首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 859 毫秒
1.
Seasonality of burden and prevalence of phototrophic (microalgal) epibionts Characidiopsis ellipsoidea, Colacium vesiculosum and Colacium sp. on dominating crustacean zooplankton (Daphnia longispina, Cyclops vicinus and Mesocyclops leuckarti) were studied in a small reservoir Bugach with cyanobacterial bloom. The correlations between the seasonal dynamics of prevalence and the dynamics of others biotic and abiotic factors were calculated. The conclusions were as follows. The substrate species, that determined the development of the epibionts on the three studied crustacean zooplankton, was Daphnia longispina (Cladocera). Despite intensive epibiotic infestation of crustacean zooplankton, epibionts did not appear to have caused non-consumptive mortality of the crustacean zooplankton. But they could have contributed to the Daphnia summer decline by increasing mortality due to its consumption by planktivorous fishes. The phototropic epibionts may successfully coexist with cyanobacterial bloom. The possible role of the epibionts in changing nutrient fluxes in pelagic food web is discussed.  相似文献   

2.
Invertebrate and ciliate protozoan epibionts of velvet swimming crabs collected near Millport (Scotland) were analysed. The ecdysis peak for male crabs was at the time of collection while that for female crabs was 2 months later. The epibionts were: the polychaetes Pomatoceros triqueter and Hydroides norvegica, the cirriped Balanus crenatus, the entoproct Barentsia matsushimana, the hydroids Leuckartiara sp. and Clytia sp., and the ciliate protozoans Ephelota plana, Ephelota gemmipara, Chilodochona quennerstedti and Cothurnia longipes. The polychaetes, cirripeds, entoprocts and hydroids, all of them with comparatively larger size, were distributed on the carapace, ventral surface of the cephalothorax and the pereiopods; meanwhile the protozoans, with smaller size, were attached also on pleopods, antennae, eyes and buccal appendages. Chilodochona quennerstedti was the epibiont most abundant on the crab, followed by Ephelota plana. Cothurnia longipes was, in contrast, the least abundant epibiont, followed by Barentsia matsushimana. The anatomical unit most colonized was the left third maxilliped, followed by the left first maxilliped and the ventral surface. The less colonized anatomical units were the left antenna and the ocular orbits. Epibionts on this crab have not been described before. Statistical analyses of the epibiont distribution on the crab were carried out. There were significant correlations between right and left appendages in 66.67% of the cases. Males and females differed significantly with respect to the distribution of epibionts on their anatomical units. The comparison analysis indicated a significant differential distribution of each epibiont species on the anatomical units of the crab. Principal component analysis grouped the epibiont species according to their colonization pattern in three clusters: (1) Ephelota plana, Ephelota gemmipara and Chilodochona quennerstedti; (2) Leuckartiara sp., Clytia sp., Barentsia matsushimana and Cothurnia longipes; and (3) Pomatoceros triqueter, Balanus crenatus and Hydroides norvegica. The hierarchical cluster analysis grouped the anatomical units of the crab in relation to their colonization in five clusters.  相似文献   

3.
Arctic organisms with annual life cycles experience a strong selective pressure to fulfill their life cycle at low temperatures within a short seasonal window. Yet, apart from low temperature, the factors that constrain or promote growth rates in high arctic systems are still poorly understood. A substantial part of the freshwater systems in the arctic consist of shallow, fish-free ponds with the crustacean Daphnia as the key grazer. This grazer has high demands for phosphorus (P) for RNA-synthesis and subsequently protein synthesis for growth. In this study, we compared growth of juvenile Daphnia that were fed seston from two high-Arctic (79°N) ponds on Svalbard in 2004, which differed strongly in P-content and C:P-ratios. In both ponds, Daphnia growth was limited by food quantity (carbon) rather than by P or N. The study also suggests that in absence of predators, infection level of epibionts might be an important factor regulating growth rate and population development of Daphnia growth in these systems.  相似文献   

