles of Gilthead seabream Sparus aurata were subjected to three individual-based tests: feed intake recovery in a novel environment, novel object and restraining and to two group-based tests: risk-taking and hypoxia. Each test was repeated twice to assess consistency of behavioural responses over time. Risk taking and escape behaviours during restraining were shown to be significantly consistent over time. In addition, consistency across contexts was also observed: individuals that took longer to recover feed intake after transfer into a novel environment exhibited higher escape attempts during a restraining test and escaped faster from hypoxia conditions. These results highlight the possibility to predict behaviour in groups from individual personality traits.  相似文献   

6.
The brown bear (Ursus arctos) population on Etorofu Island, Southern Kuril Islands, has several unique morphological features: (1) the presence of white‐pelage bears within the population and (2) a larger body size than bears on a larger neighbour island, Hokkaido Island. Nevertheless, little ecological information is available about Etorofu brown bears. In the present study, we reveal the unique feeding habits of Etorofu brown bears and suggest that their unique morphological features and diet are related. The feeding habits of brown bears on Etorofu Island were assessed using carbon, nitrogen, and sulfur stable isotope analysis, and their feeding habits were compared with those of bears on the eastern side of Hokkaido Island. According to the stable isotope analysis, the dependence on salmon is great for bears on Etorofu but only slight for bears on Hokkaido. Our results suggest that the feeding habits of Etorofu brown bears may explain their unique morphological features because a white pelage colour confers an advantage when catching salmon, and a carnivorous diet can make their body size larger. The variation in feeding habits can be an important driver of the speciation and evolution of animals.  相似文献   

7.
We quantified the amount, spatial distribution, and importance of salmon (Oncorhynchus spp.)-derived nitrogen (N) by brown bears (Ursus arctos) on the Kenai Peninsula, Alaska. We tested and confirmed the hypothesis that the stable isotope signature (δ15N) of N in foliage of white spruce (Picea glauca) was inversely proportional to the distance from salmon-spawning streams (r=–0.99 and P<0.05 in two separate watersheds). Locations of radio-collared brown bears, relative to their distance from a stream, were highly correlated with δ15N depletion of foliage across the same gradient (r=–0.98 and –0.96 and P<0.05 in the same two separate watersheds). Mean rates of redistribution of salmon-derived N by adult female brown bears were 37.2±2.9 kg/year per bear (range 23.1–56.3), of which 96% (35.7±2.7 kg/year per bear) was excreted in urine, 3% (1.1±0.1 kg/year per bear) was excreted in feces, and <1% (0.3± 0.1 kg/year per bear) was retained in the body. On an area basis, salmon-N redistribution rates were as high as 5.1±0.7 mg/m2 per year per bear within 500 m of the stream but dropped off greatly with increasing distance. We estimated that 15.5–17.8% of the total N in spruce foliage within 500 m of the stream was derived from salmon. Of that, bears had distributed 83–84%. Thus, brown bears can be an important vector of salmon-derived N into riparian ecosystems, but their effects are highly variable spatially and a function of bear density. Received: 11 February 1999 / Accepted: 7 July 1999  相似文献   

8.
Prey intake by Atlantic salmon Salmo salar and brown trout Salmo trutta was measured across different riparian vegetation types: grassland, open canopy deciduous and closed canopy deciduous, in upland streams in County Mayo, Western Ireland. Fishes were collected by electrofishing while invertebrates were sampled from the benthos using a Surber sampler and drifting invertebrates collected in drift traps. Aquatic invertebrates dominated prey numbers in the diets of 0+ year Atlantic salmon and brown trout and 1+ year Atlantic salmon, whereas terrestrial invertebrates were of greater importance for diets of 1+ and 2+ year brown trout. Terrestrial prey biomass was generally greater than aquatic prey for 1+ and 2+ year brown trout across seasons and riparian types. Prey intake was greatest in spring and summer and least in autumn apart from 2+ year brown trout that sustained feeding into autumn. Total prey numbers captured tended to be greater for all age classes in streams with deciduous riparian canopy. Atlantic salmon consumed more aquatic prey and brown trout more terrestrial prey with an ontogenetic increase in prey species richness and diversity. Atlantic salmon and brown trout diets were most similar in summer. Terrestrial invertebrates provided an important energy subsidy particularly for brown trout. In grassland streams, each fish age class was strongly associated with aquatic, mainly benthic invertebrates. In streams with deciduous riparian canopy cover, diet composition partitioned between conspecifics with older brown trout associated with surface drifting terrestrial invertebrates and older Atlantic salmon associated with aquatic invertebrates with a high drift propensity in the water column and 0+ year fish feeding on benthic aquatic invertebrates. Deciduous riparian canopy cover may therefore facilitate vertical partitioning of feeding position within the water column between sympatric Atlantic salmon and brown trout. Implications for riparian management are discussed.  相似文献   

