首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
    
The role of development in the evolution of postponed senescence is poorly understood despite the existence of a major gerontological theory connecting developmental rate to aging. We investigate the role of developmental rate in the laboratory evolution of aging using 24 distinct populations of Drosophila melanogaster. We have found a significant difference between the larval developmental rates of our Drosophila stocks selected for early (B) and late-life (O) fertility. This larval developmental time difference of approximately 12% (O > B) has been stable for at least 5 yr, occurs under a wide variety of rearing conditions, responds to reverse selection, and is shown for two other O-like selection treatments. Emerging adults from lines with different larval developmental rates show no significant differences in weight at emergence, thorax length, or starvation resistance. Long-developing lines (O, CO, and CB) have greater survivorship from egg to pupa and from pupa to adult, with and without strong larval competition. Crosses between slower developing populations, and a variety of other lines of evidence, indicate that neither mutation accumulation nor inbreeding depression are responsible for the extended development of our late-reproduced selection treatments. These results stand in striking contrast to other recent studies. We argue that inbreeding depression and inadvertent direct selection in other laboratories' culture regimes explain their results. We demonstrate antagonistic pleiotropy between developmental rate and preadult viability. The absence of any correlation between longevity and developmental time in our stocks refutes the developmental theory of aging.  相似文献   

2.
    
The measurement of trade-offs may be complicated when selection exploits multiple avenues of adaptation or multiple life-cycle stages. We surveyed 10 populations of Drosophila melanogaster selected for increased resistance to starvation for 60 generations, their paired controls, and their mutual ancestors (a total of 30 outbred populations) for evidence of physiological and life-history trade-offs that span life-cycle stages. The directly selected lines showed an impressive response to starvation selection, with mature adult females resisting starvation death 4–6 times longer than unselected controls or ancestors—up to a maximum of almost 20 days. Starvation-selected flies are already 80% more resistant to starvation death than their controls immediately upon eclosion, suggesting that a significant portion of their selection response was owing to preadult growth and acquisition of metabolites relevant to the stress. These same lines exhibited significantly longer development and lower viability in the larval and pupal stages. Weight and lipid measurements on one of the starvation-selected treatments (SB1–5), its control populations (CB1–5), and their ancestor populations (B1–5) revealed three important findings. First, starvation resistance and lipid content were linearly correlated; second, larval lipid acquisition played a major role in the evolution of adult starvation resistance; finally, increased larval growth rate and lipid acquisition had a fitness cost exacted in reduced viability and slower development. This study implicates multiple life-cycle stages in the response to selection for the stress resistance of only one stage. Our starvation-selected populations illustrate a case that may be common in nature. Patterns of genetic correlation may prove misleading unless multiple pleiotropic interconnections are resolved.  相似文献   

3.
    
Drosophila melanogaster has colonized temperate habitats on multiple continents over a historical time period, and many traits vary predictably with latitude. Despite considerable attention paid to clinal variation in Drosophila, the mechanisms generating such patterns in nature remain largely unidentified. In D. melanogaster, the expression of reproductive diapause can be induced by exposure to low temperatures and shortened photoperiods. Both diapause expression itself and the underlying genetic variance for diapause expression have widespread impacts on organismal fitness, and diapause incidence exhibits a 60% cline in frequency in the eastern United States. The major aim of this study was to evaluate whether the relative fitness of diapause and nondiapause genotypes varies predictably with environment. In experimental population cages in the laboratory, the frequency of genotypes that express diapause increased over time when flies were exposed to environmental stress, whereas the frequency of nondiapause genotypes increased when flies were cultured under benign control conditions. Other fitness traits correlated with the genetic variance for diapause expression (longevity, mortality rates, stress resistance, lipid content, preadult viability, fecundity profiles, and development time) also diverged between experimental treatments. Similarly, sampling of isofemale lines from natural populations revealed that the frequency of diapause incidence cycled over time in seasonal habitats: diapause expression was at high frequency following the winter season and subsequently declined throughout the summer months. In contrast, diapause expression was low and temporally homogeneous in isofemale line collections from human-associated urban habitats. These data suggest that genetic variation underlying the diapause-nondiapause dichotomy may be actively maintained by selection pressures that vary spatially and temporally in natural populations.  相似文献   

4.
    
