首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 137 毫秒
1.
We evolved Thermus thermophilus to efficiently co-utilize glucose and xylose, the two most abundant sugars in lignocellulosic biomass, at high temperatures without carbon catabolite repression. To generate the strain, T. thermophilus HB8 was first evolved on glucose to improve its growth characteristics, followed by evolution on xylose. The resulting strain, T. thermophilus LC113, was characterized in growth studies, by whole genome sequencing, and 13C-metabolic flux analysis (13C-MFA) with [1,6-13C]glucose, [5-13C]xylose, and [1,6-13C]glucose+[5-13C]xylose as isotopic tracers. Compared to the starting strain, the evolved strain had an increased growth rate (~2-fold), increased biomass yield, increased tolerance to high temperatures up to 90 °C, and gained the ability to grow on xylose in minimal medium. At the optimal growth temperature of 81 °C, the maximum growth rate on glucose and xylose was 0.44 and 0.46 h−1, respectively. In medium containing glucose and xylose the strain efficiently co-utilized the two sugars. 13C-MFA results provided insights into the metabolism of T. thermophilus LC113 that allows efficient co-utilization of glucose and xylose. Specifically, 13C-MFA revealed that metabolic fluxes in the upper part of metabolism adjust flexibly to sugar availability, while fluxes in the lower part of metabolism remain relatively constant. Whole genome sequence analysis revealed two large structural changes that can help explain the physiology of the evolved strain: a duplication of a chromosome region that contains many sugar transporters, and a 5x multiplication of a region on the pVV8 plasmid that contains xylose isomerase and xylulokinase genes, the first two enzymes of xylose catabolism. Taken together, 13C-MFA and genome sequence analysis provided complementary insights into the physiology of the evolved strain.  相似文献   

2.
Glucose and xylose are the two most abundant sugars derived from the breakdown of lignocellulosic biomass. While aerobic glucose metabolism is relatively well understood in E. coli, until now there have been only a handful of studies focused on anaerobic glucose metabolism and no 13C-flux studies on xylose metabolism. In the absence of experimentally validated flux maps, constraint-based approaches such as MOMA and RELATCH cannot be used to guide new metabolic engineering designs. In this work, we have addressed this critical gap in current understanding by performing comprehensive characterizations of glucose and xylose metabolism under aerobic and anaerobic conditions, using recent state-of-the-art techniques in 13C metabolic flux analysis (13C-MFA). Specifically, we quantified precise metabolic fluxes for each condition by performing parallel labeling experiments and analyzing the data through integrated 13C-MFA using the optimal tracers [1,2-13C]glucose, [1,6-13C]glucose, [1,2-13C]xylose and [5-13C]xylose. We also quantified changes in biomass composition and confirmed turnover of macromolecules by applying [U-13C]glucose and [U-13C]xylose tracers. We demonstrated that under anaerobic growth conditions there is significant turnover of lipids and that a significant portion of CO2 originates from biomass turnover. Using knockout strains, we also demonstrated that β-oxidation is critical for anaerobic growth on xylose. Quantitative analysis of co-factor balances (NADH/FADH2, NADPH, and ATP) for different growth conditions provided new insights regarding the interplay of energy and redox metabolism and the impact on E. coli cell physiology.  相似文献   

3.
13C metabolic flux analysis (13C-MFA) is a widely used tool for quantitative analysis of microbial and mammalian metabolism. Until now, 13C-MFA was based mainly on measurements of isotopic labeling of amino acids derived from hydrolyzed biomass proteins and isotopic labeling of extracted intracellular metabolites. Here, we demonstrate that isotopic labeling of glycogen and RNA, measured with gas chromatography-mass spectrometry (GC-MS), provides valuable additional information for 13C-MFA. Specifically, we demonstrate that isotopic labeling of glucose moiety of glycogen and ribose moiety of RNA greatly enhances resolution of metabolic fluxes in the upper part of metabolism; importantly, these measurements allow precise quantification of net and exchange fluxes in the pentose phosphate pathway. To demonstrate the practical importance of these measurements for 13C-MFA, we have used Escherichia coli as a model microbial system and CHO cells as a model mammalian system. Additionally, we have applied this approach to determine metabolic fluxes of glucose and xylose co-utilization in the E. coli ΔptsG mutant. The convenience of measuring glycogen and RNA, which are stable and abundant in microbial and mammalian cells, offers the following key advantages: reduced sample size, no quenching required, no extractions required, and GC-MS can be used instead of more costly LC-MS/MS techniques. Overall, the presented approach for 13C-MFA will have widespread applicability in metabolic engineering and biomedical research.  相似文献   

