首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 703 毫秒
1.
According to some recent arguments, (Joyce in The evolution of morality, MIT Press, Cambridge, 2006; Ruse and Wilson in Conceptual issues in evolutionary biology, MIT Press, Cambridge, 1995; Street in Philos Studies 127: 109–166, 2006) if our moral beliefs are products of natural selection, then we do not have moral knowledge. In defense of this inference, its proponents argue that natural selection is a process that fails to track moral facts. In this paper, I argue that our having moral knowledge is consistent with, (a) the hypothesis that our moral beliefs are products of natural selection, and (b) the claim (or a certain interpretation of the claim) that natural selection fails to track moral facts. I also argue that natural selection is a process that could track moral facts, albeit imperfectly. I do not argue that we do have moral knowledge. I argue instead that Darwinian considerations provide us with no reason to doubt that we do, and with some reasons to suppose that we might.  相似文献   

2.
The honesty of animal communication is in the spot lights in the last 30 years. During most of this time the field was dominated by one explanation: Zahavi’s handicap principle (Zahavi, J Theor Biol 67:603–605, 1975; Grafen, J Theor Biol 144:517–546, 1990). Grose (Biol Philos 2011) embarks to explain both the success of the theory and the empirical difficulties that exist despite this success. While I wholeheartedly agree with the criticism offered by Grose and with almost all the claims he makes, the treatment of the issue is far from complete and it still leaves much to be explained. Accordingly, my commentary consist of six sections: in the first section I clear up some technical issues left unexposed, most importantly the role of strategic cost in handicap signalling; in the second section I relate this to empirical testing; in the next section I comment on the historical development of the handicap principle; in the fourth section I review the biological models that came up with conclusions that contradict the handicap principle; in the fifth section I discuss the reasons behind the success of the handicap theory; finally, in the last section I discuss the application of the handicap theory to anthropology and human sciences.  相似文献   

3.
Although Bayesian methods are widely used in phylogenetic systematics today, the foundations of this methodology are still debated among both biologists and philosophers. The Bayesian approach to phylogenetic inference requires the assignment of prior probabilities to phylogenetic trees. As in other applications of Bayesian epistemology, the question of whether there is an objective way to assign these prior probabilities is a contested issue. This paper discusses the strategy of constraining the prior probabilities of phylogenetic trees by means of the Principal Principle. In particular, I discuss a proposal due to Velasco (Biol Philos 23:455–473, 2008) of assigning prior probabilities to tree topologies based on the Yule process. By invoking the Principal Principle I argue that prior probabilities of tree topologies should rather be assigned a weighted mixture of probability distributions based on Pinelis’ (P Roy Soc Lond B Bio 270:1425–1431, 2003) multi-rate branching process including both the Yule distribution and the uniform distribution. However, I argue that this solves the problem of the priors of phylogenetic trees only in a weak form.  相似文献   

4.
This paper distinguishes between causal isolation robustness analysis and independent determination robustness analysis and suggests that the triangulation of the results of different epistemic means or activities serves different functions in them. Circadian clock research is presented as a case of causal isolation robustness analysis: in this field researchers made use of the notion of robustness to isolate the assumed mechanism behind the circadian rhythm. However, in contrast to the earlier philosophical case studies on causal isolation robustness analysis (Weisberg and Reisman in Philos Sci 75:106–131, 2008; Kuorikoski et al. in Br J Philos Sci 61:541–567, 2010), robustness analysis in the circadian clock research did not remain in the level of mathematical modeling, but it combined it with experimentation on model organisms and a new type of model, a synthetic model.  相似文献   

5.
The genetic code is implemented by aminoacyl-tRNA synthetases (aaRS). These 20 enzymes are divided into two classes that, despite performing same functions, have nothing common in structure. The mystery of this striking partition of aaRSs might have been concealed in their sterically complementary modes of tRNA recognition that, as we have found recently, protect the tRNAs with complementary anticodons from confusion in translation. This finding implies that, in the beginning, life increased its coding repertoire by the pairs of complementary codons (rather than one-by-one) and used both complementary strands of genes as templates for translation. The class I and class II aaRSs may represent one of the most important examples of such primordial sense–antisense (SAS) coding (Rodin and Ohno, Orig Life Evol Biosph 25:565–589, 1995). In this report, we address the issue of SAS coding in a wider scope. We suggest a variety of advantages that such coding would have had in exploring a wider sequence space before translation became highly specific. In particular, we confirm that in Achlya klebsiana a single gene might have originally coded for an HSP70 chaperonin (class II aaRS homolog) and an NAD-specific GDH-like enzyme (class I aaRS homolog) via its sense and antisense strands. Thus, in contrast to the conclusions in Williams et al. (Mol Biol Evol 26:445–450, 2009), this could indeed be a “Rosetta stone” gene (Carter and Duax, Mol Cell 10:705–708, 2002) (eroded somewhat, though) for the SAS origin of the two aaRS classes.  相似文献   