Fundamental, long-term genetic trade-offs constrain life-history evolution in wild crucifer populations. I studied patterns of genetic constraint in Brassica rapa by estimating genetic correlations among life-history components by quantitative genetic analyses among ten wild populations, and within four populations. Genetic correlations between age and size at first reproduction were always greater than +0.8 within and among all populations studied. Although quantitative genetics might provide insight about genetic constraints if genetic parameters remain approximately constant, little evidence has been available to determine the constancy of genetic correlations. I found strong and consistent estimates of genetic correlations between life-history components, which were very similar within four natural populations. Population differentiation also showed these same trade-offs, resulting from long-term genetic constraint. For some traits, evolutionary changes among populations were incompatible with a model of genetic drift. Historical patterns of natural selection were inferred from population differentiation, suggesting that correlated response to selection has caused some traits to evolve opposite to the direct forces of natural selection. Comparison with Arabidopsis suggests that these life-history trade-offs are caused by genes that regulate patterns of resource allocation to different components of fitness. Ecological and energetic models may correctly predict these trade-offs because there is little additive genetic variation for rates of resource acquisition, but resource allocation is genetically variable.  相似文献   

5.
    
Developmental time is a trait of great relevance to fitness in all organisms. In holometabolous species that occupy ephemeral habitat, like Drosophila melanogaster, the impact of developmental time upon fitness is further exaggerated. We explored the trade-offs surrounding developmental time by selecting 10 independent populations from two distantly related selection treatments (CB1-5 and CO1-5) for faster development. After 125 generations, the resulting accelerated populations (ACB1-5 and ACO1-5) displayed net selection responses for development time of -33.4 hours (or 15%) for ACB and -38.6 hours (or 17%) for ACO. Since most of the change in egg-to-adult developmental time was accounted for by changes in larval duration, the “accelerated” larvae were estimated to develop 25-30% faster than their control/ancestor populations. The responses of ACB and ACO lines were remarkably parallel, despite being founded from populations evolved independently for more than 300 generations. On average, these “A” populations developed from egg to adult in less than eight days and produced fertile eggs less than 24 hours after emerging. Accelerated populations showed no change in larval feeding rate, but a reduction in pupation height, the latter being a trait relating to larval energetic expenditure in wandering prior to pupation. This experiment demonstrates the existence of a negative evolutionary correlation between preadult developmental time and viability, as accelerated populations experienced a severe cost in preadult survivorship. In the final assay generation, viability of accelerated treatments had declined by more than 10%, on average. A diallel cross demonstrated that the loss of viability in the ACO lines was not due to inbreeding depression. These results suggest the existence of a rapid development syndrome, in which the fitness benefits of fast development are balanced by fitness costs resulting from reduced preadult survivorship, marginal larval storage of metabolites, and reduced adult size.  相似文献   

6.
7.
Neurological complexity has increased over evolutionary time for invertebrates and vertebrates alike, with the hominid brain tripling in size over the last 3 million years. Since magnetic resonance imaging (MRI) studies among humans indicate a significant correlation (meanr>0.40) between individual differences in brain size and general cognitive ability, it is reasonable to hypothesize that increasing brain size confers greater intelligence. However, larger brains have associated costs, taking longer to build and requiring more energy to run. Sufficient advantages must have accrued for them to override these trade-offs. The present paper documents that in hominoids, as brain size increased from 380 to 1364 cm3 over seven hominoid groups (chimpanzees to australopithecines toHomo habilis toHomo erectus to differences amongHomo sapiens), it was accompanied by changes in 74 musculo-skeletal traits (rs=0.90). These occurred on both cranial traits (temporalis fossae, post-orbital constrictions, mandibles, dentition, nuchal muscle attachments) and on post-cranial traits (pelvic widths, femoral heads, tibial plateaus). It is concluded that in the evolutionary competition to find and fill new niches, there was “room at the top” for greater behavioral complexity and larger brain size, leading to cascading effects on other traits.  相似文献   

8.
Life-history theory assumes that animal life histories are a consequence of trade-offs between current activities and future reproductive performance or survival, because resource supply is limited. Empirical evidence for such trade-offs in the wild are common, yet investigations of the underlying mechanisms are rare. Life-history trade-offs may have both physiological and ecological mediated costs. One hypothesized physiological mechanism is that elevated energy metabolism may increase reactive oxygen species production, leading to somatic damage and thus compromising future survival. We investigated the impact of experimentally elevated energy expenditure on oxidative damage, protection and lifespan in short-tailed field voles (Microtus agrestis) maintained in captivity to remove any confounding ecological factor effects. Energy expenditure was elevated via lifelong cold exposure (7+/-2 degrees C), relative to siblings in the warm (22+/-2 degrees C). No treatment effect on cumulative mortality risk was observed, with negligible effects on oxidative stress and antioxidant protection. These data suggest that in captive animals physiologically mediated costs on life history do not result from increased energy expenditure and consequent elevations in oxidative stress and reduced survival.  相似文献   

9.
    