4.
Cyanobacteria are a group of photosynthetic prokaryotes capable of utilizing solar energy to fix atmospheric carbon dioxide to biomass. Despite several “proof of principle” studies, low product yield is an impediment in commercialization of cyanobacteria-derived biofuels. Estimation of intracellular reaction rates by 13C metabolic flux analysis (13C-MFA) would be a step toward enhancing biofuel yield via metabolic engineering. We report 13C-MFA for Cyanothece sp. ATCC 51142, a unicellular nitrogen-fixing cyanobacterium, known for enhanced hydrogen yield under mixotrophic conditions. Rates of reactions in the central carbon metabolism under nitrogen-fixing and -non-fixing conditions were estimated by monitoring the competitive incorporation of 12C and 13C from unlabeled CO2 and uniformly labeled glycerol, respectively, into terminal metabolites such as amino acids. The observed labeling patterns suggest mixotrophic growth under both the conditions, with a larger fraction of unlabeled carbon in nitrate-sufficient cultures asserting a greater contribution of carbon fixation by photosynthesis and an anaplerotic pathway. Indeed, flux analysis complements the higher growth observed under nitrate-sufficient conditions. On the other hand, the flux through the oxidative pentose phosphate pathway and tricarboxylic acid cycle was greater in nitrate-deficient conditions, possibly to supply the precursors and reducing equivalents needed for nitrogen fixation. In addition, an enhanced flux through fructose-6-phosphate phosphoketolase possibly suggests the organism’s preferred mode under nitrogen-fixing conditions. The 13C-MFA results complement the reported predictions by flux balance analysis and provide quantitative insight into the organism’s distinct metabolic features under nitrogen-fixing and -non-fixing conditions.  相似文献   

5.
Vibrio natriegens is a fast-growing, non-pathogenic bacterium that is being considered as the next-generation workhorse for the biotechnology industry. However, little is known about the metabolism of this organism which is limiting our ability to apply rational metabolic engineering strategies. To address this critical gap in current knowledge, here we have performed a comprehensive analysis of V. natriegens metabolism. We constructed a detailed model of V. natriegens core metabolism, measured the biomass composition, and performed high-resolution 13C metabolic flux analysis (13C-MFA) to estimate intracellular fluxes using parallel labeling experiments with the optimal tracers [1,2−13C]glucose and [1,6−13C]glucose. During exponential growth in glucose minimal medium, V. natriegens had a growth rate of 1.70 1/h (doubling time of 24 min) and a glucose uptake rate of 3.90 g/g/h, which is more than two 2-fold faster than E. coli, although slower than the fast-growing thermophile Geobacillus LC300. 13C-MFA revealed that the core metabolism of V. natriegens is similar to that of E. coli, with the main difference being a 33% lower normalized flux through the oxidative pentose phosphate pathway. Quantitative analysis of co-factor balances provided additional insights into the energy and redox metabolism of V. natriegens. Taken together, the results presented in this study provide valuable new information about the physiology of V. natriegens and establish a solid foundation for future metabolic engineering efforts with this promising microorganism.  相似文献   

6.
A method for efficient isotopic labeling of recombinant proteins   总被引:15,自引:0,他引:15  
A rapid and efficient approach for preparing isotopically labeled recombinant proteins is presented. The method is demonstrated for 13C labeling of the C-terminal domain of angiopoietin-2, 15N labeling of ubiquitin and for 2H/13C/15N labeling of the Escherichia coli outer-membrane lipoprotein Lpp-56. The production method generates cell mass using unlabeled rich media followed by exchange into a small volume of labeled media at high cell density. Following a short period for growth recovery and unlabeled metabolite clearance, the cells are induced. The expression yields obtained provide a fourfold to eightfold reduction in isotope costs using simple shake flask growths.  相似文献   

7.
8.
We investigated the carbon metabolism of three strains of Fibrobacter succinogenes and one strain of Fibrobacter intestinalis. The four strains produced the same amounts of the metabolites succinate, acetate, and formate in approximately the same ratio (3.7/1/0.3). The four strains similarly stored glycogen during all growth phases, and the glycogen-to-protein ratio was close to 0.6 during the exponential growth phase. 13C nuclear magnetic resonance (NMR) analysis of [1-13C]glucose utilization by resting cells of the four strains revealed a reversal of glycolysis at the triose phosphate level and the same metabolic pathways. Glycogen futile cycling was demonstrated by 13C NMR by following the simultaneous metabolism of labeled [13C]glycogen and exogenous unlabeled glucose. The isotopic dilutions of the CH2 of succinate and the CH3 of acetate when the resting cells were metabolizing [1-13C]glucose and unlabeled glycogen were precisely quantified by using 13C-filtered spin-echo difference 1H NMR spectroscopy. The measured isotopic dilutions were not the same for succinate and acetate; in the case of succinate, the dilutions reflected only the contribution of glycogen futile cycling, while in the case of acetate, another mechanism was also involved. Results obtained in complementary experiments are consistent with reversal of the succinate synthesis pathway. Our results indicated that for all of the strains, from 12 to 16% of the glucose entering the metabolic pathway originated from prestored glycogen. Although genetically diverse, the four Fibrobacter strains studied had very similar carbon metabolism characteristics.  相似文献   