6.
We provide a counter-example to a conjecture of René Thomas on the relationship between negative feedback circuits and stable periodicity in ordinary differential equation systems (Kaufman et al. in J Theor Biol 248:675–685, 2007). We also prove a weak version of this conjecture by using a theorem of Snoussi.  相似文献   

7.
Sensorimotor synchronization (SMS), the temporal coordination of a rhythmic movement with an external rhythm, has been studied most often in tasks that require tapping along with a metronome. Models of SMS use information about the timing of preceding stimuli and responses to predict when the next response will be made. This article compares the theoretical structure and empirical predictions of four two-parameter models proposed in the literature: Michon (Timing in temporal tracking, Van Gorcum, Assen, 1967), Hary and Moore (Br J Math Stat Psychol 40:109–124, 1987b), Mates (Biol Cybern 70:463–473, 1994a; Biol Cybern 70:475–484, 1994b), and Schulze et al. (Mus Percept 22:461–467, 2005). By embedding these models within a general linear framework, the mathematical equivalence of the Michon, Hary and Moore, and Schulze et al. models is demonstrated. The Mates model, which differs from the other three, is then tested empirically with new data from a tapping experiment in which the metronome alternated between two tempi. The Mates model predictions are found to be invalid for about one-third of the trials, suggesting that at least one of the model’s underlying assumptions is incorrect. The other models cannot be refuted as easily, but they do not predict some features of the data very accurately. Comparison of the models’ predictions in a training/test procedure did not yield any significant differences. The general linear framework introduced here may help in the formulation of new models that make better predictions.  相似文献   

8.
Both written and graphic accounts of history can be biased by the perspective of the historian. O’Hara (Biol Philos 7:135–160, 1992) has demonstrated that this also applies to evolutionary history and its historians, and identified four narrative devices that introduce anthropocentricisms into accounts of phylogeny. In the current paper, I identify a fifth such narrative device, viz. the left–right ordering of the taxa at the tips of cladograms. I define two measures that make it possible to quantify the degree of anthropocentricism of cladograms, the human attention score and human rightness score. I then carry out an analysis of the presence of the different distorting mechanisms in phylogenetic textbooks. I deliberately chose two textbooks that adopted a cladistic perspective, since their authors can be assumed to be more conscious about the aim of avoiding anthropocentricisms. Three of the narrative devices are thus absent from cladistic works. However, there is a weak tendency that the resolution of cladogram branches is biased in favour of Homo sapiens. Furthermore, the human perspective is clear and highly significant in the positioning of taxa along the left–right axis of cladograms. I discuss the reasons for and implications of these biased presentations.
Hanno SandvikEmail:
  相似文献   

9.
The evolution of human language, and the kind of thought the communication of which requires it, raises considerable explanatory challenges. These systems of representation constitute a radical discontinuity in the natural world. Even species closely related to our own appear incapable of either thought or talk with the recursive structure, generalized systematicity, and task-domain neutrality that characterize human talk and the thought it expresses. W. Tecumseh Fitch’s proposal (2004, in press) that human language is descended from a sexually selected, prosodic proto-language that approximated its syntactic complexity, and later acquired semantics thanks to kin selection for its use as a means of pedagogical transmission, has the promise of meeting these explanatory challenges. However, Fitch’s theory raises two problems of its own: (1) according to Boyd and Richerson (1996, Proc. Br. Acad. 88: 77–93), circumstances in which pedagogy is adaptive are inevitably rare in nature, and (2) it is unlikely that our non-discursive precursors had generally systematic, task-domain neutral thoughts to communicate to their offspring. I propose solutions to these problems. Pedagogy would be favored in a population where complex rituals dominated diverse aspects of life. Prosodic proto-language could emerge as the medium of pedagogic transmission. As this medium was used to teach a greater variety of tasks, it would become increasingly general and domain neutral. The presence and importance of such a system of communication in hominid populations could then drive, via Baldwinian mechanisms, the evolution of a kind of ‘thinking for speaking’ (Slobin 1991, Pragmatics 1: 7–25) characterized by recursive structure, generalized systematicity, and task-domain neutrality.  相似文献   