4.
Blue mussels (Mytilus edulis) can alter the strength of byssal attachment and move between and within mussel aggregations on wave‐swept shores, but this movement ability may be limited by epibiont fouling. We quantified the effects of artificial epibiont fouling on the production of byssal threads, attachment strength, and movement in two size classes of blue mussels. In a factorial experiment, large epibiont‐covered mussels produced more functional byssal threads (i.e., those continuous from animal to substrate) after 24 h than large unfouled and small fouled mussels, but not more than small unfouled mussels. Small unfouled mussels formed and released more byssus bundles compared to any other treatment group, which indicates increased movement. Conversely, epibiont fouling resulted in decreased numbers of byssus bundles shed, and therefore reduced movement in small mussels. Epibiont‐covered mussels started producing byssal threads sooner than unfouled mussels, while small mussels began producing byssal threads earlier compared to large mussels. Mean attachment strength from both size classes increased by 9.5% when mussels were artificially fouled, and large mussels had a 34% stronger attachment compared to small mussels. On the other hand, a 2.3% decrease in attachment strength was found with increasing byssus bundles shed. Our results suggest that fouling by artificial epibionts influences byssal thread production and attachment strength in large mussels, whereas epibionts on small mussels impact their ability to move. Mussels are able to respond rapidly to fouling, which carries implications for the dynamics of mussel beds in their intertidal and subtidal habitats, especially in relation to movement of mussels within and among aggregations.  相似文献   

5.
1. This study presents a qualitative and quantitative survey of epibionts infesting two populations of the freshwater isopod Asellus aquaticus (L.). Using scanning electron microscopy, the prevalence, mean intensity, abundance, spatial preferences and distribution of organisms on various external surfaces were ascertained.
2. A diverse community, consisting primarily of protozoa and rotifers, utilised A. aquaticus as a substrate organism. Every individual A. aquaticus supported some form of epizoic life. Peritrich species comprised 89.2% of all epibionts. Carchesium polypinum, Pseudocarchesium aselli, Pseudocarchesium asellicola, Pseudocarchesium simulans and Opercularia hebes dominated the epifauna.
3. Highest epibiont burdens occurred on the mouthparts, the first few ventral segments and the gills and largely comprised the above peritrich species. Most epibionts exhibited some degree of site preference on the host. A distinct gill epifauna existed. Apart from Acineta tuberosa and Vorticella rotunda , which had equal prevalences on dorsal and ventral surfaces in one culture, most species largely avoided the dorsal surface.
4. Epibionts exhibited varying degrees of adaptation to life on a living substrate. They ranged from facultative species such as A. tuberosa , which are capable of colonising abiotic substrata, to Gymnodinoides aselli whose life cycle relies on interaction with A. aquaticus . Highly specialised species tended to exhibit the most pronounced and consistent site restriction.
5. Asellus aquaticus offers a highly tractable system for further study of substrate species–epibiont relationships.  相似文献   