9.
The interaction between brown bears (Ursus arctos) and Pacific salmon (Oncorhynchus spp.) is important to the population dynamics of both species and a celebrated example of consumer‐mediated nutrient transport. Yet, much of the site‐specific information we have about the bears in this relationship comes from observations at a few highly visible but unrepresentative locations and a small number of radio‐telemetry studies. Consequently, our understanding of brown bear abundance and behavior at more cryptic locations where they commonly feed on salmon, including small spawning streams, remains limited. We employed a noninvasive genetic approach (barbed wire hair snares) over four summers (2012–2015) to document patterns of brown bear abundance and movement among six spawning streams for sockeye salmon, O. nerka, in southwestern Alaska. The streams were grouped into two trios on opposite sides of Lake Aleknagik. Thus, we predicted that most bears would forage within only one trio during the spawning season because of the energetic costs associated with swimming between them or traveling around the lake and show fidelity to particular trios across years because of the benefits of familiarity with local salmon dynamics and stream characteristics. Huggins closed‐capture models based on encounter histories from genotyped hair samples revealed that as many as 41 individuals visited single streams during the annual 6‐week sampling season. Bears also moved freely among trios of streams but rarely moved between these putative foraging neighborhoods, either during or between years. By implication, even small salmon spawning streams can serve as important resources for brown bears, and consistent use of stream neighborhoods by certain bears may play an important role in spatially structuring coastal bear populations. Our findings also underscore the efficacy of noninvasive hair snagging and genetic analysis for examining bear abundance and movements at relatively fine spatial and temporal scales.  相似文献   

10.
Recent studies have established the ecological and evolutionary importance of animal personalities. Individual differences in movement and space‐use, fundamental to many personality traits (e.g. activity, boldness and exploratory behaviour) have been documented across many species and contexts, for instance personality‐dependent dispersal syndromes. Yet, insights from the concurrently developing movement ecology paradigm are rarely considered and recent evidence for other personality‐dependent movements and space‐use lack a general unifying framework. We propose a conceptual framework for personality‐dependent spatial ecology. We link expectations derived from the movement ecology paradigm with behavioural reaction‐norms to offer specific predictions on the interactions between environmental factors, such as resource distribution or landscape structure, and intrinsic behavioural variation. We consider how environmental heterogeneity and individual consistency in movements that carry‐over across spatial scales can lead to personality‐dependent: (1) foraging search performance; (2) habitat preference; (3) home range utilization patterns; (4) social network structure and (5) emergence of assortative population structure with spatial clusters of personalities. We support our conceptual model with spatially explicit simulations of behavioural variation in space‐use, demonstrating the emergence of complex population‐level patterns from differences in simple individual‐level behaviours. Consideration of consistent individual variation in space‐use will facilitate mechanistic understanding of processes that drive social, spatial, ecological and evolutionary dynamics in heterogeneous environments.  相似文献   