10.
In plants, reactive oxygen species (ROS) are short-lived molecules produced through various cellular mechanisms in response to biotic and abiotic stimuli. ROS function as second messengers for hormone signaling, development, oxygen deprivation, programmed cell death, and plant–pathogen interactions. Recent research on ROS-mediated responses has produced stimulating findings such as the specific sources of ROS production, molecular elements that work in ROS-mediated signaling and homeostasis, and a ROS-regulated gene network (Neill et al., Curr Opin Plant Biol 5:388–395, 2002a; Apel and Hirt, Annu Rev Plant Biol 55:373–399, 2004; Mittler et al., Trends Plant Sci 9:490–498, 2004; Mori and Schroeder, Plant Physiol 135:702–708, 2004; Kwak et al., Plant Physiol 141:323–329, 2006; Torres et al., Plant Physiol 141:373–378, 2006; Miller et al., Physiol Plant 133:481–489, 2008). In this review, we highlight new discoveries in ROS-mediated abscisic acid (ABA) signaling. Drs. Daeshik Cho and June M. Kwak are the corresponding authors for this paper.  相似文献   

11.
12.
The degree of integration of multidimensional phenotypes has an important place in evolutionary biology, pertaining to the structure of variation that is available for natural selection to work on and therefore to the evolutionary potential of the phenotype. Various indices have been suggested in the literature for measuring integration level, yet their statistical properties have remained mostly unstudied to date. In this study, I used simulations and resampling procedures in order to compare the distributions and sampling properties of different indices. I simulated heterogeneous correlation matrices that ranged widely in their integration level. I applied non-parametric bootstrapping to explore the effect of sampling on recovering the true integration value of these matrices. In addition, I generated the statistical power space for one of the integration indices—the relative standard deviation of the eigenvalues. The results show that the relative variance of eigenvalues maps exactly onto the mean coefficient of determination, and that the index suggested by Hansen and Houle (J Evol Biol 21:1201–1219, 2008) is the same as Van Valen’s (J Theor Biol 45:235–247, 1974) redundancy index, both of which have some undesirable sampling properties that render them less useful in most practical situations. Based on the power analysis, a sample of 30–40 specimens can be considered a sufficient minimum for most studies. The R codes provided here can be utilized by other researchers to yield case-specific insights.  相似文献   

13.
Despite mitochondria and chloroplasts having their own genome, 99% of mitochondrial proteins (Rehling et al., Nat Rev Mol Cell Biol 5:519–530, 2004) and more than 95% of chloroplast proteins (Soll, Curr Opin Plant Biol 5:529–535, 2002) are encoded by nuclear DNA, synthesised in the cytosol and imported post-translationally. Protein targeting to these organelles depends on cytosolic targeting factors, which bind to the precursor, and then interact with membrane receptors to deliver the precursor into a translocase. The molecular chaperones Hsp70 and Hsp90 have been widely implicated in protein targeting to mitochondria and chloroplasts, and receptors capable of recognising these chaperones have been identified at the surface of both these organelles (Schlegel et al., Mol Biol Evol 24:2763–2774, 2007). The role of these chaperone receptors is not fully understood, but they have been shown to increase the efficiency of protein targeting (Young et al., Cell 112:41–50, 2003; Qbadou et al., EMBO J 25:1836–1847, 2006). Whether these receptors contribute to the specificity of targeting is less clear. A class of chaperone receptors bearing tetratricopeptide repeat domains is able to specifically bind the highly conserved C terminus of Hsp70 and/or Hsp90. Interestingly, at least of one these chaperone receptors can be found on each organelle (Schlegel et al., Mol Biol Evol 24:2763–2774, 2007), which suggests a universal role in protein targeting for these chaperone receptors. This review will investigate the role that chaperone receptors play in targeting efficiency and specificity, as well as examining recent in silico approaches to find novel chaperone receptors.  相似文献   