6.
Fernandez‐Leborans, G. and von Rintelen, K. 2010. Biodiversity and distribution of epibiontic communities on Caridina ensifera (Crustacea, Decapoda, Atyidae) from Lake Poso: comparison with another ancient lake system of Sulawesi (Indonesia). — Acta Zoologica (Stockholm) 91 : 163–175 The epibiont communities of the shrimp Caridina ensifera, endemic to Lake Poso (Sulawesi, Indonesia), were analysed. Most of the epibiont species were ciliated protozoa belonging to three suctorian genera (Acineta, Podophrya and Spelaeophrya), three peritrich genera (Zoothamnium, Vorticella and Cothurnia), and a haptorid genus (Amphileptus). There was also a rotifer epibiont of the genus Embata. Epibionts were identified to species level. There were 14 to 1114 epibionts per shrimp. The distribution of the epibiont species on the surface of the basibiont was recorded, calculating the number on the different colonized individuals of C. ensifera. The most abundant species, Zoothamnium intermedium and Acineta sulawesiensis, were also the most widely distributed. There was a significant difference between the spatial distributions of the different epibiont species. The analysis of the number of the epibiont species throughout the anteroposterior axis of the shrimp showed a gradient from the anterior to the posterior end of the body. Data from Lake Poso were compared with those of the Malili lake system (Sulawesi), obtained from its endemic shrimp, Caridina lanceolata. Lake Poso had the highest mean diversity, while Lake Mahalona showed the highest maximum diversity. All lakes were correlated with respect to the mean number of epibionts on the anatomical units of the shrimp, which showed a similar general distribution. The distributions of the different epibiont species were compared between the lakes. The possible adaptations of the epibionts as well as the colonization patterns were discussed. From the statistical results and the analysis of the distributions, we propose that in these communities epibiont species have a pattern of colonization in which they follow a behaviour as a whole; each species has a differential distribution, with the species occupying the available substratum with the particular requirements of each functional group, but there is a trend towards maintaining an equilibrium among species and groups, compensating for diversity and number of individuals. In all lakes there was an epibiont distribution model comprising the maintenance of an anteroposterior axis gradient, which was supported by the fluctuation in diversity and number of individuals of the different functional groups of epibiont species. The functional role of the different groups of species seems to tend towards sustainability with little global variation among the lakes.  相似文献   

7.
Protozoan and hydrozoan epibionts on the hermit crab Pagurus bernhardus and its shell, collected near Cumbrae Island (Scotland) were studied. The epibionts found were the following: (1) protozoans: the suctorian ciliates Ephelota plana, Acineta compressa, Conchacineta constricta, Corynophrya anisostyla; the peritrich ciliates Cothurnia mobiusi and Zoothamnium plumula; the chonotrich ciliate Chilodochona quennerstedti; and (2) hydrozoans: the species Leuckartiara sp. and Clytia sp. The morphological characteristics of the epibionts were analysed, as well as their taxonomic position. The distribution of epibionts on the crab surface and its shell was studied, and the density and biomass of epibionts were calculated on each anatomic unit. There was a differential distribution according to the type of epibiont: hydrozoans dominated in biovolume and were present mainly on the shell, meanwhile protozoans represented the highest fraction of density and they were found exclusively on the crab (principally on eyes, antennulae, antennae, maxillipeds, pereopods and uropods). The anterior area of the cephalothorax was the most colonized. On this area, the maxillipeds and second pereopods showed the highest densities. The location of each epibiont species was described. There was a correlation between the length of the crab and the total number of hydrozoans. There was a significant correlation between the right and the left units of the crab, taking into consideration the mean densities of epibionts on each anatomical unit. The shell was colonized by the same species of hydrozoa that appeared on the crab, although in a much higher density (mean 3024.38 per shell; 6.9 per crab). There was a significant difference between both species of hydrozoan epibionts with respect to the mean densities on the different areas of the shell. The zone of the shell more occupied by Clytia sp. was the apical zone of the shell, while the highest densities of Leuckartiara sp. were registered near the aperture of the shell. The hydrozoan and protozoan epibiont species found on P. bernhardus in this study represent the first mention of their presence on this hermit crab.  相似文献   

8.
In natural host populations, parasitism is considered to be omnipresent and to play an important role in shaping host life history and population dynamics. Here, we study parasitism in natural populations of the zooplankton host Daphnia magna investigating their individual and population level effects during a 2-year field study. Our results revealed a rich and highly prevalent community of parasites, with eight endoparasite species (four microsporidia, one amoeba, two bacteria and one nematode) and six epibionts (belonging to five different taxa: Chlorophyta, Bacillariophyceae, Ciliata, Fungi and Rotifera). Several of the endoparasites were associated with a severe overall fecundity reduction of the hosts, while such effects were not seen for epibionts. In particular, infections by Pasteuria ramosa, White Fat Cell Disease and Flabelliforma magnivora were strongly associated with a reduction in overall D. magna fecundity. Across the sampling period, average population fecundity of D. magna was negatively associated with overall infection intensity and total endoparasite richness. Population density of D. magna was negatively correlated to overall endoparasite prevalence and positively correlated with epibiont richness. Finally, the reduction in host fecundity caused by different parasite species was negatively correlated to both parasite prevalence and the length of the time period during which the parasite persisted in the host population. Consistent with epidemiological models, these results indicate that parasite mediated host damages influence the population dynamics of both hosts and parasites.  相似文献   

