首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
The dependence of the carbon concentrating mechanism of Palmaria palmata (L.) Kuntze on the growth light level was examined 1) to determine whether or not there is a threshold photon flux density (PFD) at which the inorganic carbon uptake mechanism can operate and 2) to attempt to quantify the relative energetic costs of acclimation to the two different limiting factors, PFD and dissolved inorganic carbon (DIC) concentration. Plants were grown at six PFDs: 5, 25, 50, 75, 95, and 125 μmol photons. m?2.s?1. Growth rates increased with increasing PFD from 5 to 50 μmol photons. m?2. s?1 and were light-saturated at 75, 95, and 125 μmol photons. m?2. s?1 Values of δ13C increased continuously with increasing growth PFD and did not saturate over the range of light levels tested. Time-resolved fluorescence characteristics indicated a progressive photoacclimation below 50 μmol photons. m?2. s?1. Analysis of chlorophyll fluorescence induction showed three levels of light use efficirncy associated with growth at 5 or 25, 50, and >75 μmol photons. m?2. s?1. The light-haruesting efficiency was inversely proportional to the effectiveness of DIC acquisition in plants grown at the six PFDs. These data were interpreted to indicate that there is a physiological tradeoff between photosynthetic efficiency and bicarbonate use in this species.  相似文献   

2.
Germlings were grown from Monostroma latissimum Wittr. reproductive cells on nylon ropes. Holdfast threads and some uniseriate filaments were observed to have penetrated the fibers of the dispersed ropes. The algal filaments were easily isolated and prepared for cultivation, in comparison to the methods of enzymatically isolated algal protoplasts. Under low light (60–100 μmol photons · m?2 · s?1), the algal filaments grew to form a filamentous mass. When cultivated under stronger light (300–600 μmol photons · m?2 · s?1), they grew to initially form tubular thalli and then, when cultivated under light intensities >700 μmol photons · m?2 · s?1, formed foliaceous thalli. Consequently, the filaments were homogenized into small sections and then sewed on the nylon rope for algal mass cultivation. Under high‐intensity natural light, they grew to form leafy thalli.  相似文献   

3.
Temperature and photon flux density (PFD) vary independently in estuaries, e.g. high PFD may occur at any temperature, so it is necessary to consider synergistic effects of these factors on algal growth. Because natural PFD is highly variable and daylength changes confound seasonal temperature cycles, it is easier to interpret factorial experiments in controlled laboratory conditions. Clonal Ulva rotundata Blid. (Chlorophyta) has been studied extensively in outdoor culture. In this study it was maintained indoors under square wave photoperiods at five PFDs and three temperatures. Growth rate, photqsynthetic light response (P-I) curves, and photosystem II chlorophyll fluorescence properties were measured at the growth temperature following acclimation. Interactions between PFD and growth temperature were strongly indicated in all physiological parameters measured. Greatest PFD response occurred at the highest temperature, and the largest temperature response occurred at the highest PFD. Light-saturated photosynthesis (Pm) dark respiration (Rd), and light-limited quantum yield (Φm) were sufficient to describe acclimation status. The light-saturation parameter (Ik) was redundant and potentially misleading. Although U. rotundata exhibits a great amplitude of photoacclimation, it apparently has little capacity for temperature acclimation compared to the kelp, Laminaria saccharina, for which published data indicate similar photosynthetic rates over a broad range of growth temperatures. Diurnal variation of Pm and Rd at a growth PFD of ~ 1700 ± 200 μmol photons · m?2· s?1 was similar to the pattern observed previously in outdoor culture, suggesting endogenous control of these parameters. Quantum yield and the ratio of variable to maximum chlorophyll fluorescence (Fv/Fm), which were depressed in midday sunlight exceeding ~ 1500 μmol photons · m?2· s?1, were relatively invariant through the day in indoor culture, indicating that these parameters are controlled primarily by instantaneous PFD. Growth and fluorescence data are also presented for some other macroalgae for comparative purposes.  相似文献   