14.
15.
In order to illuminate the role of information in biology, Bergstrom and Rosvall (Biol Philos 26:159–176, 2011a; Biol Philos 26:195–200, 2011b) propose a ‘transmission sense of information’ which builds on Shannon’s theory. At the core of the transmission sense is an appeal to the reduction in uncertainty in receivers and to etiological function. I explore several ways of cashing out uncertainty reduction as well as the consequences of appealing to function.  相似文献   

16.
We investigate the role of heterogeneous expression of IP3R and RyR in generating diverse elementary Ca2+ signals. It has been shown empirically (Wojcikiewicz and Luo in Mol. Pharmacol. 53(4):656–662, 1998; Newton et al. in J. Biol. Chem. 269(46):28613–28619, 1994; Smedt et al. in Biochem. J. 322(Pt. 2):575–583, 1997) that tissues express various proportions of IP3 and RyR isoforms and this expression is dynamically regulated (Parrington et al. in Dev. Biol. 203(2):451–461, 1998; Fissore et al. in Biol. Reprod. 60(1):49–57, 1999; Tovey et al. in J. Cell Sci. 114(Pt. 22):3979–3989, 2001). Although many previous theoretical studies have investigated the dynamics of localized calcium release sites (Swillens et al. in Proc. Natl. Acad. Sci. U.S.A. 96(24):13750–13755, 1999; Shuai and Jung in Proc. Natl. Acad. Sci. U.S.A. 100(2):506–510, 2003a; Shuai and Jung in Phys. Rev. E, Stat. Nonlinear Soft Matter Phys. 67(3 Pt. 1):031905, 2003b; Thul and Falcke in Biophys. J. 86(5):2660–2673, 2004; DeRemigio and Smith in Cell Calcium 38(2):73–86, 2005; Nguyen et al. in Bull. Math. Biol. 67(3):393–432, 2005), so far all such studies focused on release sites consisting of identical channel types. We have extended an existing mathematical model (Nguyen et al. in Bull. Math. Biol. 67(3):393–432, 2005) to release sites with two (or more) receptor types, each with its distinct channel kinetics. Mathematically, the release site is represented by a transition probability matrix for a collection of nonidentical stochastically gating channels coupled through a shared Ca2+ domain. We demonstrate that under certain conditions a previously defined mean-field approximation of the coupling strength does not accurately reproduce the release site dynamics. We develop a novel approximation and establish that its performance in these instances is superior. We use this mathematical framework to study the effect of heterogeneity in the Ca2+-regulation of two colocalized channel types on the release site dynamics. We consider release sites consisting of channels with both Ca2+-activation and inactivation (“four-state channels”) and channels with Ca2+-activation only (“two-state channels”) and show that for the appropriate parameter values, synchronous channel openings within a release site with any proportion of two-state to four-state channels are possible, however, the larger the proportion of two-state channels, the more sensitive the dynamics are to the exact spatial positioning of the channels and the distance between channels. Specifically, the clustering of even a small number of two-state channels interferes with puff/spark termination and increases puff durations or leads to a tonic response.  相似文献   

17.
Jurasinski G  Koch M 《Oecologia》2011,167(4):893-902
A consistent terminology for species diversity is subject of an ongoing debate. Recently Tuomisto (Oecologia 164:853–860, 2010) stated that a consistent terminology for diversity already exists. The paper comments on recent papers by ourselves (Jurasinski et al. Oecologia 159:15–26, 2009) and by Moreno and Rodriguez (Oecologia 163:279–282, 2010). Both started from Whittaker’s diversity concept to discuss the ambiguities of the terminology and propose a new, more consistent terminology that is based on the different approaches to diversity analysis. In contrast, Tuomisto adheres to a strict school of thinking and derives a diversity framework in the sense of Whittaker (alpha, beta, gamma) from the conceptual definition of diversity itself. A third group of papers discusses appropriate methods for the analysis of the variation in species composition. Here, we support the idea that alpha, beta and gamma diversity should be used in a strict sense that is based only on the conceptual definition of diversity. We accordingly extend and modify our terminological concept for species diversity. All approaches to the analysis and quantification of species composition and diversity can be assigned to three abstraction levels (species composition, variation in species composition,and variation in variation in species composition) and two scale levels (sample scale, aggregation scale). All methods that investigate the variation in species composition across scale levels evaluate beta relation with beta diversity being just one form of beta relation, which is calculated by dividing gamma diversity of order q by the appropriate alpha diversity of the same order. In contrast, differentiation refers to a pairwise calculation of resemblance in species composition. It is restricted to sample scale and is therefore most often only an intermediate step of analysis. Many ecological questions can be addressed either by direct analysis of the variation in species composition using raw data approaches or by further analysis of differentiation datasets on aggregation scale with or without respect to an external gradient.  相似文献   