Life-history theory predicts that traits for survival and reproduction cannot be simultaneously maximized in evolving populations. For this reason, in obligate parasites such as infectious viruses, selection for improved between-host survival during transmission may lead to evolution of decreased within-host reproduction. We tested this idea using experimental evolution of RNA virus populations, passaged under differing transmission times in the laboratory. A single ancestral genotype of vesicular stomatitis virus (VSV), a negative-sense RNA Rhabdovirus, was used to found multiple virus lineages evolved in either ordinary 24-h cell-culture passage, or in delayed passages of 48 h. After 30 passages (120 generations of viral evolution), we observed that delayed transmission selected for improved extracellular survival, which traded-off with lowered viral fecundity (slower exponential population growth and smaller mean plaque size). To further examine the confirmed evolutionary trade-off, we obtained consensus whole-genome sequences of evolved virus populations, to infer phenotype–genotype associations. Results implied that increased virus survival did not occur via convergence; rather, improved virion stability was gained via independent mutations in various VSV structural proteins. Our study suggests that RNA viruses can evolve different molecular solutions for enhanced survival despite their limited genetic architecture, but suffer generalized reproductive trade-offs that limit overall fitness gains.  相似文献   

10.
    
Latitudinal clines are widespread in Drosophila melanogaster, and many have been interpreted as adaptive responses to climatic variation. However, the selective mechanisms generating many such patterns remain unresolved, and there is relatively little information regarding how basic life-history components such as fecundity, life span and mortality rates vary across environmental gradients. Here, it is shown that four life-history traits vary predictably with geographic origin of populations sampled along the latitudinal gradient in the eastern United States. Although such patterns are indicative of selection, they cannot distinguish between the direct action of selection on the traits in question or indirect selection by means of underlying genetic correlations. When independent suites of traits covary with geography, it is therefore critical to separate the widespread effects of population source from variation specifically for the traits under investigation. One trait that is associated with variation in life histories and also varies with latitude is the propensity to express reproductive diapause; diapause expression has been hypothesized as a mechanism by which D. melanogaster adults overwinter, and as such may be subject to strong selection in temperate habitats. In this study, recently derived isofemale lines were used to assess the relative contributions of population source and diapause genotype in generating the observed variance for life histories. It is shown that although life span, fecundity and mortality rates varied predictably with geography, diapause genotype explained the majority of the variance for these traits in the sampled populations. Both heat and cold shock resistance were also observed to vary predictably with latitude for the sampled populations. Cold shock tolerance varied between diapause genotypes and the magnitude of this difference varied with geography, whereas heat shock tolerance was affected solely by geographic origin of the populations. These data suggest that a subset of life-history parameters is significantly influenced by the genetic variance for diapause expression in natural populations, and that the observed variance for longevity and fecundity profiles may reflect indirect action of selection on diapause and other correlated traits.  相似文献   

11.
    
Resistance to environmental stress is one of the most important forces molding the distribution and abundance of species. We investigated the evolution of desiccation stress resistance using 20 outbred Drosophila melanogaster populations directly selected in the laboratory for adult desiccation resistance (D), postponed senescence (O), and their respective controls (C and B). Both aging and desiccation selection increased desiccation resistance relative to their controls, creating a spectrum of desiccation resistance levels across selection treatments. We employed an integrative approach, merging data on the life histories of these populations with a detailed physiology of water balance. The physiological basis of desiccation resistance may be mechanisms enhancing either resource conservation or resource acquisition and allocation. Desiccation-resistant populations had increased water and carbohydrate stores, and showed age-specific patterns of desiccation resistance consistent with the resource accumulation mechanism. A significant proportion of the resources relevant to resistance of the stress were accumulated in the larval stage. Males and females of desiccation-selected lines exhibited distinctly different patterns of desiccation resistance and resource acquisition, in a manner suggesting intersexual antagonism in the evolution of stress resistance. Preadult viability of stress-selected populations was lower than that of controls, and development was slowed. Our results suggest that there is a cost to preadult resource acquisition, pointing out a complex trade-off architecture involving characters distributed across distinct life-cycle stages.  相似文献   

12.
    
