首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary. The frog neuromuscular junction is sensitive to nitric oxide (NO), since exogenously applied NO reduces the release of transmitter by presynaptic terminals and the size of ATP-induced Ca2+ responses in perisynaptic Schwann cells. This study aimed at determining whether an NO synthase (NOS) is present at the neuromuscular junction, notably in perisynaptic Schwann cells, the glial cells at this synapse. The NADPH-diaphorase (NADPH-d) histochemical technique revealed the presence of NOS in cell bodies and presumed processes of perisynaptic Schwann cells. Incubation with NOS inhibitors, NG-nitro-L-arginine methyl ester or NG-monomethyl-L-arginine-acetate, abolished the NADPH-d staining. Moreover, L-arginine, the precursor of NO, impeded the blockade by NOS inhibitors, establishing the NOS specificity of NADPH-d staining in frog tissue. The pattern of labelling with a polyclonal antibody against the neuronal form of NOS was similar to the NADPH-d staining, also suggesting the presence of a neuronal NOS in perisynaptic Schwann cells. Using electron microscopy, the NOS immunostaining was found at the membrane and occasionally in the cytoplasm of perisynaptic Schwann cells and was not detected in the nerve terminal or muscle. There was no enzymatic or immunocytochemical labelling of NOS 6 days after denervation. It is concluded that NOS is present in frog perisynaptic Schwann cells. The presence of this endogenous NOS suggests that NO may act as a diffusible glial messenger to modulate synaptic activity and synapse formation at the neuromuscular junction.  相似文献   

2.
The effects of ischemia and postischemic reperfusion on the functions of the heart and its mitochondria were studied with special attention to the effect of nitric oxide (NO) by treatment of rat hearts with the nitric oxide synthase (NOS) inhibitor NG-nitro-L-arginine methyl ester (L-NAME) or its noninhibitory isomer NG-nitro-D-arginine methyl ester (D-NAME). NO generated during reperfusion caused increase in coronary flow (CF), but had no effect on the left ventricular pressure (LVP) or heart rate (HR). The ATP level of the heart decreased during ischemia and was not completely restored by introduction of oxygen during reperfusion due to damage of complexes I and II of the respiratory chain of mitochondria by NO. Inhibition of the respiratory chain resulted in generation of hydrogen peroxide, and NO and NO-derived species generated after production of NO caused further damage of various proteins in mitochondria, such as complexes I and II of the respiratory chain and pyruvate dehydrogenase (PDH). These results suggested that NO generated on reperfusion was the primary cause of mitochondrial dysfunction by damage of complexes I and II of the respiratory chain, with consequent increase of CF in the heart.  相似文献   

3.
The nature of the action of the nitric oxide synthase (NOS) inhibitor NG-nitro-L-arginine methyl ester (L-NAME) on hormone release from isolated islets was investigated. We found that glucose-induced insulin release was potentiated by L-NAME in the absence or presence of diazoxide, a potent channel opener, as well as in the presence of diazoxide plus a depolarizing concentration of K+. At a low, physiological glucose concentration L-NAME did not influence insulin secretion induced by K+ but inhibited glucagon secretion. L-arginine-induced insulin release was potentiated by L-NAME. This potentiation was observed also in the presence of K+ plus diazoxide. Further, glucagon release induced by L-arginine as well as by L-arginine plus K+ and diazoxide was suppressed by L-NAME. The results strongly suggest that the L-NAME-induced potentiation of insulin secretion in response to glucose or L-arginine as well as the inhibitory effects on glucagon secretion are largely mediated by L-NAME directly suppressing islet NOS activity. Hence NO apparently affects insulin and glucagon secretion independently of membrane depolarization events.  相似文献   

4.
Protective effects of L-arginine were evaluated in a human ventricular heart cell model of low-volume anoxia and reoxygenation independent of alternate cell types. Cell cultures were subjected to 90 min of low-volume anoxia and 30 min of reoxygenation. L-Arginine (0-5.0 mM) was administered during the preanoxic period or the reoxygenation phase. Nitric oxide (NO) production, NO synthase (NOS) activity, cGMP levels, and cellular injury were assessed. To evaluate the effects of the L-arginine on cell signaling, the effects of the NOS antagonist N(G)-nitro-L-arginine methyl ester, NO donor S-nitroso-N-acetyl-penicillamine, guanylate cyclase inhibitor methylene blue, cGMP analog 8-bromo-cGMP, and ATP-sensitive K+ channel antagonist glibenclamide were examined. Our data indicate that low-volume anoxia and reoxygenation increased NOS activity and facilitated the conversion of L-arginine to NO, which provided protection against cellular injury in a dose-dependent fashion. In addition, L-arginine cardioprotection was achieved by the activation of guanylate cyclase, leading to increased cGMP levels in human heart cells. This action involves a glibenclamide-sensitive, NO-cGMP-dependent pathway.  相似文献   

