首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cattle are an important reservoir of Shiga toxin-producing Escherichia coli (STEC) O26, O111, and O157. The fate of these pathogens in bovine feces at 5, 15, and 25°C was examined. The feces of a cow naturally infected with STEC O26:H11 and two STEC-free cows were studied. STEC O26, O111, and O157 were inoculated into bovine feces at 101, 103, and 105 CFU/g. All three pathogens survived at 5 and 25°C for 1 to 4 weeks and at 15°C for 1 to 8 weeks when inoculated at the low concentration. On samples inoculated with the middle and high concentrations, O26, O111, and O157 survived at 25°C for 3 to 12 weeks, at 15°C for 1 to 18 weeks, and at 5°C for 2 to 14 weeks, respectively. Therefore, these pathogens can survive in feces for a long time, especially at 15°C. The surprising long-term survival of STEC O26, O111, and O157 in bovine feces shows that such feces are a potential vehicle for transmitting not only O157 but also O26 and O111 to cattle, food, and the environment. Appropriate handling of bovine feces is emphasized.  相似文献   

2.
Fate of enterohemorrhagic Escherichia coli O157:H7 in bovine feces.   总被引:12,自引:0,他引:12       下载免费PDF全文
G Wang  T Zhao    M P Doyle 《Applied microbiology》1996,62(7):2567-2570
Dairy cattle have been identified as a principal reservoir of Escherichia coli O157:H7. The fate of this pathogen in bovine feces at 5, 22, and 37 degrees C was determined. Two levels of inocula (10(3) and 10(5) CFU/g) of a mixture of five nalidixic acid-resistant E. coli O157:H7 strains were used. E. coli O157:H7 survived at 37 degrees C for 42 and 49 days with low and high inocula, respectively, and at 22 degrees C for 49 and 56 days with low and high inocula, respectively. Fecal samples at both temperatures had low moisture contents (about 10%) and water activities ( < 0.5) near the end of the study. E. coli O157:H7 at 5 degrees C survived for 63 to 70 days, with the moisture content (74%) of feces remaining high through the study. Chromosomal DNA fingerprinting of E. coli O157:H7 isolates surviving near the completion of the study revealed that the human isolate strain 932 was the only surviving strain at 22 or 37 degrees C. All five strains were isolated near the end of incubation from feces held at 5 degrees C. Isolates at each temperature were still capable of producing both verotoxin 1 and verotoxin 2. Results indicate that E. coli O157:H7 can survive in feces for a long period of time and retain its ability to produce verotoxins. Hence, bovine feces are a potential vehicle for transmitting E. coli O157:H7 to cattle, food, and the environment. Appropriate handling of bovine feces is important to control the spread of this pathogen.  相似文献   

3.
In order to determine desiccation tolerances of bacterial strains, the survival of 58 diarrheagenic strains (18 salmonellae, 35 Shiga toxin-producing Escherichia coli [STEC], and 5 shigellae) and of 15 nonpathogenic E. coli strains was determined after drying at 35 degrees C for 24 h in paper disks. At an inoculum level of 10(7) CFU/disk, most of the salmonellae (14/18) and the STEC strains (31/35) survived with a population of 10(3) to 10(4) CFU/disk, whereas all of the shigellae (5/5) and the majority of the nonpathogenic E. coli strains (9/15) did not survive (the population was decreased to less than the detection limit of 10(2) CFU/disk). After 22 to 24 months of subsequent storage at 4 degrees C, all of the selected salmonellae (4/4) and most of the selected STEC strains (12/15) survived, keeping the original populations (10(3) to 10(4) CFU/disk). In contrast to the case for storage at 4 degrees C, all of 15 selected strains (5 strains each of Salmonella spp., STEC O157, and STEC O26) died after 35 to 70 days of storage at 25 degrees C and 35 degrees C. The survival rates of all of these 15 strains in paper disks after the 24 h of drying were substantially increased (10 to 79 times) by the presence of sucrose (12% to 36%). All of these 15 desiccated strains in paper disks survived after exposure to 70 degrees C for 5 h. The populations of these 15 strains inoculated in dried foods containing sucrose and/or fat (e.g., chocolate) were 100 times higher than those in the dried paper disks after drying for 24 h at 25 degrees C.  相似文献   