In species with bi-parental care, individuals must partition energy between parental effort and mating effort. Typically, female songbirds invest more than males in reproductive activities such as egg-laying and incubation, but males invest more in secondary sexual traits used in attracting mates. Animals that breed more than once within a season must also allocate time and energy between first and subsequent breeding attempts and between current and future breeding seasons. To investigate strategies of reproductive investment by males and females and the consequences of such strategies, we manipulated the size of broods of Eastern Bluebirds Sialia sialis . Pairs with enlarged first broods were less likely to produce a second clutch or took longer to initiate one than pairs with reduced broods. After rearing enlarged broods, females were less likely than males to survive to the following year. Although plumage coloration is a sexually selected trait in Eastern Bluebirds that is influenced by nutritional stress, we did not detect an effect of brood-size manipulation on female coloration. Past research, however, demonstrates that, in males, plumage colour is negatively affected by increasing brood size. We suggest that there are sex-specific strategies of reproductive investment in Eastern Bluebirds, and that researchers should incorporate measures of residual reproductive value in studies of life-history evolution.  相似文献   

13.
    
Life-history theory is based on the assumption that evolution is constrained by trade-offs among different traits that contribute to fitness. Such trade-offs should be evident from negative genetic correlations among major life-history traits. However, this expectation is not always met. Here I report the results of a life-table experiment designed to measure the broad-sense heritabilities of life-history traits and their genetic correlations in 19 different clones of the aphid Myzus persicae from Victoria, Australia. Most individual traits, as well as fitness calculated as the finite rate of increase from the life table, exhibited highly significant heritabilities. The pattern of genetic correlations revealed absolutely no evidence for life-history trade-offs. Rather, life histories were arranged along an axis from better to worse. Clones with shorter development times tended to have larger body sizes, higher fecundities, and larger offspring. The fitness of clones estimated from the life table in the laboratory tended to be positively associated with their abundance in the field. Fitness also increased significantly with heterozygosity at the seven microsatellite loci that were used to distinguish clones and estimate their frequencies in the field. I discuss these findings in light of a recent proposition that positive genetic correlations among life-history traits for which trade-offs are expected can be explained by genetic variation for resource acquisition ability that is maintained in populations by a cost of acquisition, and I propose ways to test for such a cost in M. persicae.  相似文献   

14.
    
Ageing evolves because the force of selection on traits declines with age but the proximate causes of ageing are incompletely understood. The ‘disposable soma’ theory of ageing (DST) upholds that competitive resource allocation between reproduction and somatic maintenance underpins the evolution of ageing and lifespan. In contrast, the developmental theory of ageing (DTA) suggests that organismal senescence is caused by suboptimal gene expression in adulthood. While the DST predicts the trade-off between reproduction and lifespan, the DTA predicts that age-specific optimization of gene expression can increase lifespan without reproduction costs. Here we investigated the consequences for lifespan, reproduction, egg size and individual fitness of early-life, adulthood and post-reproductive onset of RNAi knockdown of five ‘longevity’ genes involved in key biological processes in Caenorhabditis elegans. Downregulation of these genes in adulthood and/or during post-reproductive period increases lifespan, while we found limited evidence for a link between impaired reproduction and extended lifespan. Our findings demonstrate that suboptimal gene expression in adulthood often contributes to reduced lifespan directly rather than through competitive resource allocation between reproduction and somatic maintenance. Therefore, age-specific optimization of gene expression in evolutionarily conserved signalling pathways that regulate organismal life histories can increase lifespan without fitness costs.  相似文献   

15.
    
Experiments in laboratory populations of Drosophila melanogaster have shown a negative genetic correlation between early-life fecundity on the one hand and starvation resistance and longevity on the other. Selection for late-life reproductive success resulted in long-lived populations that had increased starvation resistance but diminished early-life fecundity relative to short-lived controls. This pattern of differentiation proved, however, to be unstable. When assayed in a standard high-fecundity environment, the relative early fecundity of the long- and short-lived stocks reversed over a decade. That is, the long-lived populations came to have greater relative early-life fecundity, late-life fecundity, longevity and starvation resistance. Nevertheless, when these populations were assayed in other assay environments, the original trade-off was still present. We investigated the genetic structure of the short- and long-lived populations, to ask whether the inconstancy of the trade-off, as inferred from among population comparisons, is reflected in the pattern of genetic correlations within populations. For this purpose, lines from each of the short- and long-lived populations that had been selected for starvation resistance were compared with unselected controls. The direct and correlated responses of these starvation selected populations suggest that (1) the original genetic trade-off was still present in the ancestral short- and long-lived populations, even when it was no longer apparent from their comparison; (2) the trade-off was present in both assay environments; and (3) selectable genotype × environment variation exists for early fecundity. We suggest that a failure of the pattern of differentiation among populations to reflect the pattern of genetic correlations, if common in natural populations, will prevent the reliable inference of genetic trade-offs from comparisons of most natural populations.  相似文献   