9.
10.
Colacium vesiculosum (Euglenophyceae) is an epibiont common on planktonic microcrustaceans of continental waters. The interaction between epibionts and substrate organisms is not very well known, particularly in subtropical environments of South America. In the present work, we analyzed the prevalence, density, biomass and attachment sites of C. vesiculosum on planktonic microcrustaceans from Paiva Lake, a subtropical lake of Argentina. With the aim to evaluate whether epibionts affect the filtering rates of Notodiaptomus spiniger, the dominant planktonic crustacean, we carried out bioassays using phytoplankton < 53 microm. Crustaceans were sampled using a PVC tube (1.2m long and 10cm in diameter), filtering 50L of water through a 53 microm-mesh. Microcrustaceans were counted in Bogorov chambers under a stereoscopic microscope. The infested organisms were separated and observed with a photonic microscope to determine density and biovolume of epibionts, by analyzing their distribution on the exoskeleton. The prevalence of C. vesiculosum was higher in adult crustaceans than in their larvae and juveniles. The most infested group was that of calanoid copepods, related to their high density. The attachment sites on the exoskeleton were found to be the portions of the body which have a higher probability of encounter with epibionts during locomotion and feeding, i.e., antennae and thoracic legs in copepods, and thoracic legs and postabdomen in cladocerans. The similar values found in the filtering rate of infested and uninfested individuals of N. spiniger and the constant prevalence (< 40%) of epibiont algae, suggest that C. vesiculosum does not condition the life of planktonic crustaceans of Paiva Lake.  相似文献   

11.
Several epibiotic species reduce starfish (Asterias rubens) preference for the blue mussel Mytilus edulis in the Baltic. The aim of this study was to reveal whether this associational resistance was caused by structural or chemical aspects of the different epibionts. To assess structural epibiont effects, an in situ experiment was conducted with unfouled mussels and mussels equipped with artificial epibionts (dummies) exposed to natural predation by A. rubens. The chemically inert dummies closely matched the structural properties of the locally common epibionts Balanus improvisus (barnacle), Ceramium strictum (red alga), Halichondria panicea (sponge), and Laomedea flexuosa (hydrozoan). Starfish fed indiscriminately in all treatments. Chemical effects of epibionts on the attractiveness of mussels for A. rubens were investigated by incorporating freeze-dried epibionts or mussel tissue into Phytagel pellets at natural concentrations. Starfish were allowed to choose among these structurally similar but chemically different prey items in an in vitro experiment. The predators exhibited significant preferences among the food pellets, which closely matched their preferences for corresponding natural mussel–epibiont associations. Thus, chemical aspects of epibionts appear to play a larger role in this associational resistance than do structural aspects. Implications of these indirect interactions for benthic communities are discussed.Communicated by H.-D. Franke  相似文献   

12.
We calibrated four stages of hypodermal retraction and cuticle regeneration with five stages of parthenogenetic egg development in Daphnia. Using the hypodermal retraction stages, we found that epibiotic burden increased with elapsed intermolt time for juvenile, male, and female Daphnia bearing parthenogenetic or ephippial eggs. The rate of increase of burden was similar for adult females of two Daphnia species and for males and females of D. pulex. Rate of increase of burden was similar between juvenile and adult females of D. galeata mendotae and D. pulex.  相似文献   

13.

