首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
 The reproductive organs of the simultaneous hermaphrodite Sphaerosyllis hermaphrodita (Syllidae, Exogoninae) were examined by TEM and reconstructed from ultrathin serial sections. Oocytes are produced in the 11–13th chaetigerous segments and then attached to the outer body surface. The male organs comprise a seminal vesicle, testes, sperm ducts and copulatory chaetae. The unpaired seminal vesicle is an uncompartmented cavity above the gut and within the chaetigerous segments 8–10. Its interior is lined with a layer of gland cells that degenerate as spermatogenesis in the vesicle proceeds. The testes are situated ventrolaterally, close to the seminal vesicle in the 9th chaetigerous segment. They contain cells at early stages of spermatogenesis, which are connected to one another by zonulae collares. The testes and seminal vesicle are enclosed in epithelia. Paired sperm ducts run ventrally from about the midline of the body under the seminal vesicle and into the parapodia of the 9th chaetigerous segment. There they open, together with the protonephridia of this segment, to the outside next to the stout copulatory chaeta. Each sperm duct consists of six cells, the luminal surface of which bears microvilli but no cilia. Only in animals with fully differentiated sperm does the small opening of the proximal duct cell in each duct give access to the seminal vesicle. The mode of sperm transfer is discussed. Accepted: 9 December 1996  相似文献   

2.
Abstract The ultrastructure of unicellular accessory glands (= prostate glands) and external male ducts of the cestode Cylindrotaenia hickmaniare described. Accessory glands open into the lumen of the external common sperm duct (= external vas deferens). The gland cells contain abundant endoplasmic reticulum, Golgi bodies and secretory bodies, and have elongate necks that pierce the apical cytoplasm of the duct. Cell contact with the apical cytoplasm of the sperm duct is mediated by septate desmosomes. Accessory glands secrete spherical particles, with a diameter of approximately 70 nm, that adhere to spermatozoa. The roles of these accessory glands may relate to activity of the sperm or development of the female system after insemination. Paired sperm ducts arise from testes, and unite to form a common sperm duct. Each duct consists of a tubular anucleate cytoplasmic region which is supported by nucleated cytons that lie sunken in the parenchyma. The apical cytoplasm of the paired sperm ducts (= vasa efferentia) possesses apical microvilli and abundant mitochondria, but few other cytoplasmic features. The apical cytoplasm of the common sperm duct possesses sparse apical microvilli and numerous electronlucent vesicles. The male gonoducts form an elongate syncytium which is markedly polarized along the length of the ducts. The ducts also display apical–basal polarity in that sunken nucleated cytons support the apical cytoplasm which in turn has distinct basal and apical domains.  相似文献   

3.
Summary The paired prominent ejaculatory ducts of the hermaphroditic polychaete Microphthalmus cf. listensis are surrounded by gland cells the processes of which penetrate the ducts themselves. These cells produce, in separate regions, two different types of spherical granules. Type I is composed of an electron dense and an electron lucent part. Type II granules contain a tubular filament that forms a single or double spiral in the periphery of a more or less unstructured electron dense material. Golgi vesicles give rise to this granule type. During the passage of sperm, these granules are obviously discharged into the lumen of the duct. Here they change form and probably dissolve. Their function is as yet unknown; capacitation of sperm is assumed.  相似文献   