18.
Somites are condensations of mesodermal cells that form along the two sides of the neural tube during early vertebrate development. They are one of the first instances of a periodic pattern, and give rise to repeated structures such as the vertebrae. A number of theories for the mechanisms underpinning somite formation have been proposed. For example, in the “clock and wavefront” model (Cooke and Zeeman in J. Theor. Biol. 58:455–476, 1976), a cellular oscillator coupled to a determination wave progressing along the anterior-posterior axis serves to group cells into a presumptive somite. More recently, a chemical signaling model has been developed and analyzed by Maini and coworkers (Collier et al. in J. Theor. Biol. 207:305–316, 2000; Schnell et al. in C. R. Biol. 325:179–189, 2002; McInerney et al. in Math. Med. Biol. 21:85–113, 2004), with equations for two chemical regulators with entrained dynamics. One of the chemicals is identified as a somitic factor, which is assumed to translate into a pattern of cellular aggregations via its effect on cell–cell adhesion. Here, the authors propose an extension to this model that includes an explicit equation for an adhesive cell population. They represent cell adhesion via an integral over the sensing region of the cell, based on a model developed previously for adhesion driven cell sorting (Armstrong et al. in J. Theor. Biol. 243:98–113, 2006). The expanded model is able to reproduce the observed pattern of cellular aggregates, but only under certain parameter restrictions. This provides a fuller understanding of the conditions required for the chemical model to be applicable. Moreover, a further extension of the model to include separate subpopulations of cells is able to reproduce the observed differentiation of the somite into separate anterior and posterior halves. N.J. Armstrong was supported by a Doctoral Training Account Studentship from EPSRC. K.J. Painter and J.A. Sherratt were supported in part by Integrative Cancer Biology Program Grant CA113004 from the US National Institute of Health and in part by BBSRC grant BB/D019621/1 for the Centre for Systems Biology at Edinburgh.  相似文献   

19.
The problem of how often to disperse in a randomly fluctuating environment has long been investigated, primarily using patch models with uniform dispersal. Here, we consider the problem of choice of seed size for plants in a stable environment when there is a trade off between survivability and dispersal range. Ezoe (J Theor Biol 190:287–293, 1998) and Levin and Muller-Landau (Evol Ecol Res 2:409–435, 2000) approached this problem using models that were essentially deterministic, and used calculus to find optimal dispersal parameters. Here we follow Hiebeler (Theor Pop Biol 66:205–218, 2004) and use a stochastic spatial model to study the competition of different dispersal strategies. Most work on such systems is done by simulation or nonrigorous methods such as pair approximation. Here, we use machinery developed by Cox et al. (Voter model perturbations and reaction diffusion equations 2011) to rigorously and explicitly compute evolutionarily stable strategies.  相似文献   

20.
The Protein Kinase C family of enzymes is a group of serine/threonine kinases that play central roles in cell-cycle regulation, development and cancer. A key step in the activation of PKC is translocation to membranes and binding of membrane-associated activators including diacylglycerol (DAG). Interaction of novel and conventional isotypes of PKC with DAG and phorbol esters occurs through the two C1 regulatory domains (C1A and C1B), which exhibit distinct ligand binding selectivity that likely controls enzyme activation by different co-activators. PKC has also been implicated in physiological responses to alcohol consumption and it has been proposed that PKCα (Slater et al. J Biol Chem 272(10):6167–6173, 1997; Slater et al. Biochemistry 43(23):7601–7609, 2004), PKCε (Das et al. Biochem J 421(3):405–413, 2009) and PKCδ (Das et al. J Biol Chem 279(36):37964–37972, 2004; Das et al. Protein Sci 15(9):2107–2119, 2006) contain specific alcohol-binding sites in their C1 domains. We are interested in understanding how ethanol affects signal transduction processes through its affects on the structure and function of the C1 domains of PKC. Here we present the 1H, 15N and 13C NMR chemical shift assignments for the Rattus norvegicus PKCδ C1A and C1B proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号