A detailed study of over 2500 host brachiopods, from the Middle Devonian Hamilton Group of New York State, revealed distinct patterns of epibiont encrustation, that provide insight into taphonomy and paleoautecology of the host brachiopod shells and depositional environments. The concavo‐convex orthid, Tropidoleptus carinatus (Conrad), as well as strophomenid, and smooth athyrid brachiopods are among the most heavily encrusted. However, terebratulids of nearly identical size and shape are relatively clean of epibionts. This selective distribution strongly suggests that epibionts were discouraged from settling on punctate brachiopods. Brachiopods with small spines and frills were also nearly clean of epibionts, possibly because of entrapment of a mud layer, which made the outer layer of the host inhospitable for larval settling. Concavo‐convex taxa reveal high percent coverage and diversity of epibionts on the convex valve, which probably rested on the substrate during the life of brachiopod. This pattern is observed even on brachiopods that were buried with the convex valve downward. This implies complex post‐mortem histories involving multiple episodes of reorientation and colonization.  相似文献   

14.
The epibiont protozoan communities living on the freshwater shrimp Caridina lanceolata Woltereck, 1937a from the three major lakes (Towuti, Matano and Mahalona) of the Malili lake system (Sulawesi, Indonesia) were studied. The number of epibionts varied between 2 and 971 per shrimp. Seven protozoan ciliate species were found: Acineta sulawesiensis n. sp., Cothurnia sp., Zoothamnium sp. (in all three lakes), Vorticella sp. (Lake Mahalona and Lake Matano), Opercularia sp. (Lake Mahalona), Epistylis sp. (Lake Mahalona and Lake Matano), and Podophrya sp. (Lake Mahalona). Although these ciliates had been found previously on other crustaceans, they have not been observed as epibionts on Caridina H. Milne Edwards, 1837. The distribution of the different epibiont species on the anatomical units of the shrimp was analyzed in each lake. There is a statistical significant difference between the three lakes in respect to the number of epibionts on each anatomical unit of all analyzed shrimps. The total and mean densities of each epibiont species on the different analyzed shrimps showed a significant difference between the three lakes; i.e., the presence of each epibiont species on the population of C. lanceolata varied from one lake to another. In Lake Towuti the highest density of epibionts was found on the anterior part of the shrimp body (rostrum, antennae, antennulae and eyes) (32.41%), while in the other two lakes, the highest colonization corresponded to the maxillipeds (31.56% Lake Matano, 40.89% Lake Mahalona). In Lake Towuti the rest of epibionts colonized mainly maxillipeds and pleopods (both 45.76% of epibionts). In Lake Matano, other epibionts were distributed principally on the anterior part of the body and pleopods (in total 57.18% of epibionts). In Lake Mahalona, other epibionts were divided among the anterior part of the body, pereiopods and pleopods (in total 57.39% of the epibionts). Uropods and telson were the units less colonized in Lake Matano (3.64%) and Lake Mahalona (1.72%), while in Lake Towuti, they presented a moderate density (13.18% of the epibionts). Taking into account the distribution of epibionts along the antero-posterior axis of the shrimp, considering the different anatomical units, there was a significant correlation between the three lakes. This fact indicates that, in the three lakes, the colonization on C. lanceolata followed a similar distribution pattern, independently of the epibiont species present. The comparison between the distributions of the same epibiont species along the longitudinal axis of the shrimp on the diverse lakes showed that they correlated respect to their density values on the anatomical units of the shrimp. Diverse aspects of the colonization patterns are discussed. Morphological features, taxonomic identification, and particular distribution of the epibiont species in each lake are also included.  相似文献   

15.
Hyas araneus is the most common brachyuran crab in the coastal Barents Sea. Its epibionts were occasionally examined in 1940–1950s. To obtain modern information about associated organisms living on the crabs and compare new data with previous findings, the species composition, infestation indices, and spatial distribution of macro-epibionts colonizing H. araneus were examined in Dalnezelenetskaya Bay, a small semi-open gulf, in summer 2008–2010. A total of 41 taxa were observed on 48 crabs collected from depths ranging from 5 to 28 m. Red algae Ptilota plumosa (prevalence 39.6%) and Palmaria palmata (37.5%) as well as the copepod Harpacticus uniremis (39.6%) and the tube-dwelling worm Placostegus tridentatus (35.4%) predominated on the crabs. Infestation indices were similar in male and female crabs except for the turbellarian worm Peraclistus oophagus. Comparison with the previous study showed some changes in H. araneus fouling community that may be attributed to the shift of climatic regime or differences in sampling procedures. Presence of the amphipod Ischyrocerus commensalis, a new epibiont of H. araneus in the study area may be associated with introduction of the red king crab Paralithodes camtschaticus. Infestation indices of common epibionts depend on the crab shell conditions. Localization of epibionts strongly depended on the settlement patterns of larvae and host-associate relationships. Typical fouling organisms were found predominantly on the carapaces or limbs, while the majority of mobile species were recorded on the gills. Colonization of great spider crabs is beneficial for the epibiont species, whereas some negative effects for the basibiont could not be excluded.  相似文献   