4.
AIMS: This study monitored survival and growth of Escherichia coli O157 in ovine and bovine abattoir waste. METHODS: Blood and gut contents were inoculated separately with cocktails of E. coli O157. Samples were stored aerophilically and microaerophilically at 5 degrees C, 15 degrees C and 30 degrees C to represent storage at different container depths and at extremes of UK ambient temperature. CONCLUSIONS: Results showed survival of E. coli O157 was irrespective of oxygen content with no significant differences observed between aerophilic and microaerophilic environments. Numbers of E. coli O157 in ovine and bovine gut contents showed no change when stored at 5 degrees C and increased 1-2 log(10) at 15 degrees C and 30 degrees C in 28 h. In ovine and bovine blood, irrespective of storage temperature, there was a 0.5-2 log(10) reduction or no change in numbers except in ovine blood stored at 30 degrees C where the fall in numbers was followed by a 3 log(10) increase. In aged (stored at 4 degrees C for 18 h before spiking) bovine blood there was no significant change in numbers at 5 degrees C while at 15 degrees C there was 2 log(10) rise after 48 h. At 30 degrees C there was an initial 1 log(10) decrease in numbers followed by a 1 log(10) rise over the following 40 h. SIGNIFICANCE AND IMPACT OF STUDY: Abattoir wastes may become contaminated from animals infected with Verocytotoxigenic E. coli O157 and in certain storage conditions these pathogens could significantly increase in numbers. There is need for care in abattoir waste disposal, not only for personnel subject to direct contact, but also in the prevention of cross contamination to adjacent land and water courses which could indirectly infect humans.  相似文献   

5.
Transfer of class 1 integron-mediated antibiotic resistance genes has been demonstrated under laboratory conditions. However, there is no information concerning the transfer of these genes in an agricultural environment. The present study sought to determine if integron-mediated streptomycin and sulfisoxazole resistance genes could be transferred from Shiga toxin-producing Escherichia coli (STEC) strains 6-20 (O157:H7) and 7-63 (O111:H8) to the susceptible strain E. coli K-12 MG1655 in bovine feces (pH 5.5, 6.0, or 6.5) and storm water (pH 5, 6, 7, or 8) at 4, 15, and 28 degrees C, which are average seasonal temperatures for winter, spring-fall, and summer, respectively, in the Griffin, GA, area. The results indicated that at 28 degrees C, the integron-mediated antibiotic resistance genes were transferred from both of the STEC donors in bovine feces. Higher conjugation efficiencies were, however, observed in the conjugation experiments involving STEC strain 6-20. In storm water, the resistance genes were transferred only from STEC strain 6-20. Greater numbers of transconjugants were recovered in the conjugation experiments performed with pH 6.5 bovine feces and with pH 7 storm water. Antibiotic susceptibility tests confirmed the transfer of integron-mediated streptomycin resistance and sulfisoxazole resistance, as well as the transfer of non-integron-mediated oxytetracycline resistance and tetracycline resistance in the transconjugant cells. These results suggest that the antibiotic resistance genes in STEC could serve as a source of antibiotic resistance genes disseminated via conjugation to susceptible cells of other E. coli strains in an agricultural environment.  相似文献   

6.

Background

Shiga-toxin producing Escherichia coli (STEC) have emerged as important foodborne pathogens, among which seven serogroups (O26, O45, O103, O111, O121, O145, O157) are most frequently implicated in human infection. The aim was to determine if a light scattering sensor can be used to rapidly identify the colonies of STEC serogroups on selective agar plates.

Methodology/Principal Findings

Initially, a total of 37 STEC strains representing seven serovars were grown on four different selective agar media, including sorbitol MacConkey (SMAC), Rainbow Agar O157, BBL CHROMagarO157, and R&F E. coli O157:H7, as well as nonselective Brain Heart Infusion agar. The colonies were scanned by an automated light scattering sensor, known as BARDOT (BActerial Rapid Detection using Optical scattering Technology), to acquire scatter patterns of STEC serogroups, and the scatter patterns were analyzed using an image classifier. Among all of the selective media tested, both SMAC and Rainbow provided the best differentiation results allowing multi-class classification of all serovars with an average accuracy of more than 90% after 10–12 h of growth, even though the colony appearance was indistinguishable at that early stage of growth. SMAC was chosen for exhaustive scatter image library development, and 36 additional strains of O157:H7 and 11 non-O157 serovars were examined, with each serogroup producing unique differential scatter patterns. Colony scatter images were also tested with samples derived from pure and mixed cultures, as well as experimentally inoculated food samples. BARDOT accurately detected O157 and O26 serovars from a mixed culture and also from inoculated lettuce and ground beef (10-h broth enrichment +12-h on-plate incubation) in the presence of natural background microbiota in less than 24 h.