5.
We investigated the mechanism of guanosine 3′,5′-monophosphate (cGMP) production in rabbit parotid acinar cells. Methacholine, a muscarinic cholinergic agonist, stimulated cGMP production in a dose-dependent manner but not isoproterenol, a β-adrenergic receptor stimulant. Methacholine-stimulated cGMP production has been suggested to be coupled to Ca2+ mobilization, because intracellular Ca 2+ elevating reagents, such as thapsigargin and the Ca2+ ionophore A23187, mimicked the effect of methacholine. The cGMP production induced by Ca2+ mobilization has also been suggested to be coupled to nitric oxide (NO) generation because the effects of methacholine, thapsigargin and A23187 on cGMP production were blocked by NG-nitro-L-arginine methyl ester (L-NAME), a specific inhibitor of nitric oxide synthase (NOS), and hemoglobin, a scavenger of nitric oxide (NO). Sodium nitroprusside (SNP), a NO donor, stimulated cGMP production. Furthermore, methacholine stimulated NO generation, and NOS activity in the cytosolic fraction in rabbit parotid acinar cells was exclusively dependent on Ca2+. These findings suggest that cGMP production induced by the activation of muscarinic cholinergic receptors is coupled to NO generation via Ca2+ mobilization.  相似文献   

6.
In the present study, we used laser scanning confocal microscopy in combination with fluorescent indicator dyes to investigate the effects of nitric oxide (NO) produced endogenously by stimulation of the mitochondria-specific NO synthase (mtNOS) or applied exogenously through a NO donor, on mitochondrial Ca2+ uptake, membrane potential, and gating of mitochondrial permeability transition pore (PTP) in permeabilized cultured calf pulmonary artery endothelial (CPAE) cells. Higher concentrations (100–500 µM) of the NO donor spermine NONOate (Sper/NO) significantly reduced mitochondrial Ca2+ uptake and Ca2+ extrusion rates, whereas low concentrations of Sper/NO (<100 µM) had no effect on mitochondrial Ca2+ levels ([Ca2+]mt). Stimulation of mitochondrial NO production by incubating cells with 1 mM L-arginine also decreased mitochondrial Ca2+ uptake, whereas inhibition of mtNOS with 10 µM L-N5-(1-iminoethyl)ornithine resulted in a significant increase of [Ca2+]mt. Sper/NO application caused a dose-dependent sustained mitochondrial depolarization as revealed with the voltage-sensitive dye tetramethylrhodamine ethyl ester (TMRE). Blocking mtNOS hyperpolarized basal mitochondrial membrane potential and partially prevented Ca2+-induced decrease in TMRE fluorescence. Higher concentrations of Sper/NO (100–500 µM) induced PTP opening, whereas lower concentrations (<100 µM) had no effect. The data demonstrate that in calf pulmonary artery endothelial cells, stimulation of mitochondrial Ca2+ uptake can activate NO production in mitochondria that in turn can modulate mitochondrial Ca2+ uptake and efflux, demonstrating a negative feedback regulation. This mechanism may be particularly important to protect against mitochondrial Ca2+ overload under pathological conditions where cellular [NO] can reach very high levels. nitric oxide synthase; permeability transition pore; endothelium  相似文献   