9.
Improved design of metabolic flux estimation using mixed label 13C labeling experiments and identifiability analysis motivated re-examination of metabolic fluxes during anaerobic fermentation in the Escherichia coli. Comprehensive metabolic flux maps were determined by using a mixture of differently labeled glucose and compared to conventional flux maps obtained using extracellular measurements and comprehensive metabolic flux maps obtained using only U-13C glucose as the substrate. As expected, conventional flux analysis performs poorly in comparison to 13C-MFA, especially in the Embden-Meyerhof-Parnas (EMP) and pentose phosphate (PP) pathways. Identifiability analysis indicated and experiments confirmed that a mixture of 10% U-l3C glucose, 25% 1-13C glucose, and 65% naturally labeled glucose significantly improved the statistical quality of all calculated fluxes in the PP pathway, the EMP pathway, the anaplerotic reactions, and the tricarboxylic acid cycle. Modifying the network topology for the presence and absence of the Entner-Doudoroff pathway and the glyoxylate shunt did not affect the value or quality of estimated fluxes significantly. Extracellular measurement of formate production was necessary for the accurate estimation of the fluxes around the formate node.  相似文献   

10.
The use of parallel labeling experiments for 13C metabolic flux analysis (13C-MFA) has emerged in recent years as the new gold standard in fluxomics. The methodology has been termed COMPLETE-MFA, short for complementary parallel labeling experiments technique for metabolic flux analysis. In this contribution, we have tested the limits of COMPLETE-MFA by demonstrating integrated analysis of 14 parallel labeling experiments with Escherichia coli. An effort on such a massive scale has never been attempted before. In addition to several widely used isotopic tracers such as [1,2-13C]glucose and mixtures of [1-13C]glucose and [U-13C]glucose, four novel tracers were applied in this study: [2,3-13C]glucose, [4,5,6-13C]glucose, [2,3,4,5,6-13C]glucose and a mixture of [1-13C]glucose and [4,5,6-13C]glucose. This allowed us for the first time to compare the performance of a large number of isotopic tracers. Overall, there was no single best tracer for the entire E. coli metabolic network model. Tracers that produced well-resolved fluxes in the upper part of metabolism (glycolysis and pentose phosphate pathways) showed poor performance for fluxes in the lower part of metabolism (TCA cycle and anaplerotic reactions), and vice versa. The best tracer for upper metabolism was 80% [1-13C]glucose+20% [U-13C]glucose, while [4,5,6-13C]glucose and [5-13C]glucose both produced optimal flux resolution in the lower part of metabolism. COMPLETE-MFA improved both flux precision and flux observability, i.e. more independent fluxes were resolved with smaller confidence intervals, especially exchange fluxes. Overall, this study demonstrates that COMPLETE-MFA is a powerful approach for improving flux measurements and that this methodology should be considered in future studies that require very high flux resolution.  相似文献   

11.
Several techniques based on stable isotope labeling are used for quantitative MS. These include stable isotope metabolic labeling methods for cells in culture as well as live organisms with the assumption that the stable isotope has no effect on the proteome. Here, we investigate the 15N isotope effect on Escherichia coli cultures that were grown in either unlabeled (14N) or 15N‐labeled media by LC‐ESI‐MS/MS‐based relative protein quantification. Consistent protein expression level differences and altered growth rates were observed between 14N and 15N‐labeled cultures. Furthermore, targeted metabolite analyses revealed altered metabolite levels between 14N and 15N‐labeled bacteria. Our data demonstrate for the first time that the introduction of the 15N isotope affects protein and metabolite levels in E. coli and underline the importance of implementing controls for unbiased protein quantification using stable isotope labeling techniques.  相似文献   