4.
Summary The structure and functional morphology of lateral organs and sperm ducts, as well as the mechanisms of spermatophore formation and transfer, are investigated by means of light and electron microscopy in the genusProtodrilus. The sperm ducts are simple, ciliated, intercellular gonoducts with a funnel section surrounded by a thin muscle layer and a tube section opening externally in the anterior region of the lateral organs. No glands are present in the sperm ducts. The lateral organs are formed by long epidermal invaginations enclosing an elongate lumen into which numerous cilia project and a large number of glands open. Five to ten different gland types with strikingly distinctive secretory granules are found in the different species. In addition, special supporting cells, the so-called sponge cells, sensory cells and an underlying nervous tissue are developed in the lateral organs. It is stated that apart from some similarities to the ventral atrium ofNerilla antennata no corresponding organs are known within the Annelida. It is argued that inProtodrilus the spermatophores are formed by the lateral organs as there are a high number of glands opening into the lumen of the organ. The possible origin and genesis of the male gonoducts as well as the mode of spermatophore transfer inProtodrilus is discussed.Abbreviations used in the figures bl basal lamina - cc coelomic cell - ci ciliated cell - cir ciliary root - cr ciliary ring - cu cuticle - cv bs contractile ventral blood sinus - d dissepiment/septum - dbs dorsal blood sinus - es euspermatozoa - f funnel - fi filament - g gut - glo gland openings - lgl lateral organ gland - lm longitudinal muscle - lo lateral organ - lu lumen - mi mitochondrion - mt microtubules - mu muscle - mv microvilli - mvc microvillar crown - n nucleus - ne nervous tissue - o opening - ps paraspermatozoa - rer rough endoplasmatic reticulum - s spermatozoa - sc sponge cell - sg salivary gland - spd sperm duct - spdo sperm duct opening - t tube - tm transverse muscle - vc ventral ciliary band  相似文献   

5.
The marine interstitial polychaete Stygocapitella subterranea is characterized by aberrant morphological and biological traits resembling those of clitellates and Hrabeiella periglandulata, a terrestrial polychaete species. Although clearly related to the terrestrial Parergodrilus heideri, there are distinct differences in their morphology. An ultrastructural study of the male genital organs was undertaken to look for common apomorphic features in Parergodrilidae, to find structural evidence for clarifying their reproductive biology and mode of sperm transfer. Finally it should be elucidated whether a supposed sister-group relationship of Parergodrilidae and Orbiniidae based on molecular evidence can be supported by morphological characters as well. In S. subterranea the male organs consist of an unpaired seminal vesicle, a pair of sperm ducts and two large tube-like prostate glands. These glands constitute the distal parts of the gonoducts and open ventrally on a small genital papilla in chaetiger 9. True copulatory organs or organs for storage of mature sperm are lacking. The seminal vesicle is a coelomic cavity composed of two apposed coelomic linings supplied with blood spaces. The testes are found ventrally. The prostate glands are covered by a single layer of muscle fibres running in a longitudinal/spiral direction along the gland. There are no signs of spermatophore formation in any part of the male system. Since females always carry sperm, pseudocopulation can be excluded and the likelihood of either direct transfer of sperm or hypodermic injection is discussed. The structure of genital organs reveals similarities to those of P. heideri. Gonochorism, paired seminal vesicles and two pairs of male gonoducts opening in chaetigers 9 and 10 with a distal glandular part most likely belong to the ground pattern of Parergodrilidae. The observations confirm that consistencies with either clitellates or H. periglandulata are the result of convergent evolutionary events. On the other hand, the relationship of Parergodrilidae to an orbiniid/questid clade receives support from the present data. This paper is dedicated to our scientific teacher, Professor Wilfried Westheide, who made significant contributions to the reproductive biology of interstitial polychaetes, on the occasion of his 70th birthday.  相似文献   

6.
A new hesionid. Sinohesione genitaliphora gen. et sp. n., is described from intertidal sandy sediments of Hainan Island, China. It differs from hitherto known hesionids by the presence of external genital organs in both sexes. In the males there is one pair of sae-like appendages, each bearing a tube-shaped penis, on chaetiger 10. In the females the paired sae-shaped organs are situated on chaetiger 12. Reconstructions of semi- and ultrathin sections show that a long, heavily coiled sperm duct opens at the tip of each penis. The duct opens with a ciliated funnel into a seminal vesicle in chaetiger 9. Prominent gland cells surround the sperm duct for the most part. The female genital organs each have two openings; one of which leads to a blind ending seminal receptacle. The other is the external pore of a ciliated oviduct that originates as an open funnel in the coelom of chaetiger 10. The functional and phylogenetic significance of these structures is discussed.  相似文献   