4.
Phaeodactylum tricornutum Bohlin was maintained in exponential growth over a range of photon flux densities (PFD) from 7 to 230 μmol·m?2s?1. The chlorophyll a-specific light absorption coefficient, maximum quantum yield of photosynthesis, and C:N atom ratio were all independent of the PFD to which cells were acclimated. Carbon- and cell-specific, light-satuated, gross photosynthesis rates and dark respiration rates were largely independent of acclimation PFD. Decreases in the chlorophyll a-specific, gross photosynthesis rate and the carbon: chlorophyll ratio and increases of cell- or carbon-specific absorption coefficients were associated with an increase in cell chlorophyll a in cultures acclimated to low PFDs. The compensation PFD for growth was calculated to be 0.5 μmol·m?2s?1. The maintenance metabolic rate (2 × 10?7s?1), calculated on the basis of the compensation PFD, is an order of magnitude lower than the measured dark respiration rate(2.7 × 10?6mol O2·mol C?1s?1). Maintenance of high carbon-specific, light-saturated photosynthesis rates in cells acclimated to low PFDs may allow effective use of short exposures to high PFDs in a temporally variable light environment.  相似文献   

5.
The phototransformation pathways of protochlorophyllide forms were studied in 8?C14-day-old leaves of dark-germinated wheat (Triticum aestivum L.) using white, 632.8?nm He?CNe laser and 654?nm laser diode light. The photon flux density (PFD) values (0.75?C360???mol photons?m?2?s?1), the illumination periods (20?ms?C10?s) and the temperature of the leaves (between ?60?°C and room temperature) were varied. The 77?K fluorescence spectra of partially phototransformed leaves showed gradual accumulation or even the dominance of the 675?nm emitting chlorophyllide or chlorophyll form at room temperature with 632.8?nm of PFD less than 200???mol photons?m?2?s?1 or with 654?nm of low PFD (7.5???mol photons?m?2?s?1) up to 1?s. Longer wavelength (685 or 690?nm) emitting chlorophyllide forms appeared at illuminations under ?25?°C with both laser lights or at room temperature when the PFD values were higher or the illumination period was longer than above. We concluded that the formation of the 675?nm emitting chlorophyllide form does not indicate the direct photoactivity of the 633?nm emitting protochlorophyllide form; it can derive from 644 and 657?nm forms via instantaneous disaggregation of the newly-produced chlorophyllide complexes. The disaggregation is strongly influenced by the molecular environment and the localization of the complex.  相似文献   

6.
Ceratium fusus (Ehrenb.) Dujardin was exposed to light of different wavelengths and photon flux densities (PFDs) to examine their effects on mechanically stimulable bioluminescence (MSL). Photoinhibition of MSL was proportional to the logarithm of PFD. Exposure to I μmol photons·m?2s?1 of broadband blue light (ca. 400–500 nm) produced near-complete photoinhibition (≥90% reduction in MSL) with a threshold at ca. 0.01 μmol photons·m?2·s?1. The threshold of photoinhibition was ca. an order of magnitude greater for both broadband green (ca. 500–580 nm) and red light (ca. 660–700 nm). Exposure to narrow spectral bands (ca. 10 nm half bandwidth) from 400 and 700 nm at a PFD of 0.1 μmol photons·m?2·s?1 produced a maximal response of photoinhibition in the blue wavelengths (peak ca. 490 nm). A photoinhibition response (≥ 10%) in the green (ca. 500–540 nm) and red wavelengths (ca. 680 nm) occurred only at higher PFDs (1 and 10 μmol photons·m?2·s?1). The spectral response is similar to that reported for Gonyaulax polyedra Stein and Pyrocystis lunula Schütt and unlike that of Alexandrium tamarense (Lebour) Balech et Tangen. The dinoflagellate's own bioluminescence is two orders of magnitude too low to result in self-photoinhibition. The quantitative relationships developed in the laboratory predict photoinhibition of bioluminescence in populations of C. fusus in the North Atlantic Ocean.  相似文献   