7.
Separate and combined effects of nitrate (NaNO3) and L-arginine as potential sources of nitric oxide (NO) on the content of endogenous NO in roots of wheat (Triticum aestivum L.) seedlings and on their heat resistance were studied. Both agents increased the seedling resistance to the damaging heating; the effect was maximal at 20 mM NaNO3 or 5 mM L-arginine. The treatment with L-arginine elevated the NO content in the roots within the first 2 h of the treatment. Nitrate caused a stronger and longer rise in nitric oxide. Activity of nitrate reductase considerably (2–3 times) increased in the roots exposed to nitrate. The augmentation in the nitric oxide level caused by nitrate or L-arginine was prevented by the root pretreatment with an inhibitor of nitrate reductase (sodium tungstate) or an inhibitor of animal NO-synthase—NG-nitro-L-arginine methyl ester (L-NAME). Upon the combined treatment with NaNO3 and L-arginine, the nitrateinduced stimulation of the nitrate reductase activity, NO level in the roots, and seedling heat resistance were less pronounced than after separate application. In the presence of L-NAME, the negative influence of L-arginine on nitrate effects was markedly attenuated. The plant exposure to nitrate or L-arginine increased the activities of antioxidant enzymes (superoxide dismutase, catalase, and guaiacol peroxidase). A mixture of NaNO3, and L-arginine caused weaker effects. It was suggested that nitrate-dependent and arginine-dependent pathways of NO formation are antagonistic to each other in wheat roots.  相似文献   

8.
Quinolinic acid (QUIN) is an endogenous excitotoxin acting on N-methyl-D-aspartate (NMDA) receptors, that leads to neurotoxic damage resembling the alterations observed in Huntington's disease. Two major end-points of QUIN induced neurotoxicity are both circling behavior (CB) and lipid peroxidation (LP). Recently, nitric oxide (NO) has been implicated as a mediator of cell injury in some neurological disorders, thus, NO as a free radical might be involved in QUIN-induced neurotoxicity and oxidative stress. In the present study we evaluated the possible role of NO on QUIN-induced neurotoxicity, by measuring nitric oxide synthase activity (NOS), before and after QUIN-induced damage and by evaluating the effect of NOS inhibition on acute QUIN-induced CB and LP. Rats were striatally microinjected with QUIN (240 nmol/1l). QUIN administration increased NOS activity by 327% as compared to control values and this enhancement was inhibited by i.v. pretreatment with a NOS inhibitor the NG-nitro-L-arginine methyl ester (L-NAME) (10 mg/kg). QUIN-induced CB was also attenuated by pretreatment of rats with 1, 5, 10 and 15 mg/kg of L-NAME by –37, –55, –62 and –74% vs QUIN respectively. Similarly, L-NAME also reduced by 32% the QUIN-induced LP. These findings suggest that enhanced NOS activity may participate in QUIN-induced neurotoxicity and oxidative stress.  相似文献   

9.
Volgin  D. V.  Seredenko  M. M.  Vasilenko  D. A.  Volgina  A. V. 《Neurophysiology》2000,32(6):360-367
We studied the dynamics of modifications of the respiratory activity generated by semi-isolated medullo-spinal preparations (SIMSP) of 3- to 4-day-old rats related to a drop in the pH of superfusing solution from 7.4 to 7.0. Reactions were recorded in the norm and under conditions of preliminary applications of a noncompetitive blocker of NMDA receptors, ketamine; an inhibitor of nitric oxide synthase (NOS), NG-nitro-L-arginine methyl ester (L-NAME); a substrate for NO synthesis, L-arginine; or an exogenous NO donor, sodium nitroprusside (SN). Under control conditions, test applications of the solution with pH 7.0 resulted in a significant increase in the frequency of inspiratory discharges (ID) recorded from the phrenic nerve and drops in their amplitude and integral intensity. Such SIMSP extracellular acidification-induced responses were inhibited in a dose-dependent manner by ketamine and L-NAME (the effect of the latter was more intensive). The effects of agents increasing the NO level in the tissues were not uniform: L-arginine potentiated an increase in the ID frequency related to application of the acidified solution, while SN inhibited such a reaction. Our findings allow us to suppose that the stimulating influences of the pH-sensitive chemoreceptor structures of the ventrolateral medulla (VLM) on the activity of the medullary respiratory generator of early postnatal rats are realized with the involvement of NMDA receptors of excitatory amino acids and the process of enzyme-mediated NO production. It seems probable that endogenous synthesis of NO in VLM structures mediates and potentiates the effect of activation of the NMDA receptors on the medullary generator of the respiratory rhythm.  相似文献   