Conclusions

BARDOT could potentially be used as a screening tool during isolation of the most important STEC serovars on selective agar plates from food samples in less than 24 h.  相似文献   

7.
Shiga toxin-producing Escherichia coli (STEC) strains are important food-borne pathogens capable of causing hemolytic-uremic syndrome. STEC O157:H7 strains cause the majority of severe disease in the United States; however, there is a growing concern for the amount and severity of illness attributable to non-O157 STEC. Recently, the Food Safety and Inspection Service (FSIS) published the intent to regulate the presence of STEC belonging to serogroups O26, O45, O103, O111, O121, and O145 in nonintact beef products. To ensure the effective control of these bacteria, sensitive and specific tests for their detection will be needed. In this study, we identified single nucleotide polymorphisms (SNPs) in the O-antigen gene cluster that could be used to detect STEC strains of the above-described serogroups. Using comparative DNA sequence analysis, we identified 22 potentially informative SNPs among 164 STEC and non-STEC strains of the above-described serogroups and designed matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF) assays to test the STEC allele frequencies in an independent panel of bacterial strains. We found at least one SNP that was specific to each serogroup and also differentiated between STEC and non-STEC strains. Differences in the DNA sequence of the O-antigen gene cluster corresponded well with differences in the virulence gene profiles and provided evidence of different lineages for STEC and non-STEC strains. The SNPs discovered in this study can be used to develop tests that will not only accurately identify O26, O45, O103, O111, O121, and O145 strains but also predict whether strains detected in the above-described serogroups contain Shiga toxin-encoding genes.  相似文献   

8.
AIM: To develop a real-time PCR detection procedure for Escherichia coli O111, O26 and O157 from minced meat. METHODS AND RESULTS: Strains (n = 8) of each of E. coli O26, E. coli O111 and E. coli O157 were inoculated at ca 10-20 CFU g(-1) into minced retail meat and enriched for 6 h at 41.5 degrees C as follows: E. coli O26 in tryptone soya broth (TSB) supplemented with cefixime (50 microg l(-1)), vancomycin (40 mg l(-1)) and potassium tellurite (2.5 mg l(-1)); E. coli O111 in TSB supplemented with cefixime (50 microg l(-1)) and vancomycin (40 mg l(-1)); E. coli O157 in E. coli broth supplemented with novobiocin (20 mg l(-1)). DNA was extracted from the enriched cultures, and detected and quantified by real-time PCR using verotoxin (vt1 and vt2) and serogroup (O157 per gene; O26 fliC-fliA genes and O111 wzy gene) specific primers. CONCLUSIONS: The methods outlined were found to be sensitive and specific for the routine detection of E. coli O111, O26 and O157 in minced beef. SIGNIFICANCE AND IMPACT OF THE STUDY: The enrichment, isolation and detection procedures used in this study provide a rapid routine-based molecular method for the detection and differentiation of E. coli O26, O111 and O157 from minced meat.  相似文献   

9.
Weaned 3- to 4-month-old calves were fasted for 48 h, inoculated with 1010 CFU of Shiga toxin-positive Escherichia coli (STEC) O157:H7 strain 86-24 (STEC O157) or STEC O91:H21 strain B2F1 (STEC O91), Shiga toxin-negative E. coli O157:H7 strain 87-23 (Stx O157), or a nonpathogenic control E. coli strain, necropsied 4 days postinoculation, and examined bacteriologically and histologically. Some calves were treated with dexamethasone (DEX) for 5 days (3 days before, on the day of, and 1 day after inoculation). STEC O157 bacteria were recovered from feces, intestines, or gall bladders of 74% (40/55) of calves 4 days after they were inoculated with STEC O157. Colon and cecum were sites from which inoculum-type bacteria were most often recovered. Histologic lesions of attaching-and-effacing (A/E) O157+ bacteria were observed in 69% (38/55) of the STEC O157-inoculated calves. Rectum, ileocecal valve, and distal colon were sites most likely to contain A/E O157+ bacteria. Fecal and intestinal levels of STEC O157 bacteria were significantly higher and A/E O157+ bacteria were more common in DEX-treated calves than in nontreated calves inoculated with STEC O157. Fecal STEC O157 levels were significantly higher than Stx O157, STEC O91, or control E. coli; only STEC O157 cells were recovered from tissues. Identifying the rectum, ileocecal valve, and distal colon as early STEC O157 colonization sites and finding that DEX treatment enhances the susceptibility of weaned calves to STEC O157 colonization will facilitate the identification and evaluation of interventions aimed at reducing STEC O157 infection in cattle.  相似文献   