7.
The effects of the triazine herbicide, simazine, on photosynthetic oxygen evolution and growth rate in photoacclimated populations of Anabaena circinalis Rabenhorst were investigated. Chemostat populations were acclimated to photon flux densities (PFDs) of 50, 130, and 230 μmol·m?2·s?1 of photosynthetic active radiation (PAR), Decreases in chlorophyll a (Chl a). c-phycocyanin (CPC), and total carotenoid (TCar) contents and CPC: Chl a and CPC: TCar ratios of populations coincided with increasing PFD, Polynomial regression models that characterize inhibition of photosynthesis for populations acclimated to 50 and 130 μmol photons·m?2·s?1 PAR were distinct from the model for populations acclimated to 230 μmol photons·m?2·s?1 PAR. Simazine concentrations that, depressed oxygen evolution 50% compared to controls decreased with increasing PFD. Increases and decreases in both biomass and growth rate coincided with increasing PFD and simazine concentration, respectively. Simazine concentrations that depressed growth rate 50% compared to controls increased with decreasing PFD. The differences in photosynthetic and growth inhibition among photoacclimated populations indicate that sensitivity to photosystem II inhibitors is affected by alterations in pigment contents.  相似文献   

8.
Calcifying and a noncalcifying strains of Emiliania huxleyi were cultured in nutrient replete turbidostats under a photon flux density (PFD) gradient from 50 to 600 μmol E·m?2·s?1. For both strains, growth was PFD‐saturated at 300 μmol E·m?2·s?1. The strains, although with clearly different physiological properties due to the presence or absence of calcification, showed the same trends and magnitude of change in their pigment compliment as a function of PFD. Light‐controlled pigment composition and the trends of change in pigment composition were identical in both strains. Fucoxanthin (Fuco) was the major carotenoid in the calcifying strain, while in the noncalcifying strain this role was assumed by 19′ hexanoyloxyfucoxanthin (19 Hex). The photoprotective pigments and 19 Hex, normalized to chl a, increased with increasing light, while chl a content per cell and chl c's and Fuco, normalized to chl a, decreased with increasing PFD. The sum of all carotenoids normalized to chl a was remarkably similar in all PFDs used. Collectively, our results suggest that 19 Hex was synthesized from Fuco with light as a modulating factor and that the total amount of carotenoids is strain‐specific and synthesized/catabolized in tandem with chl a to a genetically predefined level independent of PFD.  相似文献   

9.
Using microcosm experiments, we investigated the interactive effects of temperature and light on specific growth rates of three species each of the phytoplanktonic genera Cryptomonas and Dinobryon. Several species of these genera play important roles in the food web of lakes and seem to be sensitive to high water temperature. We measured growth rates at three to four photon flux densities ranging from 10 to 240 μmol photon · m?2 · s?1 and at 4–5 temperatures ranging from 10°C to 28°C. The temperature × light interaction was generally strong, species specific, and also genus specific. Five of the six species studied tolerated 25°C when light availability was high; however, low light reduced tolerance of high temperatures. Growth rates of all six species were unaffected by temperature in the 10°C–15°C range at light levels ≤50 μmol photon · m?2 · s?1. At high light, growth rates of Cryptomonas spp. increased with temperature until the temperature optimum was reached and then declined. The Dinobryon species were less sensitive than Cryptomonas spp. to photon flux densities of 40 μmol photon · m?2 · s?1 and 200 μmol photon · m?2 · s?1 over the entire temperature range but did not grow under a combination of very low light (10 μmol photon · m?2 · s?1) and high temperature (≥20°C). Among the three Cryptomonas species, cell volume declined with temperature and the maximum temperature tolerated was negatively related to cell size. Since Cryptomonas is important food for microzooplankton, these trends may affect the pelagic carbon flow if lake warming continues.  相似文献   

10.
Photosynthesis and respiration of three Alaskan Porphyra species, P. abbottiae V. Krishnam., P. pseudolinearis Ueda species complex (identified as P. pseudolinearis” below), and P. torta V. Krishnam., were investigated under a range of environmental parameters. Photosynthesis versus irradiance (PI) curves revealed that maximal photosynthesis (Pmax), irradiance at maximal photosynthesis (Imax), and compensation irradiance (Ic) varied with salinity, temperature, and species. The Pmax of Porphyra abbottiae conchocelis varied between 83 and 240 μmol O2 · g dwt?1 · h?1 (where dwt indicates dry weight) at 30–140 μmol photons · m?2 · s?1 (Imax) depending on temperature. Higher irradiances resulted in photoinhibition. Maximal photosynthesis of the conchocelis of P. abbottiae occurred at 11°C, 60 μmol photons · m?2·s?1, and 30 psu (practical salinity units). The conchocelis of P. “pseudolinearis” and P. torta had similar Pmax values but higher Imax values than those of P. abbottiae. The Pmax of P. “pseudolinearis” conchocelis was 200–240 μmol O2 · g dwt?1 · h?1 and for P. torta was 90–240 μmol O2 · g dwt?1 · h?1. Maximal photosynthesis for P. “pseudolinearis” occurred at 7°C and 250 μmol photons · m?2 · s?1 at 30 psu, but Pmax did not change much with temperature. Maximal photosynthesis for P. torta occurred at 15°C, 200 μmol photons · m?2 · s?1, and 30 psu. Photosynthesis rates for all species declined at salinities <25 or >35 psu. Estimated compensation irradiances (Ic) were relatively low (3–5 μmol · photons · m?2 · s?1) for intertidal macrophytes. Porphyra conchocelis had lower respiration rates at 7°C than at 11°C or 15°C. All three species exhibited minimal respiration rates at salinities between 25 and 35 psu.  相似文献   