7.
Inside the labrum of Leptestheria dahalacensis are situated three types of large epidermal gland cells, whose ducts open onto the outer dorsal surface of the labrum. SEM revealed that the thin ducts of the A-type gland cells open out behind the epipharynx at the end of small, conically shaped protuberances, the two paired ducts of the B-type gland cells lead into the distal portion of the labrum, and the external opening of the single duct of the C-type gland cells lies on the dorsal lobe of the labrum. The ducts of the three different gland cell types have the same fundamental constitution, but vary in diameter. Each secretory unit consists of a pair of gland cells (A, B, or C) and a secretory duct. The duct is formed by ring-shaped folding of one anteroposteriorly elongated epidermal cell (duct cell), whose ends adhere closely to one another. A further ring-folded epidermal cell (accessory cell), but flattened in shape, is interposed, like a sleeve-connection, between the gland cells and the duct cell. The reservoirs of gland cells open into the lumen of the duct. Discontinuous deposits of highly electron-dense matter are present on the plasma membrane of the accessory cell delimiting the initial part of the duct lumen, while the plasma membrane of the duct cell facing the lumen is cuticularized. The cytoplasm of the accessory cell, on examination by TEM, appears quite similar to that of the duct cell, except for the different distribution and greater abundance of microtubules. Similarly organized tricellular tegumental glands also commonly occur in other Crustacea, both Malacostraca and non-Malacostraca. Possible functions of secretions from the three different types of gland cells present in the labrum of L. dahalacensis are discussed.  相似文献   

8.
D. J. Merritt 《Zoomorphology》1989,108(6):359-366
Summary The mechanism of insemination in Lucilia cuprina is described. There are four duct openings on the phallosome. The terminal pore is continuous with the internal reproductive organs. The sub-terminal pore and paired, lateral pores are the openings of ducts formed by cuticular invaginations. The male accessory gland material appears to be re-routed from the terminal pore into the ducts of the lateral barbs once sperm transfer is complete. A novel means of deposition of the male accessory material is described, in which paired barbs on the phallosome tear the cuticle of thick-walled pads in the bursa copulatrix. After mating, accessory material is found within intra-cuticular spaces in the bursa copulatrix, which appear to become sealed at the points of penetration by plugs or scars.  相似文献   

9.
Summary The structure of the male reproductive systems of two species ofHaplognathia cf.lyra andH. cf.rosacea was described. The structure of the testes and the anterior portions of the sperm ducts in both species was found to be similar. However, considerable species differences were found between the structures of the glands and muscles associated with the reproductive systems. These were more elaborate inH. cf.lyra than inH. cf.rosacea. The former species possessed an H-shaped sperm duct gland, three distinct groups of penis muscles and a penis with two cell types and with a lumen. The latter species had paired sperm duct glands, no specialized penis muscles and a penis with only one cell type and without a detectable lumen. No open gonopore was observed in either species. The sperm presumably exit through a ventral tissue connection observed connecting the penis and the ventral epidermis. These findings were discussed in the light of Mainitz's (1977) theory concerning the primitive penis type within the Gnathostomulida.Abbreviations ap anterior-posterior penis muscles - bm basement membrane - csd common sperm duct - dl dorsal lumen of the penis - dp dorsal gland cells of the penis - dv dorsoventral muscles anterior to the penis - dw sperm duct wall cell - e epidermis - ex exit cell - g intestine - gl gut lumen - n nerve - p penis - sd sperm duct - sdg sperm duct gland - tw testes wall cell - vl ventral lumen of the penis - vp ventral gland cells of the penis This project was supported by NSF grant #GB 42211 (R.M. Rieger P.I.). The line drawings have been executed after our design by Ms. Linda McVay  相似文献   