10.
Shiga toxin (Stx)-producing Escherichia coli (STEC) strains are a diverse group of food-borne pathogens with various levels of virulence for humans. In this study, we describe the use of a combination of multiple real-time PCR assays for the screening of 400 raw-milk cheeses for the five main pathogenic STEC serotypes (O26:H11, O103:H2, O111:H8, O145:H28, and O157:H7). The prevalences of samples positive for stx, intimin-encoding gene (eae), and at least one of the five O group genetic markers were 29.8%, 37.3%, and 55.3%, respectively. The H2, H7, H8, H11, and H28 fliC alleles were highly prevalent and could not be used as reliable targets for screening. Combinations of stx, eae variants, and O genetic markers, which are typical of the five targeted STEC serotypes, were detected by real-time PCR in 6.5% of the cheeses (26 samples) and included stx-wzx(O26)-eae-β1 (4.8%; 19 samples), stx-wzx(O103)-eae-ε (1.3%; five samples), stx-ihp1(O145)-eae-γ1 (0.8%; three samples), and stx-rfbE(O157)-eae-γ1 (0.3%; one sample). Twenty-eight immunomagnetic separation (IMS) assays performed on samples positive for these combinations allowed the recovery of seven eaeβ1-positive STEC O26:H11 isolates, whereas no STEC O103:H2, O145:H28, or O157:H7 strains could be isolated. Three stx-negative and eaeβ1-positive E. coli O26:[H11] strains were also isolated from cheeses by IMS. Colony hybridization allowed us to recover STEC from stx-positive samples for 15 out of 45 assays performed, highlighting the difficulties encountered in STEC isolation from dairy products. The STEC O26:H11 isolates shared the same virulence genetic profile as enterohemorrhagic E. coli (EHEC) O26:H11, i.e., they carried the virulence-associated genes EHEC-hlyA, katP, and espP, as well as genomic O islands 71 and 122. Except for one strain, they all contained the stx1 variant only, which was reported to be less frequently associated with human cases than stx2. Pulsed-field gel electrophoresis (PFGE) analysis showed that they displayed high genetic diversity; none of them had patterns identical to those of human O26:H11 strains investigated here.  相似文献   

11.
AIMS: The study aimed to investigate the survival characteristics of Escherichia coli O157:H7 in farm water (FW), and in sterile distilled municipal water (SDW), stored outdoors under field conditions, with or without the addition of faeces (1% w/v), in a farmyard shed and the laboratory at 15 degrees C. METHODS AND RESULTS: Water samples were inoculated with E. coli O157:H7 at 10(3) and 10(6) ml(-1), and sampled over a 31-day period. In FW stored outdoors in a field, E. coli O157:H7 survived for 14 days at temperatures <15 degrees C, at both inoculation levels, while in the laboratory at 15 degrees C, the organism was still detectable at low levels (<1 log10 cfu ml(-1)) after 31 days. The addition of bovine faeces to water outdoors (1% w/v) resulted in survival for 24 days. In SDW inoculated at 10(6) ml(-1) and stored in the laboratory (15 degrees C), only a 2.5 log reduction was observed after 31 days, while the organism could not be detected after 17 days in the field. Preliminary screening of water samples stored outdoors isolated a bacterium which exhibited antimicrobial activity towards E. coli O157:H7. CONCLUSIONS: The survival of E. coli O157:H7 observed in this study illustrates the potential of farm water to act as a vehicle in the transfer of the organism across a herd. SIGNIFICANCE AND IMPACT OF THE STUDY: The difficulty in extrapolating results from controlled laboratory situations to on-farm conditions is also highlighted in this study.  相似文献   