10.
Abstract

This study was undertaken to investigate the nitric oxide synthase (NOS) activity in the striatum following 6-hydroxydopamine (6-OHDA) induced neurodegeneration in rats. Constitutive NOS (cNOS) activity remained unaltered at 3, 7 and 14 days after lesion, while a 43% and 45% decrease was observed at 30 and 50 days, respectively. Inducible NOS (iNOS) activity was detected only on the 3rd day after lesion and not in subsequent days or the control striatum. NG-nitro-L-arginine methyl ester (L-NAME) pretreatment blocked the amphetamine-induced rotations and inhibited the iNOS activity at the 3rd day after the 6-OHDA injection. L-NAME pretreatment also significantly restored the striatal dopamine (DA), dihydroxyphenylacetic acid (DOPAC) and homovanillic acid (HVA) levels in 6-OHDA treated rats. Thus a possible role of nitric oxide in 6-OHDA induced neurodegeneration is suggested.  相似文献   

11.
The effect of blocking brain nitric oxide (NO) synthesis on body temperature regulation was tested in conscious rats. NO synthase was inhibited by administration of equivalent doses of NG-nitro-L-arginine methyl ester (L-NAME) or NG-monomethyl L-arginine monoacetate (L-NMMA) into a lateral cerebral ventricle (ICV) and core temperature was monitored. An ICV injection of 300 μg L-NAME increased colonic temperature in rats (n=8) by 1.9±0.1 °C (P<0.001). The increase in temperature in response to blockade of NO synthesis was significant by 1 h after injection and sustained for more than 3 h. The hyperthermic response to central NO blockade (using L-NMMA) was found to be dose-dependent between 2.8 to 282 μg. Intravenous administration of L-NAME at the highest dose used in the study (300 μg) had no effect on temperature, indicating that the mechanism was mediated by the brain. Pre-treatment with indomethacin (300 μg) blocked hyperthermic responses to ICV L-NAME (300 μg) administration. We conclude that, blockade of nitric oxide induces a cyclooxygenase-dependent hyperthermia in conscious rats that is mediated by the brain.  相似文献   

12.
《Life sciences》1994,54(17):PL285-PL289
Nitric oxide synthase(NOS) inhibitor, Nω-nitro-L-arginine methyl ester (L-NAME, 10–300 mg/kg) and L-NG-monomethyl-arginine (L-NMMA, 30–300 mg/kg) suppressed the swellings of adjuvant-injected paw of rats (25–54%) at day 2 and 8 when dosed intraperitoneally and orally for 4 days from day -1 to day 2 after adjuvant. L-NAME (30–300 mg/kg) also suppressed the edema of the non adjuvant-injected paws (15–42%) at day 28. Local injection of this inhibitor (2 and 10 mg/kg) was without effect. L-arginine (1 g/kg, i.p.), impaired the suppression by L-NAME. Bovine blood Cu, Zn-superoxide dismutase (SOD, 3 mg/kg, i.p.: 28% suppression) and L-NAME (30 mg/kg i.p.: 36% suppression) showed additive effect (52%) in adjuvant-injected paws at day 8 when co-injected. As the effect of 30 mg/kg L-NAME corresponded nearly to that of 10 mg/kg VoltarenR, this NOS inhibitor would be worth considering as an anti-inflammatory agent. Sodium nitroprusside (NO-donor) and methylene blue (guanylate cyclase inhibitor) had no effect. L-NAME was also suppressive when dosed after adjuvant inoculation and NO is involved in the development and maintenance of swelling.  相似文献   

13.
In autonomic-blocked rats treated with NG-nitro-L-arginine methyl ester (L-NAME, 7.5 mg/kg), heart rate increased 18% and mean arterial pressure increased 48%. Thyroidectomy, along with autonomic blockade, hampered the chronotropic response but did not modify the effect on blood pressure. After 150 min of autonomic blockade, the experimental end point, total nitric oxide (NO) production by heart NO synthases (NOS) decreased 61%: from 54 to 21 nmol NO.min-1.g heart-1. Mitochondrial NOS (mtNOS) and sarcoplasmic reticulum endothelial NOS activities decreased 74% and 52%, respectively. Mitochondria isolated from whole heart showed a well-coupled oxidative phosphorylation with high respiratory control and ADP-to-O ratios, decreased mtNOS activity (55-60%), and decreased mtNOS protein expression (70%). Immunohistochemistry with anti-inducible NOS antibody linked to gold particles localized mtNOS at the inner mitochondrial membranes. Histochemical right atrial NOS (NADPH-diaphorase) decreased 55% after heart denervation. The effects of autonomic denervation on the NO system were partially prevented by thyroidectomy performed simultaneously with autonomic blockade. Western blot analysis indicated a very rapid mtNOS protein turnover (half time=120 min) with a process of protein expression that was upregulated by thyroidectomy and a degradation process that was downregulated by the autonomic nervous system. The observations suggest that NO-mediated pathways contribute to pacemaker heart activity, likely through the NO steady-state levels in the right atrium and the whole heart.  相似文献   