11.
To evaluate the influence of diet on faecal DNA amplification, 11 captive brown bears (Ursus arctos) were placed on six restricted diets: grass (Trifolium spp., Haplopappus hirtus and Poa pratensis), alfalfa (Lupinus spp.), carrots (Daucus spp.), white-tailed deer (Odocoileus virginianus), blueberries (Vaccinium spp.) and salmon (Salmo spp.). DNA was extracted from 50 faecal samples of each restricted diet, and amplification of brown bear DNA was attempted for a mitochondrial DNA (mtDNA) locus and nuclear DNA (nDNA) locus. For mtDNA, no significant differences were observed in amplification success rates across diets. For nDNA, amplification success rates for salmon diet extracts were significantly lower than all other diet extracts (P < 0.001). To evaluate the accuracy of faecal DNA sex identification when female carnivores consume male mammalian prey, female bears were fed male white-tailed deer. Four of 10 extracts amplified, and all extracts were incorrectly scored as male due to amplification of X and Y-chromosome fragments. The potential biases highlighted in this study have broad implications for researchers using faecal DNA for individual and sex identification, and should be evaluated in other species.  相似文献   

12.
Ben-David M  Titus K  Beier LR 《Oecologia》2004,138(3):465-474
The risk of infanticide may alter foraging decisions made by females, which otherwise would have been based on nutritional requirements and forage quality and availability. In systems where meat resources are spatially aggregated in late summer and fall, female brown bears ( Ursus arctos) would be faced with a trade-off situation. The need of reproductive females to accumulate adequate fat stores would likely result in a decision to frequent salmon streams and consume the protein- and lipid-rich spawning salmon. In contrast, aggregations of bears along salmon streams would create conditions of high risk of infanticide. We investigated consumption of salmon by brown bears on Admiralty and Chichagof Islands in Southeast Alaska from 1982 to 2000 using stable isotope analysis and radiotelemetry. While nearly all males (22 of 23) consumed relatively large amounts of salmon (i.e., >10% relative contribution to seasonal diet), not all females ( n =56) did so. Five of 26 females for which we had reproductive data, occupied home ranges that had no access to salmon and thus did not consume salmon when they were mated or accompanied by young. Of females that had access to salmon streams ( n =21), all mated individuals ( n =16) had 15N values indicative of salmon consumption. In contrast, 4 out of 16 females with cubs avoided consuming salmon altogether, and of the other 12, 3 consumed less salmon than they did when they were mated. For 11 of 21 females with access to salmon streams we had data encompassing both reproductive states. Five of those altered foraging strategies and exhibited significantly lower values of 15N when accompanied by young than when mated, while 6 did not. Radiotelemetry data indicated that females with spring cubs were found, on average, further away from streams during the spawning season compared with females with no young, but both did not differ from males and females with yearlings and 2-year-olds. Females with young that avoided salmon streams were significantly lighter indicating that female choice to avoid consumption of salmon carries a cost that may translate to lower female or cub survivorship. The role of the social hierarchy of males and females, mating history, and paternity in affecting the risk of infanticide and foraging decisions of female brown bears merit further investigation.  相似文献   

13.
The evaluation of enrichment programs is important to determine their effect on nonhuman animal welfare. The daily activity pattern and use of space of 3 brown bears (Ursus arctos) were used for long-term macroevaluation of enrichment to compare the baseline and enrichment phases. Focal sampling methods were used for data collection, and instantaneous scans were made at 2-min intervals during 15 sessions of 1 hr for each animal during the 2 study periods. The enrichment devices were categorized as feeding, occupational, and sensorial. The long-term macroevaluation in 3 bears showed statistically significant differences in some types of activity but not in others. There were also statistically significant differences for the use of space in 4 of the 8 zones in which the enclosures were divided. A more homogenous pattern in the use of space was only observed during the enrichment phase in the old female. The 3 brown bears followed different patterns concerning the enrichment program.  相似文献   