16.
The phototrophic consortium “Chlorochromatium aggregatum” was enriched from sediment samples of a eutrophic freshwater lake and was maintained at high numbers in anoxic sulfide-reduced medium. Growth of intact consortia was observed only in the light and in the presence of 2-oxoglutarate as an organic carbon source. Consortia of “C. aggregatum” reached maximum growth rates at light intensities ≥ 5 μmol quanta m–2 s–1. Of ten compounds tested, sulfide, thiosulfate, 2-oxoglutarate, and citrate served as a chemoattractant for “C. aggregatum”. When incubated in the presence of sulfide and in the light, epibionts reduced the fluorochrome 5-cyano-2,3-di-4-tolyl-tetrazolium chloride (CTC). Reduction of CTC was not observed in the presence of the uncoupler carbonyl cyanide m-chlorophenylhydrazone (CCCP) or in the dark, indicating that sulfide serves as an electron donor for the phototrophic epibiont. Motile consortia accumulated scotophobically in microcuvettes at a wavelength of 740 nm. Since this wavelength corresponds to the position of the absorption maximum of bacteriochlorophylls c or d, the photosynthetic pigments are most likely the photoreceptors of the scotophobic response. It is concluded that, within the consortia, a rapid interspecies signal transfer occurs between the nonmotile, green-colored epibiont and the motile, colorless central bacterium. Received: 27 May 1997 / Accepted: 5 September 1997  相似文献   

17.
Motile phototrophic consortia are highly regular associations in which numerous cells of green sulfur bacteria surround a flagellated colorless β-proteobacterium in the center. To date, seven different morphological types of such consortia have been described. In addition, two immotile associations involving green sulfur bacteria are known. By employing a culture-independent approach, different types of phototrophic consortia were mechanically isolated by micromanipulation from 14 freshwater environments, and partial 16S rRNA gene sequences of the green sulfur bacterial epibionts were determined. In the majority of the lakes investigated, different types of phototrophic consortia were found to co-occur. In all cases, phototrophic consortia with the same morphology from the same habitat contained only a single epibiont phylotype. However, morphologically indistinguishable phototrophic consortia collected from different lakes contained different epibionts. Overall, 19 different types of epibionts were detected in the present study. Whereas the epibionts within one geographic region were very similar (Dice coefficient, 0.582), only two types of epibionts were found to occur on both the European and North American continents (Dice coefficient, 0.190). None of the epibiont 16S rRNA gene sequences have been detected so far in free-living green sulfur bacteria, suggesting that the interaction between epibionts and chemotrophic bacteria in the phototrophic consortia is an obligate interaction. Based on our phylogenetic analysis, the epibiont sequences are not monophyletic. Thus, the ability to form symbiotic associations either arose independently from different ancestors or was present in a common ancestor prior to the radiation of green sulfur bacteria and the transition to the free-living state in independent lineages. The present study thus demonstrates that there is great diversity and nonrandom geographical distribution of phototrophic consortia in the natural environment.  相似文献   