14.
Lipopolysacharide from Escherichia coli was intravenously administered to rats (5.0 mg/kg). L-arginine-No system was modified by intravenous injection of L-arginine, N(G)-nitro-L-arginine methyl ester or L-lysine-N(G)-acetamidine (nitric oxide synthase (NOS) substrate, nonselective NOS inhibitor, and selective inducible NOS inhibitor, respectively.) Lipopolysacharide-induced disorders of blood oxygen transport were the least during the selective inducible NOS inhibition. The protective effects of L-arginine and N(G)-nitro-L-arginine methyl ester were less prominent. Such features of NOS modification effect on the blood oxygen transport suggest that activation of inducible NOS may change the hemoglobin-oxygen affinity during the lipopolysacharide treatment.  相似文献   

15.
16.
L-arginine participates in many important and diverse biochemical reactions associated with the normal physiology of the organism. In the present study, we investigated the effect of central administration of L-arginine on the stress response and its mechanism in neonatal chicks. Intracerebroventricular (i.c.v.) injection of L-arginine clearly attenuated the stress response in a dose-dependent manner, and induced sleep-like behavior during 10 min. To clarify the mechanism by which L-arginine induces sedative and hypnotic effects in chicks, we investigated the effects of nitric oxide (NO) synthase (NOS) inhibitors on L-arginine-induced sedative and hypnotic effects, and as well as the effects of a NO donor. L-Arginine-induced (1.9 micromol) sedative and hypnotic effects were attenuated by i.c.v. co-injection with a non-selective NOS inhibitor N(G)-nitro-L-arginine methyl ester HCl (400 nmol). In addition, the effects of L-arginine were slightly attenuated by the inactive isomer of the NOS inhibitor N(G)-nitro-D-arginine methyl ester HCl (400 nmol). The i.c.v. injection of 3-morpholinosylnomine hydrochloride, a spontaneous NO donor, had little effect on postures. The i.c.v. injection of L-arginine had no effect on NOx concentration at various brain sites. These results suggested that the contribution of NO generation via NOS may be low in the sedative and hypnotic actions of L-arginine. Therefore, L-arginine and/or its metabolites, excluding NO, may be necessary for these actions.  相似文献   

17.
The mitochondrial metabolic state regulates the rate of NO release from coupled mitochondria: NO release by heart, liver and kidney mitochondria was about 40-45% lower in state 3 (1.2, 0.7 and 0.4 nmol/min mg protein) than in state 4 (2.2, 1.3 and 0.7 nmol/min mg protein). The activity of mtNOS, responsible for NO release, appears driven by the membrane potential component and not by intramitochondrial pH of the proton motive force. The intramitochondrial concentrations of the NOS substrates, L-arginine (about 310 microM) and NADPH (1.04-1.78 mM) are 60-1000 times higher than their KM values. Moreover, the changes in their concentrations in the state 4-state 3 transition are not enough to explain the changes in NO release. Nitric oxide release was exponentially dependent on membrane potential as reported for mitochondrial H2O2 production [S.S. Korshunov, V.P. Skulachev, A.A. Satarkov, High protonic potential actuates a mechanism of production of reactive oxygen species in mitochondria. FEBS Lett. 416 (1997) 15-18.]. Agents that decrease or abolish membrane potential minimize NO release while the addition of oligomycin that produces mitochondrial hyperpolarization generates the maximal NO release. The regulation of mtNOS activity, an apparently voltage-dependent enzyme, by membrane potential is marked at the physiological range of membrane potentials.  相似文献   