14.
Many North American ursids rely on an annual hyperphagic period to obtain fat reserves necessary for winter survival and reproduction. Identifying causes of variation in body fat gain may improve understanding of how bear resource use affects body condition. We used data from southcentral Alaska to model changes in percentage body fat of adult female American black bears (Ursus americanus) in 1998 and 2000 and brown bears (Ursus arctos) in 2000. We used year, proportion of radio locations in different habitats, distance to streams containing salmon (Onchorynchus spp.), and degree of radio location clustering as predictors for black bears and elevation, distance to streams containing salmon, and degree of radio location clustering as predictors for brown bears. Degree of location clustering was the only predictor variable supported by parameter coefficients in black bear models, supporting our hypothesis that metrics of energetics perform better as predictors of body condition than habitat use. With every unit increase in location clustering black bear body fat increased 2 %. No predictor variables influenced variation in brown bear change in body fat. Some variables previously found useful for predicting bear presence (e.g., habitat) were not useful in predicting changes in body fat, an important biological outcome for these species. Rather than assuming fitness benefits of habitat-level selection, we recommend including metrics of energetics that might more directly influence biological outcomes.  相似文献   

15.
16.
Consistent individual differences in behaviour have been well documented in a variety of animal taxa, but surprisingly little is known about the fitness and life-history consequences of such individual variation. In wild salmonids, the timing of fry emergence from gravel spawning nests has been suggested to be coupled with individual behavioural traits. Here, we further investigate the link between timing of spawning nest emergence and behaviour of Atlantic salmon (Salmo salar), test effects of social rearing environment on behavioural traits in fish with different emergence times, and assess whether behavioural traits measured in the laboratory predict growth, survival, and migration status in the wild. Atlantic salmon fry were sorted with respect to emergence time from artificial spawning nest into three groups: early, intermediate, and late. These emergence groups were hatchery-reared separately or in co-culture for four months to test effects of social rearing environment on behavioural traits. Twenty fish from each of the six treatment groups were then subjected to three individual-based behavioural tests: basal locomotor activity, boldness, and escape response. Following behavioural characterization, the fish were released into a near-natural experimental stream. Results showed differences in escape behaviour between emergence groups in a net restraining test, but the social rearing environment did not affect individual behavioural expression. Emergence time and social environment had no significant effects on survival, growth, and migration status in the stream, although migration propensity was 1.4 to 1.9 times higher for early emerging individuals that were reared separately. In addition, despite individuals showing considerable variation in behaviour across treatment groups, this was not translated into differences in growth, survival, and migration status. Hence, our study adds to the view that fitness (i.e., growth and survival) and life-history predictions from laboratory measures of behaviour should be made with caution and ideally tested in nature.  相似文献   

17.
Energy maximization, time minimization, and linear programming models subject to various constraints have dominated foraging ecology ideas and methods for decades. However, animals must use very complex physiological processes and foraging decisions to ensure fitness that in many cases may not be adequately described by these approaches. An example of this problem occurs when brown bears, Ursus arctos, have access to both abundant salmon and fruit. Salmon are one of the most energy and nutrient dense foods available to bears. Fruits are often high in soluble carbohydrates, low to deficient in many required nutrients, and more difficult to efficiently exploit. Therefore, wild brown bears that fatten primarily on fruits without access to salmon are 50% smaller than salmon-feeding bears. Thus, we predicted based on a linear, energy-maximizing model without dietary interaction effects that wild brown bears with access to both abundant salmon and fruit would feed almost exclusively on salmon. However, wild adult females with or without accompanying offspring foraged three times longer per day on fruit than on salmon. Similarly, the relative dry matter intake of ad libitum apples and salmon by captive, adult brown bears averaged 76±5% fruit and 24±5% salmon. Captive brown bears consuming mixed diets with intermediate dietary protein levels had 60% lower maintenance energy costs, 37% to 139% higher efficiencies of mass gain, and 72% to 520% higher maximum rates of gain than when they consumed either salmon or fruit alone. These relationships were nonlinear functions of dietary protein content in which salmon and fruit provided complementary nutritional resources. Both wild and captive bears attempted to regulate total protein, energy, and carbohydrate intake within a multidimensional intake target that both maximized energy intake and mass gain.  相似文献   