12.
Aims:  A range of new differential and confirmation plating media for some non-O157 Shiga toxin producing Escherichia coli (STEC) serotypes (O26, O103, O111, O145) and both sorbitol-positive and -negative O157 were evaluated using artificially contaminated samples.
Methods and Results:  Dairy products (raw milk, cheese made from pasteurized milk and raw milk), meat (ground beef, fermented meat) and cattle faeces were artificially contaminated using clinical STEC strains. Isolation efficiency was 100%, 82·3%, 88·5%, 65·9%, 64·3% and 15·8%, respectively, for an inoculum size of ≤100 CFU 25 g−1. The consecutive use of differential and confirmation media limited the incidence of false positive isolates from 0% for raw milk samples, cheese made from pasteurized milk and for fermented meat to 2·1% for cheese made from raw milk, and to 8·9% for ground beef.
Conclusions:  Data presented in this paper indicated that the efficiency of the applied isolation method was dependent on sample-to-sample variation but not on the inoculum size.
Significance and Impact of Study:  Data in this paper indicated that isolation of low levels of non-O157 and sorbitol-positive O157 STEC from food samples is possible.  相似文献   

13.
T Zhao  M P Doyle    R E Besser 《Applied microbiology》1993,59(8):2526-2530
A strain of enterohemorrhagic Escherichia coli serotype O157:H7 isolated from a patient in an apple cider-related outbreak was used to study the fate of E. coli O157:H7 in six different lots of unpasteurized apple cider. In addition, the efficacy of two preservatives, 0.1% sodium benzoate and 0.1% potassium sorbate, used separately and in combination was evaluated for antimicrobial effects on the bacterium. Studies were done at 8 or 25 degrees C with ciders having pH values of 3.6 to 4.0. The results revealed that E. coli O157:H7 populations increased slightly (ca. 1 log10 CFU/ml) and then remained stable for approximately 12 days in lots inoculated with an initial population of 10(5) E. coli O157:H7 organisms per ml and held at 8 degrees C. The bacterium survived from 10 to 31 days or 2 to 3 days at 8 or 25 degrees C, respectively, depending on the lot. Potassium sorbate had minimal effect on E. coli O157:H7 populations, with survivors detected for 15 to 20 days or 1 to 3 days at 8 or 25 degrees C, respectively. In contrast, survivors in cider containing sodium benzoate were detected for only 2 to 10 days or less than 1 to 2 days at 8 or 25 degrees C, respectively. The highest rates of inactivation occurred in the presence of a combination of 0.1% sodium benzoate and 0.1% potassium sorbate. The use of 0.1% sodium benzoate, an approved preservative used by some cider processors, will substantially increase the safety of apple cider in terms of E. coli O157:H7, in addition to suppressing the growth of yeasts and molds.  相似文献   

14.
Farm animal manure or manure slurry may disseminate, transmit, or propagate Escherichia coli O157:H7. In this study, the survival and growth of E. coli O157:H7 in ovine or bovine feces under various experimental and environmental conditions were determined. A manure pile collected from experimentally inoculated sheep was incubated outside under fluctuating environmental conditions. E. coli O157:H7 survived in the manure for 21 months, and the concentrations of bacteria recovered ranged from <102 to 106 CFU/g at different times over the course of the experiment. The DNA fingerprints of E. coli O157:H7 isolated at month 1 and month 12 were identical or very similar. A second E. coli O157:H7-positive ovine manure pile, which was periodically aerated by mixing, remained culture positive for 4 months. An E. coli O157:H7-positive bovine manure pile was culture positive for 47 days. In the laboratory, E. coli O157:H7 was inoculated into feces, untreated slurry, or treated slurry and incubated at −20, 4, 23, 37, 45, and 70°C. E. coli O157:H7 survived best in manure incubated without aeration at temperatures below 23°C, but it usually survived for shorter periods of time than it survived in manure held in the environment. The bacterium survived at least 100 days in bovine manure frozen at −20°C or in ovine manure incubated at 4 or 10°C for 100 days, but under all other conditions the length of time that it survived ranged from 24 h to 40 days. In addition, we found that the Shiga toxin type 1 and 2 genes in E. coli O157:H7 had little or no influence on bacterial survival in manure or manure slurry. The long-term survival of E. coli O157:H7 in manure emphasizes the need for appropriate farm waste management to curtail environmental spread of this bacterium. This study also highlights the difficulties in extrapolating laboratory data to on-farm conditions.  相似文献   