16.
Earlier experiments have shown that the evolution of postponed senescent populations can be achieved by selection on either demographic or stress resistance characters. Both types of selection have produced results in which survival characters (stress resistance and longevity) have apparently traded-off against early-life fecundity. Here we present the results of a series of experiments in which an environmental variable — the level of live yeast inoculate applied to the substrate — produces a qualitatively similar phenotypic response: longevity and starvation resistance are enhanced by lower yeast levels, at the expense of fecundity. For the starvation resistance versus fecundity experiments we show a negative and linear relationship between the norms of reaction for each character across a gradient of yeast levels. This phenotypic trade-off is stable across the 20 populations and 4 selection treatments reported on here, and its general agreement with earlier selection results suggests that the evolutionary response and the phenotypically plastic response may share a common physiological basis. However, an important discrepancy in the lifetime fecundity data between the selection response and the dietary manipulations preclude strict analogy. The results broadly conform to a simple “Y-model” of allocation, in which a limited resource is divided between survival and reproduction; here the characters are starvation resistance and longevity versus fecundity.  相似文献   

17.
Investment in one life-history stage can have delayed effects on subsequent life-history stages within a single reproductive bout. We experimentally heated tree swallow (Tachycineta bicolor) nests during incubation to test for effects on parental and nestling conditions. Females incubating in heated boxes maintained higher body condition and fed nestlings at higher rates. We cross-fostered nestlings and found that young nestlings (4-7 days old) incubated in heated nests had higher body condition and body mass, regardless of treatment status of their rearing parent. However, older nestlings which were fed by heated females maintained higher condition and body mass regardless of treatment status of their incubating parent. These results indicate that investment in one life-history stage can have multiple pathways of carry-over effects on future life-history stages.  相似文献   

18.
    
The trajectory of phenotypic evolution is constrained in the short term by genetic correlations among traits. However, the extent to which genetic correlations impose a lasting constraint is generally unknown. Here, I examine the genetic architecture of life-history variation in male and female gametophytes from two populations of the moss Ceratodon purpureus, focusing on genetic correlations within and between the sexes. A significant negative correlation between allocation to vegetative and reproductive tissue was evident in males of both populations, but not females. All traits showed between-sex correlations of significantly less than one, indicating additive genetic variance for sexual dimorphism. The degree of dimorphism for traits was significantly negatively associated with the strength of the between-sex correlation. The structure of genetic correlations among life-history traits was more divergent between the two populations in females than in males. Collectively, these results suggest that genetic correlations do not impose a lasting constraint on the evolution of life-history variation in the species.  相似文献   

19.
Fish life-history patterns were evaluated in relation to the trilateral continuum model by analyzing data from 25 species inhabiting European freshwaters. Multivariate tests identified a trend between later-maturing fishes with higher fecundity, larger size, and few spawning bouts per year and the opposite suite of traits with small fishes. A second trend contrasted fishes having parental care, smaller eggs, and longer breeding seasons against fishes with the opposite suite of traits. As a result, two extreme life-history patterns could be identified among European freshwater fish species: opportunistic and periodic. Nevertheless, intermediate patterns were also present. A true equilibrium life-history pattern was not represented among 25 fish species from European freshwaters. The high concordance of basic life-history patterns among distantly related taxa is probably caused by some universal trade-offs among life-history variables. As a consequence, only a limited life-history patterns may be recognizable among fish species, independently of the origin of fish communities.  相似文献   

20.
Classic theories of ageing consider extrinsic mortality (EM) a major factor in shaping longevity and ageing, yet most studies of functional ageing focus on species with low EM. This bias may cause overestimation of the influence of senescent declines in performance over condition-dependent mortality on demographic processes across taxa. To simultaneously investigate the roles of functional senescence (FS) and intrinsic, extrinsic and condition-dependent mortality in a species with a high predation risk in nature, we compared age trajectories of body mass (BM) in wild and captive grey mouse lemurs (Microcebus murinus) using longitudinal data (853 individuals followed through adulthood). We found evidence of non-random mortality in both settings. In captivity, the oldest animals showed senescence in their ability to regain lost BM, whereas no evidence of FS was found in the wild. Overall, captive animals lived longer, but a reversed sex bias in lifespan was observed between wild and captive populations. We suggest that even moderately condition-dependent EM may lead to negligible FS in the wild. While high EM may act to reduce the average lifespan, this evolutionary process may be counteracted by the increased fitness of the long-lived, high-quality individuals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号