12.
In this work, we provide new insights into the metabolism of Clostridium acetobutylicum ATCC 824 obtained using a systematic approach for quantifying fluxes based on parallel labeling experiments and 13C-metabolic flux analysis (13C-MFA). Here, cells were grown in parallel cultures with [1-13C]glucose and [U-13C]glucose as tracers and 13C-MFA was used to quantify intracellular metabolic fluxes. Several metabolic network models were compared: an initial model based on current knowledge, and extended network models that included additional reactions that improved the fits of experimental data. While the initial network model did not produce a statistically acceptable fit of 13C-labeling data, an extended network model with five additional reactions was able to fit all data with 292 redundant measurements. The model was subsequently trimmed to produce a minimal network model of C. acetobutylicum for 13C-MFA, which could still reproduce all of the experimental data. The flux results provided valuable new insights into the metabolism of C. acetobutylicum. First, we found that TCA cycle was effectively incomplete, as there was no measurable flux between α-ketoglutarate and succinyl-CoA, succinate and fumarate, and malate and oxaloacetate. Second, an active pathway was identified from pyruvate to fumarate via aspartate. Third, we found that isoleucine was produced exclusively through the citramalate synthase pathway in C. acetobutylicum and that CAC3174 was likely responsible for citramalate synthase activity. These model predictions were confirmed in several follow-up tracer experiments. The validated metabolic network model established in this study can be used in future investigations for unbiased 13C-flux measurements in C. acetobutylicum.  相似文献   

13.
In a 13C experiment for metabolic flux analysis (13C MFA), we examined isotope discrimination by measuring the labeling of glucose, amino acids, and hexose monophosphates via mass spectrometry. When Escherichia coli grew in a mix of 20% fully labeled and 80% naturally labeled glucose medium, the cell metabolism favored light isotopes and the measured isotopic ratios (δ13C) were in the range of −35 to −92. Glucose transporters might play an important role in such isotopic fractionation. Flux analysis showed that both isotopic discrimination and isotopic impurities in labeled substrates could affect the solution of 13C MFA.  相似文献   

14.
13C-Metabolic flux analysis (13C-MFA) is a widely used approach in metabolic engineering for quantifying intracellular metabolic fluxes. The precision of fluxes determined by 13C-MFA depends largely on the choice of isotopic tracers and the specific set of labeling measurements. A recent advance in the field is the use of parallel labeling experiments for improved flux precision and accuracy. However, as of today, no systemic methods exist for identifying optimal tracers for parallel labeling experiments. In this contribution, we have addressed this problem by introducing a new scoring system and evaluating thousands of different isotopic tracer schemes. Based on this extensive analysis we have identified optimal tracers for 13C-MFA. The best single tracers were doubly 13C-labeled glucose tracers, including [1,6-13C]glucose, [5,6-13C]glucose and [1,2-13C]glucose, which consistently produced the highest flux precision independent of the metabolic flux map (here, 100 random flux maps were evaluated). Moreover, we demonstrate that pure glucose tracers perform better overall than mixtures of glucose tracers. For parallel labeling experiments the optimal isotopic tracers were [1,6-13C]glucose and [1,2-13C]glucose. Combined analysis of [1,6-13C]glucose and [1,2-13C]glucose labeling data improved the flux precision score by nearly 20-fold compared to widely use tracer mixture 80% [1-13C]glucose +20% [U-13C]glucose.  相似文献   

15.
Guts of most insects are inhabited by complex communities of symbiotic nonpathogenic bacteria. Within such microbial communities it is possible to identify commensal or mutualistic bacteria species. The latter ones, have been observed to serve multiple functions to the insect, i.e. helping in insect reproduction1, boosting the immune response2, pheromone production3, as well as nutrition, including the synthesis of essential amino acids4, among others.    Due to the importance of these associations, many efforts have been made to characterize the communities down to the individual members. However, most of these efforts were either based on cultivation methods or relied on the generation of 16S rRNA gene fragments which were sequenced for final identification. Unfortunately, these approaches only identified the bacterial species present in the gut and provided no information on the metabolic activity of the microorganisms.To characterize the metabolically active bacterial species in the gut of an insect, we used stable isotope probing (SIP) in vivo employing 13C-glucose as a universal substrate. This is a promising culture-free technique that allows the linkage of microbial phylogenies to their particular metabolic activity. This is possible by tracking stable, isotope labeled atoms from substrates into microbial biomarkers, such as DNA and RNA5. The incorporation of 13C isotopes into DNA increases the density of the labeled DNA compared to the unlabeled (12C) one. In the end, the 13C-labeled DNA or RNA is separated by density-gradient ultracentrifugation from the 12C-unlabeled similar one6. Subsequent molecular analysis of the separated nucleic acid isotopomers provides the connection between metabolic activity and identity of the species.Here, we present the protocol used to characterize the metabolically active bacteria in the gut of a generalist insect (our model system), Spodoptera littoralis (Lepidoptera, Noctuidae). The phylogenetic analysis of the DNA was done using pyrosequencing, which allowed high resolution and precision in the identification of insect gut bacterial community. As main substrate, 13C-labeled glucose was used in the experiments. The substrate was fed to the insects using an artificial diet.  相似文献   