11.
Although sea‐ice represents a harsh physicochemical environment with steep gradients in temperature, light, and salinity, diverse microbial communities are present within the ice matrix. We describe here the photosynthetic responses of sea‐ice microalgae to varying irradiances. Rapid light curves (RLCs) were generated using pulse amplitude fluorometry and used to derive photosynthetic yield (ΦPSII), photosynthetic efficiency (α), and the irradiance (Ek) at which relative electron transport rate (rETR) saturates. Surface brine algae from near the surface and bottom‐ice algae were exposed to a range of irradiances from 7 to 262 μmol photons · m?2 · s?1. In surface brine algae, ΦPSII and α remained constant at all irradiances, and rETRmax peaked at 151 μmol photons · m?2 · s?1, indicating these algae are well acclimated to the irradiances to which they are normally exposed. In contrast, ΦPSII, α, and rETRmax in bottom‐ice algae reduced when exposed to irradiances >26 μmol photons · m?2 · s?1, indicating a high degree of shade acclimation. In addition, the previous light history had no significant effect on the photosynthetic capacity of bottom‐ice algae whether cells were gradually exposed to target irradiances over a 12 h period or were exposed immediately (light shocked). These findings indicate that bottom‐ice algae are photoinhibited in a dose‐dependent manner, while surface brine algae tolerate higher irradiances. Our study shows that sea‐ice algae are able to adjust to changes in irradiance rapidly, and this ability to acclimate may facilitate survival and subsequent long‐term acclimation to the postmelt light regime of the Southern Ocean.  相似文献   

12.
This study describes the relationships between dinitrogen (N2) fixation, dihydrogen (H2) production, and electron transport associated with photosynthesis and respiration in the marine cyanobacterium Trichodesmium erythraeum Ehrenb. strain IMS101. The ratio of H2 produced:N2 fixed (H2:N2) was controlled by the light intensity and by the light spectral composition and was affected by the growth irradiance level. For Trichodesmium cells grown at 50 μmol photons · m?2 · s?1, the rate of N2 fixation, as measured by acetylene reduction, saturated at light intensities of 200 μmol photons · m?2 · s?1. In contrast, net H2 production continued to increase with light levels up to 1,000 μmol photons · m?2 · s?1. The H2:N2 ratios increased monotonically with irradiance, and the variable fluorescence measured using a fast repetition rate fluorometer (FRRF) revealed that this increase was accompanied by a progressive reduction of the plastoquinone (PQ) pool. Additions of 2,5‐dibromo‐3‐methyl‐6‐isopropyl‐p‐benzoquinone (DBMIB), an inhibitor of electron transport from PQ pool to PSI, diminished both N2 fixation and net H2 production, while the H2:N2 ratio increased with increasing level of PQ pool reduction. In the presence of 3‐(3,4‐dichlorophenyl)‐1,1‐dimethylurea (DCMU), nitrogenase activity declined but could be prolonged by increasing the light intensity and by removing the oxygen supply. These results on the coupling of N2 fixation and H2 cycling in Trichodesmium indicate how light intensity and light spectral quality of the open ocean can influence the H2:N2 ratio and modulate net H2 production.  相似文献   