18.
Abstract: Although numerous studies have documented behavioral effects of nature-based tourism on wildlife populations, few studies have determined whether behavioral changes translate to effects on individual condition and population health. This issue is currently a concern for wildlife managers in Alaska, USA, and Canada where bear viewing is a rapidly growing industry expanding into previously undisturbed bear habitats. Rather than record observations at long established tourism sites, we experimentally introduced bear viewing into 2 relatively undisturbed brown bear (Ursus arctos) populations in south-central Alaska. We examined the nutritional consequences of behavioral changes induced by the presence and activity of bear viewers for bears feeding on early summer vegetation and late-summer salmon (Oncorhynchus kisutch and O. nerka). We used Global Positioning System collars, monitored food resource availability, and quantified individual resource use and condition for a year prior to and during the introduction of bear viewing. Though bear viewing altered spatiotemporal resource use in all treatments, total resource use declined only when we exposed bears to 24-hour daily human activity. Energy expenditure, indexed as daily travel distances, was significantly higher when bears responded by altering spatial rather than temporal resource use. However, body weight and composition were unaffected by all treatments as bears shifted their foraging to other locations or times. Managers can minimize nutritional impacts of bear-viewing programs by avoiding spatial displacement and providing predictable time periods when bears can access food resources free of human activity. Bears in this study exhibited a high degree of behavioral plasticity, which may be an important factor in identifying flagship species for sustainable ecotourism programs.  相似文献   

19.
Two important themes in ecology include the understanding of how interactions among species control ecosystem processes, and how habitats can be connected through transfers of nutrients and energy by mobile organisms. An impressive example of both is the large influx of nutrients and organic matter that anadromous salmon supply to inland aquatic and terrestrial ecosystems and the role of predation by brown bears (Ursus arctos) in transferring these marine-derived nutrients (MDN) from freshwater to riparian habitats. In spite of the recognition that salmon-bear interactions likely play an important role in controlling the flux of MDN from aquatic to riparian habitats, few studies have linked bear predation on salmon to processes such as nitrogen (N) or carbon (C) cycling. We combine landscape-level survey data and a replicated bear-exclosure experiment to test how bear foraging on salmon affects nitrous oxide (N2O) flux, carbon dioxide (CO2) flux, and nutrient concentrations of riparian soils. Our results show that bears feeding on salmon increased soil ammonium (NH4 +) concentrations three-fold and N2O flux by 32-fold. Soil CO2 flux, nitrate (NO3 ), and N transformation differences were negligible in areas where bears fed on salmon. Reference areas without concentrated bear activity showed no detectable change in soil N cycling after the arrival of salmon to streams. Exclosure experiments showed that bear effects on soil nutrient cycles were transient, and soil N processing returned to background conditions within 1 year after bears were removed from the system. These results suggest that recipient ecosystems do not show uniform responses to MDN inputs and highlight the importance of large mobile consumers in generating landscape heterogeneity in nutrient cycles.  相似文献   

20.
  • 1 We review the genetics research that has been conducted on the European brown bear Ursus arctos, one of the genetically best‐studied mammalian species.
  • 2 The first genetics studies on European brown bears were on phylogeography, as a basis for proposed population augmentations. Two major mitochondrial DNA lineages, western and eastern, and two clades within the western lineage were found. This led to a hypothesis that brown bears had contracted to southern refugia during the last glacial maximum. More recent results suggest that gene flow among brown bears blurred this structure and they survived north of these putative refugia. Thus, today's structure might be a result of population fragmentation caused by humans.
  • 3 The nuclear diversity of European brown bears is similar in range to that in North American bears: low levels occur in the small populations and high levels in the large populations.
  • 4 Many non‐invasive genetic methods, developed during research on brown bears, have been used for individual identification, censusing populations, monitoring migration and gene flow, and testing methods that are easier to use in endangered populations and over large areas.
  • 5 Genetics has been used to study many behavioural and population ecological questions that have relevance for the conservation and management of brown bears.
  • 6 The European brown bear has served, and will continue to serve, as a model for the development of methods, analyses and hypotheses in conservation genetics.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号