16.
NMR studies of post-translationally modified proteins are complicated by the lack of an efficient method to produce isotope enriched recombinant proteins in cultured mammalian cells. We show that reducing the glucose concentration and substituting glutamate for glutamine in serum-free medium increased cell viability while simultaneously increasing recombinant protein yield and the enrichment of non-essential amino acids compared to culture in unmodified, serum-free medium. Adding dichloroacetate, a pyruvate dehydrogenase kinase inhibitor, further improves cell viability, recombinant protein yield, and isotope enrichment. We demonstrate the method by producing partially enriched recombinant Thy1 glycoprotein from Lec1 Chinese hamster ovary (CHO) cells using U-13C-glucose and 15N-glutamate as labeled precursors. This study suggests that uniformly 15N,13C-labeled recombinant proteins may be produced in cultured mammalian cells starting from a mixture of labeled essential amino acids, glucose, and glutamate.  相似文献   

17.
Synthetic methylotrophy aims to engineer methane and methanol utilization pathways in platform hosts like Escherichia coli for industrial bioprocessing of natural gas and biogas. While recent attempts to engineer synthetic methanol auxotrophs have proved successful, these studies focused on scarce and expensive co-substrates. Here, we engineered E. coli for methanol-dependent growth on glucose, an abundant and inexpensive co-substrate, via deletion of glucose 6-phosphate isomerase (pgi), phosphogluconate dehydratase (edd), and ribose 5-phosphate isomerases (rpiAB). Since the parental strain did not exhibit methanol-dependent growth on glucose in minimal medium, we first achieved methanol-dependent growth via amino acid supplementation and used this medium to evolve the strain for methanol-dependent growth in glucose minimal medium. The evolved strain exhibited a maximum growth rate of 0.15 h−1 in glucose minimal medium with methanol, which is comparable to that of other synthetic methanol auxotrophs. Whole genome sequencing and 13C-metabolic flux analysis revealed the causative mutations in the evolved strain. A mutation in the phosphotransferase system enzyme I gene (ptsI) resulted in a reduced glucose uptake rate to maintain a one-to-one molar ratio of substrate utilization. Deletion of the e14 prophage DNA region resulted in two non-synonymous mutations in the isocitrate dehydrogenase (icd) gene, which reduced TCA cycle carbon flux to maintain the internal redox state. In high cell density glucose fed-batch fermentation, methanol-dependent acetone production resulted in 22% average carbon labeling of acetone from 13C-methanol, which far surpasses that of the previous best (2.4%) found with methylotrophic E. coli Δpgi. This study addresses the need to identify appropriate co-substrates for engineering synthetic methanol auxotrophs and provides a basis for the next steps toward industrial one-carbon bioprocessing.  相似文献   

18.
19.
At present, 13C-MFA is a primary method for quantitatively characterizing intracellular carbon fluxes in cells in vivo under steady-state conditions. The method has been successfully used to investigate both the fundamental characteristics of prokaryotic and eukaryotic cell metabolism and to improve producer strains for more than twenty years. This publication is the last in a set of reviews that describe various aspects of the method. Here, the authors highlight recent achievements that involved using 13C-MFA to elucidate bacterial metabolism. Analyses of well-characterized bacterial model strains revealed that central metabolism robustness is provided by a set of alternative metabolic pathways; these analyses also helped develop a better understanding of the physiological significance of these pathways and identified previously unknown functions of well-studied metabolic pathways. Several examples of 13C-MFA-based fundamental investigations of poorly characterized bacteria are also analyzed. In applied investigations, flux analysis of strains that produce amino acids, vitamins and antibiotics indicated targets for modifications, suggested unconventional metabolic engineering approaches, and, most importantly, confirmed their utility. In the last section of this article, 13C-MFA prospects, including the monitoring of the dynamics of metabolic flux distribution during culture growth, are discussed.  相似文献   

20.
Indole-3-acetic acid (IAA) labeled with 13C in the six carbons of the benzene ring is described for use as an internal standard for quantitative mass spectral analysis of IAA by gas chromatography/selected ion monitoring. [13C6]IAA was compared to the available deuterium labeled compounds and shown to offer the advantages of nonexchangeability of the isotope label, high isotopic enrichment, and chromatographic properties identical to that of the unlabeled compound. The utility of [13C6]IAA for measurement of endogenous IAA levels was demonstrated by analysis of IAA in Lemna gibba G-3.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号