18.
Motile phototrophic consortia are highly regular associations in which numerous cells of green sulfur bacteria surround a flagellated colorless beta-proteobacterium in the center. To date, seven different morphological types of such consortia have been described. In addition, two immotile associations involving green sulfur bacteria are known. By employing a culture-independent approach, different types of phototrophic consortia were mechanically isolated by micromanipulation from 14 freshwater environments, and partial 16S rRNA gene sequences of the green sulfur bacterial epibionts were determined. In the majority of the lakes investigated, different types of phototrophic consortia were found to co-occur. In all cases, phototrophic consortia with the same morphology from the same habitat contained only a single epibiont phylotype. However, morphologically indistinguishable phototrophic consortia collected from different lakes contained different epibionts. Overall, 19 different types of epibionts were detected in the present study. Whereas the epibionts within one geographic region were very similar (Dice coefficient, 0.582), only two types of epibionts were found to occur on both the European and North American continents (Dice coefficient, 0.190). None of the epibiont 16S rRNA gene sequences have been detected so far in free-living green sulfur bacteria, suggesting that the interaction between epibionts and chemotrophic bacteria in the phototrophic consortia is an obligate interaction. Based on our phylogenetic analysis, the epibiont sequences are not monophyletic. Thus, the ability to form symbiotic associations either arose independently from different ancestors or was present in a common ancestor prior to the radiation of green sulfur bacteria and the transition to the free-living state in independent lineages. The present study thus demonstrates that there is great diversity and nonrandom geographical distribution of phototrophic consortia in the natural environment.  相似文献   

19.
Though a great deal of research focuses on the range expansion and presence of adult zebra mussels, there is still a need to understand the processes of larval settlement and how that relates to adult populations. There is evidence that marine bivalves preferentially settle on filamentous substrates such as hydroid colonies and algae; however, similar studies are rare in freshwater systems. We examined the importance of filamentous substrate for the settlement of the zebra mussel (Dreissena polymorpha) larvae by deploying PVC settlement plates with and without polypropylene filaments in the Bark River for a 6-week period. Larval supply was monitored weekly. Our results suggest that artificial filaments facilitated recruitment, primarily by increasing surface area available for attachment. Mussels on artificial filaments were significantly smaller in size than mussels attached to filamentous or control plate surfaces, providing some evidence that mussels may detach from filamentous substrate after initial settlement. This study adds to our general understanding about the role of filamentous substrates in the process of larval settlement and suggests that substrates colonized by filamentous epibionts may face increased risk of fouling by zebra mussels. An erratum to this article is available at .  相似文献   

20.
Associational resistance and shared doom: effects of epibiosis on herbivory   总被引:7,自引:0,他引:7  
Martin Wahl  Mark E. Hay 《Oecologia》1995,102(3):329-340
The potential for spatial associations between palatable and unpalatable plant species to reduce herbivore pressure on the palatable species has been described as associational resistance, associational refuge or associational defense for numerous terrestrial and marine communities. One of the closest associations between species-epibiosis-has not been thoroughly investigated in this regard. In this study we evaluated how different associations between host seaweeds and epibiotic plants and animals influenced the movement of an omnivorous sea urchin (Arbacia punctulata) to the host and subsequent feeding on the host. A. punctulata showed clear preferences when given pairwise choices between 12 prey species (3 animals, 9 algae). These preferences were consistent and allowed us to rank the six epibiont species and six host species linearly from least to most preferred by A. punculata. Most host-epibiont associations dramatically changed urchin preference, increasing or decreasing urchin grazing on fouled hosts as compared to clean conspecifics. Herbivory on the host increased when the epibiont was more preferred, and decreased when it was less preferred than the unfouled host alga. Taking the host species as a point of reference, we classified epibiosis-caused decrease in herbivory as associational resistance, while epibiont-caused increases in herbivory were defined as shared doom. These epibiont-host-herbivore interactions could select for hosts that facilitate the growth of certain low preference epibionts on their surfaces in situations where the resulting decreases in herbivory would offset the various negative effects of being fouled. In contrast, in situations where herbivores are common, the negative effects of being fouled by palatable epibionts may be much greater than is generally assumed. In our assays, unpalatable hosts fouled by palatable epibionts became much more attractive to urchins and rose several ranks on the urchins' preference hierarchy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号