首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Inside-out patches from ROS plasma membranes contain the basic enzymes of the phototransduction cascade. Similar to a native photoreceptor cell, such patches are capable of responding to light, the effect of which suppresses the cGMP-activated current. Photoresponses are observed only in the presence of GTP, whereas ATP essentially accelerates the current recovery to a dark level. Photoresponses are also observed in the presence of 8BrcGMP. Phosphodiesterase (PDE) hydrolyzes 8BrcGMP two orders of magnitude slower than cGMP, so the light inhibition of the 8BrcGMP-induced current cannot be accounted for by PDE activation. It seems that activity of cGMP-gated channels depends not only on cGMP concentration, but is additionally controlled by some other regulatory mechanisms.  相似文献   

2.
Detection threshold in cone photoreceptors requires the simultaneous absorption of several photons because single photon photocurrent is small in amplitude and does not exceed intrinsic fluctuations in the outer segment dark current (dark noise). To understand the mechanisms that limit light sensitivity, we characterized the molecular origin of dark noise in intact, isolated bass single cones. Dark noise is caused by continuous fluctuations in the cytoplasmic concentrations of both cGMP and Ca(2+) that arise from the activity in darkness of both guanylate cyclase (GC), the enzyme that synthesizes cGMP, and phosphodiesterase (PDE), the enzyme that hydrolyzes it. In cones loaded with high concentration Ca(2+) buffering agents, we demonstrate that variation in cGMP levels arise from fluctuations in the mean PDE enzymatic activity. The rates of PDE activation and inactivation determine the quantitative characteristics of the dark noise power density spectrum. We developed a mathematical model based on the dynamics of PDE activity that accurately predicts this power spectrum. Analysis of the experimental data with the theoretical model allows us to determine the rates of PDE activation and deactivation in the intact photoreceptor. In fish cones, the mean lifetime of active PDE at room temperature is approximately 55 ms. In nonmammalian rods, in contrast, active PDE lifetime is approximately 555 ms. This remarkable difference helps explain why cones are noisier than rods and why cone photocurrents are smaller in peak amplitude and faster in time course than those in rods. Both these features make cones less light sensitive than rods.  相似文献   

3.
Brief, intracellularly injected pulses of cyclic GMP transiently depolarized toad retinal rod outer segments (ROS). The depolarization is antagonized by light, perhaps by the activation of phosphodiesterase (PDE), as shown in the biochemical studies of others. As measured by the antagonism of cyclic GMP pulses by light, PDE activity peaks after the peak of the receptor potential and has approximately the same recovery time as the membrane voltage after weak illumination, but recovers more slowly than the membrane potential after strong illumination, as sensitivity does in other preparations. A cyclic GMP pulse delivered just after the hyperpolarizing phase of the receptor potential tends to turn off the light response. The kinetics of recovery from this turnoff are similar to those of the initial phase of the receptor potential. This similarity suggests that the initial phase of the receptor potential is controlled by light-activated PDE. Both EGTA and saturating doses of cyclic GMP block the light response, but only cyclic GMP increases response latency, which suggests that if calcium is involved in transduction, it is controlled by the hydrolysis of cyclic GMP. After brief pulses of cyclic AMP, a new steady state of increased depolarization occasionally develops. The effects described above also occur under these conditions. The results are consistent with the hypothesis that light-activated hydrolysis of cGMP is an intermediary process in transduction.  相似文献   