13.
The effects of photon flux density (PFD) and spectral quality on biomass, pigment content and composition, and the photosynthetic activity of Oscillatoria agardhii Gomont were investigated in steady-state populations. For alterations of PFD, chemostat populations were exposed to 50, 130 and 230 μmol photons·m?2·s?1 of photosynthetic active radiation (PAR). Decreases in biomass, chlorophyll a (Chl a) and c-phycocyanin (CPC) contents, and CPC: Chl a and CPC: carotenoid content was not altered. Increases in the relative abundances of myxoxanthophyll and zeaxanthin and deceases in the relative abundances of echinenone and β-carotene within the carotenoid pigments coincided with increasing PFD. Increases in Chl a-specific photosynthetic rates and maxima and decreases in biomass-specific photosynthetic rates and maxima with increasing PFD were attributed to increased light harvesting by carotenoids per unit Chl a and reduction in total pigment content, respectively. Responses to spectral quality were tested by exposing chemostat populations to a gradient of spectral transmissions at 50 μmol photons·m?2·s?1 PAR. Biomass differences among populations were likely attributable to the distinct absorption of the PAR spectrum by Chl a, CPC, and carotenoids. Although pigment contents were not altered by spectral quality, relative abundances of zeaxanthin and echinenone in the carotenoid pigments increased in populations exposed to high-wavelength PAR. The population adapted to green light possessed a greater photosynthetic maximum than populations adapted to other spectral qualities.  相似文献   

14.
The influence of fluctuating light on diversity and species number of a natural phytoplankton assemblage competing for nutrients was investigated for 48 days under semicontinuous culture conditions. Light conditions were either changed periodically from high (65 μmol photons·m?2·s?1) to low intensity (15 μmol photons·m?2·s?1) at intervals of 1, 3, 6, and 12 days or fixed at constant light conditions of intermediate intensity (40 μmol photons·m?2·s?1). Fluctuating light at intervals of 1–12 days significantly affected phytoplankton diversity. The development of phytoplankton communities differed in treatments with different light regimes. In treatments with long light intervals, species abundance oscillated with the light phases. Differences in the temporal development of phytoplankton communities resulted in hump‐shaped relations between the interval length of the light phases and both species number and diversity index and can be explained by the intermediate disturbance hypothesis. Fluctuating light tends to sustain phytoplankton diversity under nutrient limitation if the light regime changes in the order of several days. This indicates that temporal changes in weather regime are important in preventing competitive exclusion of phytoplankton species in nature.  相似文献   

15.
Eight species of marine phytoplankton commonly used in aquaculture were grown under a range of photon flux densities (PEDs) and analyzed for their fatty acid (FA) composition. Fatty and composition changed considerably at different PFDs although no consistent correlation between the relative proportion of a single FA and μ or chl a · cell?1 was apparent. Within an individual species the percentage of certain fatty acids covaried with PFDs, growth rate and/or chl a · cell?1. The light conditions which produced the greatest proportion of the essential fatty acids was species specific. Eicosapentaenoic acid. 20:5ω3 increased from 6.1% to 15.5% of the total fatty acids of Chaetoceros simplex Ostenfield grown at PFDs which decreased from 225 μE · m?2· s?1 to 6 μE · m?2· s?1, respectively. Most species had their greatest proportion of 20: 5ω3 at low levels of irradiance. Conversely, docosahexaenoic acid, 22:6ω3, decreased from 9.7% to 3.6% of the total fatty acids in Pavlova lutheri Droop as PFD decreased. The percentage of 22:6ω3 generally decreased with decreasing irradiances. In all diatoms the percentage of 16:0 was significantly correlated with PFD, and in three of five diatoms, with growth rate (μ). Results suggest that fatty acid composition is a highly dynamic component of cellular physiology, which responds significantly to variation in PFD.  相似文献   