10.
The objective of this study was to examine the regeneration capacity of the spionid polychaete Marenzelleria viridis from Long Island, New York. In the field, ~7% of the worms exhibited regeneration of the anterior end. In the laboratory, worms were ablated at the 10th–50th chaetiger and their regeneration documented. Anterior morphogenesis was similar to that previously reported for spionids, with wound healing, blastema formation, differentiation of segments, and formation of feeding and sensory structures (mouth, palps, nuchal organs) occurring within 14 d. Unlike in some spionids, the segments do not appear to all form simultaneously from the blastema; rather, external differentiation of segments was observed from posterior to anterior on the regenerate. The number of segments replaced was equal to the number ablated for up to 10 segments. A maximum of 17 segments were replaced when 20–30 chaetigers were ablated, and the number replaced decreased to 14 when 40–50 chaetigers were ablated. Survival and normal growth of the worms decreased with more chaetigers ablated; a significantly higher number of worms died or grew abnormally with ≥30 chaetigers ablated, compared to worms with ≤20 chaetigers ablated. Members of M. viridis could be valuable model organisms in the study of the cellular mechanisms involved in regeneration, and further research on regeneration in the field should be completed.  相似文献   

11.
12.
The digestive organs possibly involved in food absorption in Loligo vulgaris and L. forbesi are the caecum, the intestine, the digestive gland, and the digestive duct appendages. The histology and the fine structure showed that the ciliated organ, the caecal sac, and the intestine are lined with a ciliated epithelium. The ciliary rootlets are particularly well developed in the ciliated organ, apparently in relation to its function of particle collection. Mucous cells are present in the ciliated organ and the intestine. Histologically, the digestive gland appears rather different from that of other cephalopods. However, the fine structure of individual types of squid digestive cell is actually similar to that of comparable organs in other species, and the squid cells undergo the same stages of activity. Digestive cells have a brush border of microvilli, and numerous vacuoles, which sometimes contain “brown bodies.” However, no “boules” (conspicuous protein inclusions of digestive cells in other species) could be identified in their cytoplasm; instead only secretory granules are present. In the digestive duct appendages, numerous membrane infoldings associated with mitochondria are characteristic features of the epithelial cells in all cephalopods. Two unusual features were observed in Loligo: first, the large size of the lipid inclusions in the digestive gland, in the caecal sac, and in the digestive duct appendages; and second, the large number of conspicuous mitochondria with well-developed tubular cristae. When injected into the caecal sac, ferritin molecules can reach the digestive gland and the digestive duct appendages via the digestive ducts, and they are taken up by endocytosis in the digestive cells. Thus, it appears that the digestive gland of Loligo can act as an absorptive organ as it does in other cephalopods.  相似文献   

13.
瘤背石磺的生殖系统和性腺发育   总被引:25,自引:1,他引:24  
2003年5~8月对瘤背石磺(Onchidium struma)的生殖系统结构和性腺发育进行了组织学研究。瘤背石磺生殖器包括两性腺、卵黄腺、蛋白腺。两性腺具有外管和内管,两管相连后通入蛋白腺,内管分支为收集管与腺泡相通。蛋白腺包括腺体部和分泌物两部分,中央为生殖输送管,蛋白腺具食指突和拇指突。性腺腺泡包括精子期腺泡、卵子期腺泡、精卵同泡和排空期腺泡4种类型。本文还对卵黄腺、受精囊、雄性交接器等结构进行了组织学观察,分析了精子和卵子的发育过程、运输路径。  相似文献   

14.
Seven specimens of Rhynchodemus sylvaticus (Leidy) collected from a variety of localities in the US and having variously developed copulatory organs are believed to represent stages in the development of the copulatory apparatus. Four specimens were juveniles with under-developed male components, one specimen had a well-developed female atrium and small male component, and two specimens were mature with a male organ twice the size of the female part. In early stages, the male component had sperm ducts, seminal vesicle, and narrow atrium; more mature stages had a considerable elongated atrium with thick folds in its muscularized wall, a massive muscular bulbus; and a sigmoid ejaculatory duct opening into the large bulbar cavity. Morphological features of mature male copulatory organs in all species of the genus Rhynchodemus are basically similar whereas external body features (color and number of dorsal stripes) of these same species differ.  相似文献   