4.
The cGMP phosphodiesterase (PDE) of retinal rods plays a central role in phototransduction. Illumination leads to its activation by a rod G-protein (Gt, transducin), thus causing a decrease in intracellular cGMP concentration, closure of plasma membrane cationic channels gated by cGMP, and development of the photoresponse. The PDE holoenzyme is an alpha beta gamma 2 tetramer. The alpha- and beta-subunits each contain one catalytic and one, or possibly two, noncatalytic cGMP-binding sites. Two identical gamma-subunits serve as protein inhibitors of the enzyme. Their inhibition is removed when they bind to Gt-GTP during PDE activation. Here we report that the noncatalytic cGMP-binding sites regulate the binding of PDE alpha beta with PDE gamma and as a result determine the mechanism of PDE activation by Gt. If the noncatalytic sites are empty, Gt-GTP physically removes PDE gamma from PDE alpha beta upon activation. Alternatively, if the noncatalytic sites are occupied by cGMP, Gt-GTP releases PDE gamma inhibitory action but remains bound in a complex with the PDE heterotetramer. The kinetic parameters of activated PDE in these two cases are indistinguishable. This mechanism appears to have two implications for the physiology of photoreceptor cells. First, the tight binding of PDE gamma with PDE alpha beta when the noncatalytic sites are occupied by cGMP may be responsible for the low level of basal PDE activity observed in dark-adapted cells. Second, occupancy of the noncatalytic sites ultimately controls the rate of PDE inactivation (cf. Arshavsky, V. Yu., and Bownds, M. D. (1992) Nature 357, 416-417), for the GTPase activity that terminates PDE activity is slower when these sites are occupied and Gt stays in a complex with PDE holoenzyme. In contrast GTPase acceleration is maximal when the noncatalytic sites are empty and Gt-PDE gamma dissociates from PDE alpha beta. Because cGMP levels are known to decrease upon illumination over a concentration range corresponding to the binding constants of the noncatalytic sites, the binding might be involved in determining the lifetime of activated PDE, after a single flash and/or during dark adaptation.  相似文献   

5.
The early receptor potential (ERP), membrane potential, membrane resistance, and sensitivity were measured during light and/or dark adaptation in the ventral eye of Limulus. After a bright flash, the ERP amplitude recovered with a time constant of 100 ms, whereas the sensitivity recovered with an initial time constant of 20 s. When a strong adapting light was turned off, the recovery of membrane potential and of membrane resistance had time-courses similar to each other, and both recovered more rapidly than the sensitivity. The receptor depolarization was compared during dark adaptation after strong illumination and during light adaptation with weaker illumination; at equal sensitivities the cell was more depolarized during light adaptation than during dark adaptation. Finally, the waveforms of responses to flashes were compared during dark adaptation after strong illumination and during light adaptation with weaker illumination. At equal sensitivities (equal amplitude responses for identical flashes), the responses during light adaptation had faster time-courses than the responses during dark adaptation. Thus neither the photochemical cycle nor the membrane potential nor the membrane resistance is related to sensitivity changes during dark adaptation in the photoreceptors of the ventral eye. By elimination, these results imply that there are (unknown) intermediate process(es) responsible for adaptation interposed between the photochemical cycle and the electrical properties of the photoreceptor.  相似文献   

6.
We studied the activation of 3',5'-cyclic guanosine monophosphate (cGMP) phosphodiesterase (PDE) by using a cell-permeant enzyme inhibitor. Rods of Ambystoma tigrinum held in a suction electrode were jumped into a stream of 3-isobutyl-1-methylxanthine (IBMX), 0.01-1 mM. Initial transient light-sensitive currents fit the notion that dark and light-activated forms of PDE contributed independently to metabolic activity and were equivalently inhibited by IBMX (apparent Ki 30 microns). Inhibition developed within 50 ms, producing a step decrease of enzyme velocity, which could be offset by activation with flashes or steps of light. The dark PDE activity was equivalent to light activation of enzyme by 1,000 isomerization rod-1s-1, sufficient to hydrolyze the free cGMP pool (1/e) in 0.6 s. Steady light activated PDE in linear proportion to isomerization rate, the range from darkness to current saturation amounting to a 10-fold increase. The conditions for simultaneous onset of inhibitor and illumination to produce no net change of membrane current defined the apparent lifetime of light-activated PDE, TPDE* = 0.9 s, which was independent of both background illumination and current over the range 0-3 x 10(5) isomerization s-1, from 50 to 0 pA. Adaptation was a function of current rather than isomerization: jumps with different proportions of IBMX concentration to steady light intensity produced equal currents, and followed the same course of adaptation in maintained light, despite a 10-fold difference of illumination. Judged from the delay between IBMX- and light-induced currents, the dominant feedback regulatory site comes after PDE on the signal path. The dark active PDE affects the hydrolytic flux and cytoplasmic diffusion of cGMP, as well as the proportional range of the cGMP activity signal in response to light.  相似文献   