16.
Variations of pigment content in the microscopic conchocelis stage of four Alaskan Porphyra species were investigated in response to environmental variables. Conchocelis filaments were cultured under varying conditions of irradiance and nutrient concentrations for up to 60 d at 11°C and 30 psu salinity. Results indicate that conchocelis filaments contain relatively high concentrations of phycobilins under optimal culture conditions. Phycobilin pigment production was significantly affected by irradiance, nutrient concentration, and culture duration. For Porphyra abbottiae V. Krishnam., Porphyra sp., and Porphyra torta V. Krishnam., maximal phycoerythrin (63.2–95.1 mg · g dwt?1) and phycocyanin (28.8–64.8 mg · g dwt?1) content generally occurred at 10 μmol photons · m?2 · s?1, f/4–f/2 nutrient concentration after 10–20 d of culture. Whereas for Porphyra hiberna S. C. Lindstrom et K. M. Cole, the highest phycoerythrin (73.3 mg · g dwt?1) and phycocyanin (70.2 mg · g dwt?1) content occurred at 10 μmol photons · m?2 · s?1, f nutrient concentration after 60 d in culture. Under similar conditions, the different species showed significant differences in pigment content. P. abbottiae had higher phycoerythrin content than the other three species, and P. hiberna had the highest phycocyanin content. P. torta had the lowest phycobilin content.  相似文献   

17.
Genetically modified potato (Solanum tuberosum L. cv. Desiree) and tobacco (Nicotiana tabacum cv. Samsun N.N.) plants were used to analyze the effects exerted by the chloroplastic (cp) fructose- 1,6-bisphosphatase (FBPase) on the regulation of light energy discrimination at the level of photosystem II. The cp-FBPase activity was progressively inhibited by an mRNA antisense to this FBPase. The chlorophyll fluorescence quenching parameters of these transgenic plants were compared to those of wild-type and transgenic plants that were acclimated to low temperatures. In particular various lines of the transgenic potato and tobacco plants were exposed to a temperature treatment of 10 and 20°C for 10 days. Light intensities were kept low to reduce photoinhibition so that we could analyze exclusively the effects of a modification in the carbon fixation cycle on the chlorophyll fluorescence quenching parameters. The photon flux densities (PFDs) employed at the level of the middle leaves of all plants were set to two different values of 10 μmol m?2 s?1 and 50 μmol m?2 s?1. Subsequent to this 10-day acclimation the chlorophyll-fluorescence parameters of all plants were measured. Photoinhibition as expressed by the Fy/Fm ratio was minor in plants subjected to a PFD of 10 μmol m?2 s?1. Higher photon fluence rates of 50 μmol m?2 s?1 at temperatures of 10°C gave rise to a significant reduction in the Fy/Fm ratios obtained from the transgenic plants which were characterized by a restriction in cp-FBPase capacity to 20% of normal activity. Furthermore, a progressive inhibition of the cp-FBPase activity induced an amplified nonphotochemical quenching of chlorophyll fluorescence with in the genetically manipulated species (except at 10°C and 50 μmol m?2 s?1). The increase in nonphotochemical quenching depended upon light and temperature. Photochemical quenching of light quanta within the antisense plants declined relative to that in the wild type. To further characterize the mechanisms producing higher levels of nonphotochemical fluorescence quenching. we analyzed several of the xanthophyll cycle pigments. The deepoxidation state of the xanthophyll cycle pigments in potato plants increased with attenuating FBPase activities under all conditions. For tobacco plants, this elevation of the deepoxidation state was only observed at a PFD of 50 μmol m?2 s?1.  相似文献   

18.
Diel variations of cellular optical properties were examined for cultures of the haptophyte Imantonia rotunda N. Reynolds and the diatom Thalassiosira pseudonana (Hust.) Hasle et Heimdal grown under a 14:10 light:dark (L:D) cycle and transferred from 100 μmol photons · m?2 · s?1 to higher irradiances of 250 and 500 μmol photons · m?2 · s?1. Cell volume and abundance, phytoplankton absorption coefficients, flow‐cytometric light scattering and chl fluorescence, and pigment composition were measured every 2 h over a 24 h period. Results showed that cell division was more synchronous for I. rotunda than for T. pseudonana. Several variables exhibited diel variability with an amplitude >100%, notably mean cell volume for the haptophyte and photoprotective carotenoids for both species, while optical properties such as flow‐cytometric scattering and chl a–specific phytoplankton absorption generally showed <50% diel variability. Increased irradiance induced changes in pigments (both species) and mean cell volume (for the diatom) and amplified diel variability for most variables. This increase in amplitude is larger for pigments (factor of 2 or more, notably for cellular photoprotective carotenoid content in I. rotunda and for photosynthetic pigments in T. pseudonana) than for optical properties (a factor of 1.5 for chl a–specific absorption, at 440 nm, in I. rotunda and a factor of 2 for the absorption cross‐section and the chl a–specific scattering in T. pseudonana). Consequently, diel changes in optical properties and pigmentation associated with the L:D cycle and amplified by concurrent changes in irradiance likely contribute significantly to the variability in optical properties observed in biooptical field studies.  相似文献   