15.
Escherichia coli O157 and six additional serogroups of Shiga toxin-producing E. coli (STEC) (O26, O45, O103, O111, O121, and O145) account for the majority of STEC infections in the United States. In this study, O serogroup-specific genes (wzx or wzy) were used to design loop-mediated isothermal amplification (LAMP) assays for the rapid and specific detection of these leading STEC serogroups. The assays were evaluated in pure culture and spiked food samples (ground beef, beef trim, lettuce, and spinach) and compared with real-time quantitative PCR (qPCR). No false-positive or false-negative results were observed among 120 bacterial strains used to evaluate assay specificity. The limits of detection of various STEC strains belonging to these target serogroups were approximately 1 to 20 CFU/reaction mixture in pure culture and 10(3) to 10(4) CFU/g in spiked food samples, which were comparable to those of qPCR. Standard curves generated suggested good linear relationships between STEC cell numbers and LAMP turbidity signals. In various beef and produce samples spiked with two low levels (1 to 2 and 10 to 20 CFU/25 g) of respective STEC strains, the LAMP assays consistently achieved accurate detection after 6 to 8 h of enrichment. In conclusion, these newly developed LAMP assays may facilitate rapid and reliable detection of the seven major STEC serogroups in ground beef, beef trim, and produce during routine sample testing.  相似文献   

16.
In order to evaluate the role of some synanthropic animals in the spreading of Escherichia coli O157, laboratory rats and domestic pigeons were experimentally infected per os with E. coli O157. Rats infected with 10(5) colony forming units (cfu) (n = 5) and 10(9) cfu (n = 5) shed E. coli O157 for 2 +/- 1.7 d and 9.8 +/- 1.3 d, respectively. In the faeces of infected rats stored at 4 degrees C in a moist environment, at 4 degrees C in a dry environment or at 20 degrees C in a moist environment, E. coli O157 survived for 34 weeks. When stored at 20 degrees C or - 20 degrees C in a dry environment, E. coli O157 survived for greater than or = 36 weeks. Pigeons infected with 10(5) cfu (n = 5) and 10(9) cfu (n = 5) shed the pathogen for 14.8 +/- 3.4 d and 20.2 +/- 5.2 d, respectively. Both species, rats and pigeons, can be important in spreading of the E. coli O157 infection in cattle.  相似文献   

17.
In order to determine desiccation tolerances of bacterial strains, the survival of 58 diarrheagenic strains (18 salmonellae, 35 Shiga toxin-producing Escherichia coli [STEC], and 5 shigellae) and of 15 nonpathogenic E. coli strains was determined after drying at 35°C for 24 h in paper disks. At an inoculum level of 107 CFU/disk, most of the salmonellae (14/18) and the STEC strains (31/35) survived with a population of 103 to 104 CFU/disk, whereas all of the shigellae (5/5) and the majority of the nonpathogenic E. coli strains (9/15) did not survive (the population was decreased to less than the detection limit of 102 CFU/disk). After 22 to 24 months of subsequent storage at 4°C, all of the selected salmonellae (4/4) and most of the selected STEC strains (12/15) survived, keeping the original populations (103 to 104 CFU/disk). In contrast to the case for storage at 4°C, all of 15 selected strains (5 strains each of Salmonella spp., STEC O157, and STEC O26) died after 35 to 70 days of storage at 25°C and 35°C. The survival rates of all of these 15 strains in paper disks after the 24 h of drying were substantially increased (10 to 79 times) by the presence of sucrose (12% to 36%). All of these 15 desiccated strains in paper disks survived after exposure to 70°C for 5 h. The populations of these 15 strains inoculated in dried foods containing sucrose and/or fat (e.g., chocolate) were 100 times higher than those in the dried paper disks after drying for 24 h at 25°C.  相似文献   