7.
N J Philp  W Chang  K Long 《FEBS letters》1987,225(1-2):127-132
We examined the intracellular distribution of three proteins involved in the cyclic GMP cascade of visual transduction; cGMP phosphodiesterase, the alpha-subunit of G-protein and arrestin. In adult rats, light-induced changes in the amounts of G and arrestin in the photoreceptor cell outer segments were observed both by polyacrylamide gel analysis of purified ROS and by immunocytochemical localization on retinal sections. In dark conditions, G was concentrated in the outer segments of photoreceptor cells while in the light G alpha was seen in the inner segments and the outer nuclear layer. Arrestin had the opposite distribution, appearing in the inner segments and outer nuclear layer under dark conditions and in the ROS under light conditions. In contrast, PDE, the enzyme which is activated by G and inhibited by arrestin showed no light-stimulated movement. In both light- and dark-adapted retinas, PDE was localized primarily in the outer segments of the photoreceptor cells.  相似文献   

8.
The rod photoreceptor phosphodiesterase (PDE) is unique among all known vertebrate PDE families for several reasons. It is a catalytic heterodimer (alphabeta); it is directly activated by a G-protein, transducin; and its active sites are regulated by inhibitory gamma subunits. Rod PDE binds cGMP at two noncatalytic sites on the alphabeta dimer, but their function is unclear. We show that transducin activation of frog rod PDE introduces functional heterogeneity to both the noncatalytic and catalytic sites. Upon PDE activation, one noncatalytic site is converted from a high affinity to low affinity state, whereas the second binding site undergoes modest decreases in binding. Addition of gamma to transducin-activated PDE can restore high affinity binding as well as reducing cGMP exchange kinetics at both sites. A strong correlation exists between cGMP binding and gamma binding to activated PDE; dissociation of bound cGMP accompanies gamma dissociation from PDE, whereas addition of either cGMP or gamma to alphabeta dimers can restore high affinity binding of the other molecule. At the active site, transducin can activate PDE to about one-half the turnover number for catalytic alphabeta dimers completely lacking bound gamma subunit. These results suggest a mechanism in which transducin interacts primarily with one PDE catalytic subunit, releasing its full catalytic activity as well as inducing rapid cGMP dissociation from one noncatalytic site. The state of occupancy of the noncatalytic sites on PDE determines whether gamma remains bound to activated PDE or dissociates from the holoenzyme, and may be relevant to light adaptation in photoreceptor cells.  相似文献   

9.
Cyclic GMP is the second messenger in phototransduction and regulates the photoreceptor current. In the present work, we tried to understand the regulation mechanism of cytoplasmic cGMP levels in frog photoreceptors by measuring the photoreceptor current using a truncated rod outer segment (tROS) preparation. Since exogenously applied substance diffuses into tROS from the truncated end, we could examine the biochemical reactions relating to the cGMP metabolism by manipulating the cytoplasmic chemical condition. In tROS, exogenously applied GTP produced a dark current whose amplitude was half-maximal at approximately 0.4 mM GTP. The conductance for this current was suppressed by light in a fashion similar to when it is activated by cGMP. In addition, no current was produced in the absence of Mg2+, which is known to be necessary for the guanylate cyclase activity. These results indicate that guanylate cyclase was present in tROS and synthesized cGMP from exogenously applied GTP. The enzyme activity was distributed throughout the rod outer segment. The amount of synthesized cGMP increased as the cytoplasmic Ca2+ concentration of tROS decreased, which indicated the activation of guanylate cyclase at low Ca2+ concentrations. Half-maximal effect of Ca2+ was observed at approximately 100 nM. tROS contained the proteins involved in the phototransduction mechanism and therefore, we could examine the regulation of the light response waveform by Ca2+. At low Ca2+ concentrations, the time course of the light response was speeded up probably because cGMP recovery was facilitated by activation of the cyclase. Then, if the cytoplasmic Ca2+ concentration of a photoreceptor decreases during light stimulation, the Ca2+ decrease may explain the acceleration of the light response during light adaptation. In tROS, however, we did observe an acceleration during repetitive light flashes when the cytoplasmic Ca2+ concentration increased during the stimulation. This result suggests the presence of an additional light-dependent mechanism that is responsible for the acceleration of the light response during light adaptation.  相似文献   