18.
Using NMR magnetization transfer from water and ammonia-catalyzed exchange of the imino protons, changes have been monitored in base-pair kinetics induced by Mg2 +  in two key activity fragments r(CACCUGGCGACAGGUG) and r(GGCCAAAAGCC) of the encephalomyocarditis virus internal ribosome entry site. For r(CACCUGGCGACAGGUG), the addition of Mg2 +  reveals two types of base-pairs: r(U545·A) and r(G546·C), in the first category, have lifetimes only slightly higher in the presence of Mg2 + , whereas their dissociation constants are substantially reduced. This behavior has been termed proximal. The base-pairs r(G553·C) and r(G554·C), in the second category, have lifetimes substantially higher in the presence of Mg2 + , whereas their dissociation constants remain almost constant. This behavior has been termed distal. Mg2 +  has a specific effect on r(CACCUGGCGACAGGUG), the magnitude of which is progressively modulated from the proximal region of the 16-mer towards its distal region. For r(GGCCAAAAGCC), an intermediate behavior is found for base-pairs r(G565·C) and r(G572·C). Their lifetimes are slightly higher in the presence of Mg2 +  and their dissociation constants are significantly lower, a behavior resembling that of the 16-mer proximal region. These results indicate that Mg2 +  diffusively moves around r(GGCCAAAAGCC).  相似文献   

19.
The unicellular marine phytoplankton Chattonella marina is knownto exhibit potent fish-killing activity. Previous studies havedemonstrated that C. marina produces reactive oxygen species(ROS), and ROS-mediated ichthyotoxic mechanism has been postulated.However, the exact toxic mechanism is still controversial. Inthis study, we obtained evidence that C. marina produces nitricoxide (NO) under normal growth conditions. We utilized chemiluminescence(CL) reaction between NO and luminol–H2O2 to detect NOin C. marina cell suspensions. In this assay, significant CLwas observed in C. marina in a cell-number-dependent manner,and this was diminished by the addition of 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide(carboxy-PTIO), a specific NO scavenger. The NO generation byC. marina was also confirmed by a spectrophotometric assay basedon the measurement of the diazo-reaction-positive substances(NOx) and by fluorometric assay using highly specific fluorescentindicator of NO. The NO level in C. marina was significantlydecreased by NG-nitro-L-arginine methyl ester (L-NAME), a specificNO synthase (NOS) inhibitor. The addition of L-arginine resultedin the increased NO level, whereas NaNO2 had no effect. Theseresults suggest that a NOS-like enzyme is mainly responsiblefor NO generation in C. marina.  相似文献   

20.
Although nitric oxide (NO) is a known modulator of cell respiration in vascular endothelium, the presence of a mitochondria-specific nitric oxide synthase (mtNOS) in these cells is still a controversial issue. We have used laser scanning confocal microscopy in combination with the NO-sensitive fluorescent dye DAF-2 to monitor changes in NO production by mitochondria of calf vascular endothelial (CPAE) cells. Cells were loaded with the membrane-permeant NO-sensitive dye 4,5-diaminofluorescein (DAF-2) diacetate and subsequently permeabilized with digitonin to remove cytosolic DAF-2 to allow measurements of NO production in mitochondria ([NO]mt). Stimulation of mitochondrial Ca2+ uptake by exposure to different cytoplasmic Ca2+ concentrations (1, 2, and 5 µM) resulted in a dose-dependent increase of NO production by mitochondria. This increase of [NO]mt was sensitive to the NOS antagonist L-N5-(1-iminoethyl)ornithine and the calmodulin antagonist calmidazolium (R-24571), demonstrating the endogenous origin of NO synthesis and its calmodulin dependence. Collapsing the mitochondrial membrane potential with the protonophore FCCP or blocking the mitochondrial Ca2+ uniporter with ruthenium red, as well as blocking the respiratory chain with antimycin A in combination with oligomycin, inhibited mitochondrial NO production. Addition of the NO donor spermine NONOate caused a profound increase in DAF-2 fluorescence that was not affected by either of these treatments. The mitochondrial origin of the DAF-2 signals was confirmed by colocalization with the mitochondrial marker MitoTracker Red and by the observation that disruption of caveolae (where cytoplasmic NOS is localized) formation with methyl--cyclodextrin did not prevent the increase of DAF-2 fluorescence. The activation of mitochondrial calcium uptake stimulates mtNOS phosphorylation (at Ser-1177) which was prevented by FCCP. The data demonstrate that stimulation of mitochondrial Ca2+ uptake activates NO production in mitochondria of CPAE cells. This indicates the presence of a mitochondria-specific NOS that can provide a fast local modulatory effect of NO on cell respiration, membrane potential, and apoptosis. nitric oxide; nitric oxide synthase; calcium; endothelium; mitochondria  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号