18.
This work aimed to compare real-time polymerase chain reaction (PCR) with the commercially available enzyme-linked fluorescent assay (ELFA) VIDAS ECOLI O157 for detecting Escherichia coli O157 in mincemeat. In addition, a PCR-based survey on Shiga-toxin-producing E. coli (STEC) in mincemeat collected in Italy is presented. Real-time PCR assays targeting the stx genes and a specific STEC O157 sequence (SILO157, a small inserted locus of STEC O157) were tested for their sensitivity on spiked mincemeat samples. After overnight enrichment, the presence of STEC cells could be clearly determined in the 25 g samples containing 10 bacterial cells, while the addition of five bacteria provided equivocal PCR results with Ct values very close to or above the threshold of 40. The PCR tests proved to be more sensitive than the ELFA-VIDAS ECOLI O157, whose detection level started from 50 bacterial cells/25 g of mincemeat. The occurrence of STEC in 106 mincemeat (bovine, veal) samples collected from September to November 2004 at five different points of sale in Italy (one point of sale in Arezzo, Tuscany, central Italy, two in Mantova, Lombardy, Northern Italy, and two in Bologna, Emilia-Romagna, upper-central Italy) was less than 1%. Contamination by the main STEC O-serogroups representing a major public health concern, including O26, O91, O111, O145, and O157, was not detected. This survey indicates that STEC present in these samples are probably not associated with pathogenesis in humans.  相似文献   

19.
Fifty-nine calves, aged 11 days to 9 months, from three farms breeding Japanese Black beef cattle in Miyazaki Prefecture, Japan, were examined for the presence of Shiga toxin-producing Escherichia coli (STEC). A high prevalence of STEC was detected among calves, with 45 (76.3%) animals carrying STEC including different serogroups (O26, O74, O111, O114, O119, O127, O153, O157, and ONT) and toxin types. The number of STEC in the feces was estimated by a combined method involving enumeration of colony-forming units by a plate-most-probable-number (plate-MPN) technique and polymerase chain reaction for the detection of Shiga toxin genes. Fecal shedding ranged from 10(1) to 10(10) MPN/g feces. To evaluate the safety and efficacy of bicozamycin (BCM: previously named as bicyclomycin) in eradicating STEC, 30 calves carrying STEC with or without diarrhea were examined. Fifteen calves were treated orally with BCM (10 mg/kg/day) once daily for 5 days, and the other 15 were untreated. Twenty-four hours after the last dose, fecal specimens were collected from both groups to compare the number of coliforms and STEC with those before treatment. BCM-treated animals had a significantly lower number of coliforms and STEC compared to the untreated calves. The STEC eradication rate was 86.6% (13/15) in the BCM-treated group, compared to 0% (0/15) in the control group. The corresponding cure rates for diarrhea were 87.5 (7/8) and 0% (0/3), respectively. No adverse reactions were observed in the calves during treatment. It is concluded that BCM is an effective agent for the eradication of STEC in calves with or without diarrhea.  相似文献   

20.
The survival of Escherichia coli O157:H7 in feces from steers fed corn (CO) or barley (BA) was evaluated at -10, +4 and +22 degrees C. Fecal pats were inoculated with a four-strain mixture of nalidixic-acid resistant E. coli O157:H7 at two levels: 10(3) CFU g(-1) (low, L) and 105 CFU g(-1) (high, H). At -10 degrees C, duration of survival of E. coli O157:H7 was reduced (p < 0.05) in CO-L (35 days) compared to BA-L (49 days), likely due to the effects of fecal volatile fatty acids in combination with a fecal pH of <6.5. At 4 degrees C, E. coli O157:H7 was detected in BA-H, CO-H, CO-L and BA-L for 77, 77, 56 and 63 days, respectively, with no difference (p > 0.05) observed in the duration of survival or rate of decline of E. coli O157:H7 among treatments. Survival of E. coli O157:H7 was twice as likely (p < 0.05) at 22 degrees C than at 4 degrees C and -10 degrees C. While pH and dry matter content increased, and volatile fatty acid concentrations decreased over 84 days at all three temperatures, these changes were most pronounced at 22 degrees C. Survival of E. coli O157:H7 for extended periods of time in feces from both corn- and barley-fed animals was demonstrated, thus fecal material may serve as a vector for the transmission of the organism. The greater survival of E. coli O157:H7 at 22 degrees C suggests that temperature may play a role in the seasonality of transmission and prevalence of this bacterium in feedlot cattle. The reported greater prevalence of E. coli O157:H7 in cattle fed barley as compared to those fed corn does not appear to be related to elevated risk of transmission arising from differential survival of the bacterium in feces.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号