10.
We used an apparatus in which pieces of dark-adapted amphibian retinas (Rana pipiens, Bufo marinus) obtained under infrared illumination were exposed to precise intervals of 500-nm illuminations, and then frozen by contact of their outer segment surface with a liquid helium-cooled copper mirror. Sections of the frozen outer segment layer were obtained in a cryostat and then assayed for total extractable cyclic 3',5'-guanosine monophosphate (cGMP). Significant losses of cGMP with respect to the dark level were evident as early as 60 ms after light onset. With dim subsecond illuminations these losses were surprisingly large, which suggests a previously underestimated magnification in the cGMP cascade, or a transient substantial inhibition of guanylate cyclase activity in combination with increased cyclic GMP phosphodiesterase activity. Within the subsecond period, significant losses that were proportional to light intensity (2-log-unit range) and duration (60-550 ms) were generally not evident. However, losses significantly proportional to these factors became evident with durations of 1 s or longer. When pieces of retina were first illuminated (10 or 60 ms), then held in darkness for increasing periods before freezing, we observed a continuous loss of cGMP during the early postillumination dark period, followed by a recovery of the total cGMP level. The times for recovery to the preillumination level appear to be significantly longer than times reported for the recovery of the photoreceptor membrane potential after similar light exposures.  相似文献   

11.
CNBr treatment of rod outer segments was performed in dark and in light conditions. With the subsequent modified rhodopsin and opsin the cGMP phosphodiesterase activation system was reconstituted. The recombination systems exhibited greatly reduced G-protein binding, GTP gamma S binding and cGMP phosphodiesterase activation. The reduction in activity of these three steps of the PDE activation cascade is most significant with modified opsin and is shown to be due to its inability to bind the G alpha subunit. The correlation between the localization of CNBr cleavage in dark and light conditions and these results is strongly indicative that a light-induced conformational change occurs in two extradiscal regions of rhodopsin.  相似文献   

12.
In early studies, both cyclic AMP (cAMP) and cGMP were considered as potential secondary messengers regulating the conductivity of the vertebrate photoreceptor plasma membrane. Later discovery of the cGMP specificity of cyclic nucleotide–gated channels has shifted attention to cGMP as the only secondary messenger in the phototransduction cascade, and cAMP is not considered in modern schemes of phototransduction. Here, we report evidence that cAMP may also be involved in regulation of the phototransduction cascade. Using a suction pipette technique, we recorded light responses of isolated solitary rods from the frog retina in normal solution and in the medium containing 2 µM of adenylate cyclase activator forskolin. Under forskolin action, flash sensitivity rose more than twofold because of a retarded photoresponse turn-off. The same concentration of forskolin lead to a 2.5-fold increase in the rod outer segment cAMP, which is close to earlier reported natural day/night cAMP variations. Detailed analysis of cAMP action on the phototransduction cascade suggests that several targets are affected by cAMP increase: (a) basal dark phosphodiesterase (PDE) activity decreases; (b) at the same intensity of light background, steady background-induced PDE activity increases; (c) at light backgrounds, guanylate cyclase activity at a given fraction of open channels is reduced; and (d) the magnitude of the Ca2+ exchanger current rises 1.6-fold, which would correspond to a 1.6-fold elevation of [Ca2+]in. Analysis by a complete model of rod phototransduction suggests that an increase of [Ca2+]in might also explain effects (b) and (c). The mechanism(s) by which cAMP could regulate [Ca2+]in and PDE basal activity is unclear. We suggest that these regulations may have adaptive significance and improve the performance of the visual system when it switches between day and night light conditions.  相似文献   