15.
The paper deals with the development of the salivary gland system in Melipona quadrifasciata anthidioides, which begins in the prepupal stage. The silk glands degenerate by autolysis at the end of the larval stage. Degeneration is characterized by cytoplasmic vacuolization and pycnosis of the nuclei of the secretory cells. The glandular secretory portion of degenerated silk glands separates from the excretory ducts. The salivary glands develop from the duct of the larval silk glands. The thoracic salivary glands develop from the ducts of the secretory tubules and the head salivary glands from the terminal excretory duct. The mandibular glands appear in the prepupa as invaginations of mandibular segments, and their differentiation to attain the adult configuration occurs during pupation. The hypopharyngeal glands have their origin from evaginations of the ventral anterior portion of the pharynx. A long tubule first appears with walls formed by more than one cellular layer. Then some cells separate from the lumen of the duct, staying attached to it by a cuticular channel in part intracellular. The initial duct constitutes the axial duct, in which the channel of the secretory cells opens. During the development of salivary and mandibular glands, they recapitulate primitive stages of the phylogeny of the bees. During the development of salivary glands system, mitosis accounts for only part of the growth. Most of the growth occurs by increase in size of cells rather than by cell division. In brown-eyed and pigmented pupae six days before emergence, the salivary gland system is completely developed, although not yet functioning.  相似文献   

16.
The ejaculatory ducts of the two paired copulatory organs in the interstitial polychaeteHesionides arenaria are ciliated tubes, which open into simple, partly groove-like, non-stiffened penis papillae. The larger part of the ducts within the dorsal body wall is surrounded by circular muscle cells. Voluminous gland cell bodies lie between the pharynx-gut system and the body wall in the anterior part of the body; they extend anteriorly like long, thin necks, of which severl are always united in prominent strands. Their distal ends are expanded and penetrate the ducts. Six different types of glands can be distinguished according to the ultrastructure of their secretory granules. They produce the sheath of the double spermatophore or probably contain lytic enzymes that provide for the penetration of sperm into the body of the female. Differences in ultrastructure of the male organs in the interstitial generaHesionides andMicrophthalmus do not support the recent erection of the subfamily Microphthalminae.  相似文献   

17.
The ameroseiid mite Hattena cometis has a male genital system that consists of an unpaired, u‐shaped testis and paired deferent ducts leading into an unpaired accessory genital gland and ejaculatory duct. The genital opening is located anteriorly immediately in front of the sternal shield. Spermatogenesis is simple, probably due to the haploid nature of the male. Eight stages of spermatogenesis could be roughly distinguished. Mature spermatozoa as found in the deferent duct lumen are peculiar in having a bisected nucleus and numerous peripheral flat chambers, which were formed from indentations of the plasmalemma. In inseminated females, spermatozoa were observed in the syncytial tissue of the sperm access system and in the somatic cells of the ovary. These spermatozoa have achieved a new structure, i.e., an electron‐dense plate dividing the cell into two unequal halves. The dense plate has an intricate substructure. Its function is unknown. These sperm cells are considered to represent capacitated spermatozoa. The peripheral chambers are reduced in number inside the female. Similar sperm cells, containing a dense plate, were seen in vacuoles within the epithelium of the deferent duct of one male. These cells are evidently under destruction, but before being completely dissolved had undergone a development leading beyond that of the mature sperm cells found in the deferent duct. Apparently, entering the cell of the deferent duct epithelium or the syncytium tissue triggers the production of the dense plate (or the capacitation process). Our observations are compared with results obtained from other anactinotrichid Acari, mainly Gamasida, and confirm and complete the interpretation of the correlated evolution of components of gamasid reproductive systems. J. Morphol. 274:1010–1025, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   