19.
The marine diatom Thalassiosira pseudonana (Hustedt, clone 3H) Hasle and Heimdal was cultured under three different light regimes: 100 μmol photon · m?2· s?1 on 12:12 h light : dark (L:D) cycles; 50 μmol photon · m?2· s?2 on 24:0 h L:D; and 100 μmol photon · m?2· s?1 on 24:0 h L:D. It was harvested during logarithmic and stationary phases for analysis of biochemical composition. Across the different light regimes, protein (as % of organic weight) was highest in cells during logarithmic phase, whereas carbohydrate and lipid were highest during stationary phase. Carbohydrate concentrations were most affected by the different light regimes; cells grown under 12:12 h L:D contained 37–44% of the carbohydrate of cells grown under 24:0 h L:D. Cells in logarithmic phase had high proportions of polar lipids (79 to 89% of total lipid) and low triacylglycerol (≤10% of total lipid). Cells in stationary phase contained less polar lipid (48 to 57% of total lipid) and more triacylglycerol (22 to 45% of total lipid). The fatty acid composition of logarithmic phase cells grown under 24:0 h L:D were similar, but the 100 μmol photon · m?2· s?1 (12:12 h L:D) cells at the same stage contained a higher proportion of polyunsaturated fatty acids (PUFAs) and a lower proportion of saturated and monounsaturated fatty acids due to different levels of 16:0, 16:1(n-7), 16:4(n-1), 18:4(n-3), and 20:5(n-3). With the onset of stationary phase, cells grown at 100 μmol photon · m?2· s?1 (both 12:12 and 24:0 h L:D) increased in proportions of saturated and monounsaturated fatty adds and decreased in PUFAs. Concentrations (% organic or dry weight) of 14:0, 16:0, 16:1(n-7), 20:5(n-3), and 22:6(n-3) increased in cells of all cultures during stationary phase. The amino acid compositions of cells were similar irrespective of harvest stage and light regime. For mariculture, the recommended light regime for culturing T. pseudonana will depend on the nutritional requirements of the animal to which the alga is fed. For rapidly growing bivalve mollusc larvae, stationary-phase cultures grown under a 24:0 h L:D regime may provide more energy by virtue of their higher percentage of carbohydrate and high proportions and concentrations of energy-rich saturated fatty acids.  相似文献   

20.
Growth rate, pigment composition, and noninvasive chl a fluorescence parameters were assessed for a noncalcifying strain of the prymnesiophyte Emiliania huxleyi Lohman grown at 50, 100, 200, and 800 μmol photons·m?2·s?1. Emiliania huxleyi grown at high photon flux density (PFD) was characterized by increased specific growth rates, 0.82 d?1 for high PFD grown cells compared with 0.38 d?1 for low PFD grown cells, and higher in vivo chl a specific attenuation coefficients that were most likely due to a decreased pigment package, consistent with the observed decrease in cellular photosynthetic pigment content. High PFD growth conditions also induced a 2.5‐fold increase in the pool of the xanthophyll cycle pigments diadinoxanthin and diatoxanthin responsible for dissipation of excess energy. Dark‐adapted maximal photochemical efficiency (Fv/Fm) remained constant at around 0.58 for cells grown over the range of PFDs, and therefore the observed decline, from 0.57 to 0.33, in the PSII maximum efficiency in the light‐adapted state, (Fv′/Fm′), with increasing growth PFD was due to increased dissipation of excess energy, most likely via the xanthophyll cycle and not due to photoinhibition. The PSII operating efficiency (Fq′/Fm′) decreased from 0.48 to 0.21 with increasing growth PFD due to both saturation of photochemistry and an increase in nonphotochemical quenching. The changes in the physiological parameters with growth PFD enable E. huxleyi to maximize rates of photosynthesis under subsaturating conditions and protect the photosynthetic apparatus from excess energy while supporting higher saturating rates of photosynthesis under saturating PFDs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号