13.
Light activation of GTP binding to G-protein and its eventual hydrolysis are hypothesized to lead to activation and inactivation of cGMP phosphodiesterase (PDE) in vertebrate rod disk membranes (RDM). However, the reported GTPase rate of 3 per minute is too slow to account for the observed rapid inactivation of PDE. Our investigations on GTPase activity showed that RDM isolated in the dark have considerable dark GTPase activity, which is enhanced by light. In dark and light, the enzyme exhibits biphasic substrate dependence with two Km's for GTP of 2-3 and 40-80 microM at 22 degrees C and less than 1 and 10-25 microM at 37 degrees C. The Km's were not influenced by light. On the basis of G-protein content of the RDM, the Vmax's for the two activities at 37 degrees C in light are 4-5 and 20-30 GTPs hydrolyzed per minute per G-protein. RDM washed free of soluble and peripheral proteins do not have measurable GTPase activity in the dark or light. Purified G-protein alone also did not turn over GTP, apparently because bleached rhodopsin is required for it to bind GTP. Reconstitution of washed membranes with purified G-protein restores both the low- and high-Km GTPase activities. Inactivation of G-protein as measured by PDE turnoff and dissociation signal recovery is found to be faster at higher than lower [GTP], consistent with the observation that the higher GTPase activity associated with the higher Km alos resides in the G-protein.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
The light-activated guanosine 3',5'-cyclic monophosphate (cyclic GMP) phosphodiesterase (PDE) of frog photoreceptor membranes has been assayed by measuring the evolution of protons that accompanies cyclic GMP hydrolysis. The validity of this assay has been confirmed by comparison with an isotope assay used in previous studies (Robinson et al. 1980. J. Gen. Physiol. 76: 631-645). The PDE activity elicited by either flash or continuous dim illumination is reduced if ATP is added to outer segment suspensions. This desensitization is most pronounced at low calcium levels. In 10(-9) M Ca++, with 0.5 mM ATP and 0.5 mM GTP present, PDE activity remains almost constant as dim illumination and rhodopsin bleaching continue. At intermediate Ca++ levels (10-7-10-5M) the activity slowly increases during illumination. Finally, in 10(-4) and PDE activity is more a reflection of the total number of rhodopsin molecules bleached than of the rate of the rhodopsin bleaching. At intermediate or low calcium levels a short-lived inhibitory process is revealed by observing a nonlinear summation of responses of the enzyme to closely spaced flashes of light. Each flash makes PDE activity less responsive to successive flashes, and a steady state is obtained in which activation and inactivation are balanced. It is suggested that calcium and ATP regulation of PDE play a role in the normal light adaption processes of frog photoreceptor membranes.  相似文献   

15.
The enzyme soluble guanylyl cyclase (SGC) mediates physiological effects of the gaseous signalling molecule nitric oxide by generating the second messenger molecule cyclic-GMP (cGMP). Here we have demonstrated that SGC is expressed in photoreceptor cells of locust compound eyes. However, stimulation of SGC activity in the eyes was observed only in the dark, indicating that light may cause inhibition of SGC activity in locust photoreceptor cells. Because light causes elevation of cytosolic Ca2+ in insect photoreceptor cells, we investigated the involvement of Ca2+ in mediating the inhibitory effect of light on SGC activity in the locust eye. Light-adapted locust eyes incubated with Ca2+-free physiological saline displayed a similar level of stimulated SGC activity to that normally seen only in dark-adapted eyes. These data indicate for the first time that Ca2+ may regulate SGC activity in cells. Moreover, the dark dependence of SGC activity in the locust eye suggests that SGC and cGMP may participate in dark-adaptation mechanisms in insect photoreceptor cells.  相似文献   