18.
The glandular kininogenase kallikrein is known to occur in many mammalian organs and glands but direct histochemical localization has been achieved in only a few cases. We have now been able to localize porcine kallikrein in the acinar cells of the pancreas and in the striated and collecting duct cells of the submandibular gland. Incubation of frozen and fixed sections with one of the crossreacting antibodies, anti-pancreatic, anti-submandibular or anti-urinary kallikrein IgG resulted in the same immunofluorescence pattern. There was evidence of a specific fluorescence neither in the acinar cells, nor in the interstitial tissue or blood cells of the submandibular gland nor in the islets of Langerhans, the interlobular ducts or blood vessels of the pancreas. From all data now available about glandular kallikreins, it seems that the kallikreins in these organs are very similar.  相似文献   

19.
In chondrichthyes, the process of spermatogenesis produces a spermatocyst composed of Sertoli cells and their cohort of associated spermatozoa linearly arrayed and embedded in the apical end of the Sertoli cell. The extratesticular ducts consist of paired epididymis, ductus deferens, isthmus, and seminal vesicles. In transit through the ducts, spermatozoa undergo modification by secretions of the extratesticular ducts and associated glands, i.e., Leydig gland. In mature animals, the anterior portion of the mesonephros is specialized as the Leydig gland that connects to both the epididymis and ductus deferens and elaborates seminal fluid and matrix that contribute to the spermatophore or spermatozeugmata, depending on the species. Leydig gland epithelium is simple columnar with secretory and ciliated cells. Secretory cells have periodic acid-Schiff positive (PAS+) apical secretory granules. In the holocephalan elephant fish, Callorhynchus milii, sperm and Sertoli cell fragments enter the first major extratesticular duct, the epididymis. In the epididymis, spermatozoa are initially present as individual sperm but soon begin to laterally associate so that they are aligned head-to-head. The epididymis is a highly convoluted tubule with a small bore lumen and an epithelium consisting of scant ciliated and relatively more secretory cells. Secretory activity of both the Leydig gland and epididymis contribute to the nascent spermatophores, which begin as gel-like aggregations of secretory product in which sperm are embedded. Fully formed spermatophores occur in the ductus. The simple columnar epithelium has both ciliated and secretory cells. The spermatophore is regionalized into a PAS+ and Alcian-blue-positive (AB+) cortex and a distinctively PAS+, and less AB+ medulla. Laterally aligned sperm occupy the medulla and are surrounded by a clear zone separate from the spermatophore matrix. Grossly, the seminal vesicles are characterized by spiral partitions of the epithelium that project into the lumen, much like a spiral staircase. Each partition is staggered with respect to adjacent partitions while the aperture is eccentric. The generally nonsecretory epithelium of the seminal vesicle is simple columnar with both microvillar and ciliated cells.  相似文献   

20.
The excretory organs of the freshwater polychaete Hypania invalida have been examined using scanning and transmission electron microscopy. Three pairs of macroscopically and ultrastructurally different nephridia are present in the thorax. Intersegmental septa in the thorax are absent, with the exception of a single diaphragm between second and third chaetiger. The first pair of nephridia is anterior to this septum, the second pair crosses the septum, with the nephrostomes anterior and the ducts and the nephridiopori posterior to it, and the third pair of nephridia is entirely posterior to the diaphragm. The first two pairs of nephridia have ciliated nephrostomes of moderate size and long nephridial ducts that extend the length of the thorax. In contrast, the third pair is characterized by short ducts and very prominent nephrostomes. Macroscopically, seven different sections of nephridial duct cells can be distinguished along the length of the first two pairs of nephridia, whereas, on an ultrastructural basis, only six different regions can be identified. Only two regions of different duct cells can be recognized in the third pair of nephridia. Cells of the two anterior pairs of nephridia show typical characteristics of transport epithelia and most likely function as excretory organs. In contrast, the duct cells of the third pair are not that much differentiated and might primarily be responsible for the release of sexual products, as sperm was observed passing through these ducts. Podocyte‐like cells were observed to accompany nephridial ducts. J. Morphol., 2011. © 2010 Wiley‐Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号