16.
In vertebrate rods, dark and light conditions produce changes in guanosine 3′,5′‐cyclic monophosphate (cGMP) and calcium (Ca2+) levels, which are regulated by the opposing function of several proteins. During the recovery of a bright flash, guanylate cyclase (GUCY) helps raise cGMP to levels that open cGMP‐gated calcium sodium channels (CNG) to increase Na+ and Ca2+ influx in the outer segment. In contrast, light activates cGMP phosphodiesterase 6 (PDE6) causing rapid hydrolysis of cGMP, CNG closure, and reduced Na+ and Ca2+ levels. In Pde6b mouse models of retinitis pigmentosa (RP), photoreceptor death is preceded by abnormally high cGMP and Ca2+ levels, likely because of continued synthesis of cGMP by guanylate cyclases and unregulated influx of Ca2+ to toxic levels through CNG channels. To reverse the effects of Pde6b loss of function, we employed an shRNA knockdown approach to reduce the expression of Gucy2e or Cnga1 in Pde6bH620Q photoreceptors prior to degeneration. Gucy2e‐ or Cnga1‐shRNA lentiviral‐mediated knockdown GUCY2E and CNGA1 expression increase visual function and photoreceptor survival in Pde6bH620Q mice. We demonstrated that effective knockdown of GUCY2E and CNGA1 expression to counteract loss of PDE6 function may develop into a valuable approach for treating some patients with RP.  相似文献   

17.
A flash of light initiates a cascade of biochemical reactions inside vertebrate photoreceptor cells, culminating in hydrolysis of intracellular cyclic GMP and hyperpolarization of the cell. The cell recovers by shutting down this cascade and resynthesizing cGMP. Many of the reactions responsible for the excitation and recovery phases of the photoresponse have been identified. Here I review some characteristics of the proteins that participate in these reactions.  相似文献   

18.
19.
Guanylate cyclase activity was measured in disrupted rod outer segments of the toad retina. The experiments showed that cGMP is synthesized from GTP at a rate of 3 +/- 1 nmol/min per mg protein. In darkness this value is largely independent of the Ca2+ concentration, while it is enhanced by flashes of light of increasing intensity upon lowering Ca from 10-5 to 10-8 M. In view of recent observations that shortly after a flash of light calcium activity inside the photoreceptor cell decreases, it seems likely that calcium plays a regulatory role in cGMP metabolism in visual excitation.  相似文献   

20.
A Caretta  P J Stein 《Biochemistry》1986,25(9):2335-2341
Under conditions in which large guanosine cyclic 3',5'-phosphate (cGMP)- and phosphodiesterase (PDE)-dependent changes in near-infrared transmission and vesicle aggregation and disaggregation occur, we have observed a striking change in the binding of PDE to rod disk membranes. The change in PDE binding is nucleotide and light dependent as are the light-scattering changes. The cGMP- and PDE-dependent light-scattering signal can be produced by a 500-nm light flash which bleaches 1/(1 X 10(7] rhodopsin molecules. Mg ions are an essential cofactor for the nucleotide-dependent PDE binding and light-scattering changes. 3-Isobutyl-1-methylxanthine and other competitive inhibitors of PDE hydrolytic activity support increased PDE binding to the disk membrane, vesicle aggregation, and the light-scattering signal. However, treatments which block GTP-dependent activation of PDE hydrolytic activity (colchicine, GDP, or ethylenediaminetetraacetic acid) also block these phenomena. Thus, GTP-dependent activation of PDE rather than its hydrolytic activity appears to be correlated with the light-scattering signal.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号