首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An intracellular lipase was induced inAspergillus flavipes grown on various triacylglycerols at pH 6.0 and at 30°C, with maximum activity with sunflower oil. The lipase had an optimum pH for activity of 8.8 and retained 30% of its activity at pH 10.0. It had an optimum temperature for activity, measured over 30 min, of 45°C. It was completely inactivated at 60°C within 10 min.  相似文献   

2.
Alternaria brassicicola produced higher quantities (3.2 U/ml) of an inducible extracellular lipase (EC 3.1.1.3) in shaken synthetic medium supplemented with 20 mM methyloleate. After purification, the M r of the lipase was determined as 80 kDa by SDS-PAGE and estimated at 85 kDa using gel filtration, which suggest that the enzyme may be a monomer. The optimum pH and temperature for activity of the enzyme were 9.0 and 25ºC, respectively. Using umbelliferone esters, the lipase was shown highly specific towards a synthetic substrate with long-chain unsaturated fatty acid.  相似文献   

3.
Latex from Caricaceae has been known since 1925 to contain strong lipase activity. However, attempts to purify and identify the enzyme were not successful, mainly because of the lack of solubility of the enzyme. Here, we describe the characterization of lipase activity of the latex of Vasconcellea heilbornii and the identification of a putative homologous lipase from Carica papaya. Triacylglycerol lipase activity was enriched 74-fold from crude latex of Vasconcellea heilbornii to a specific activity (SA) of 57 μmol·min(-1)·mg(-1) on long-chain triacylglycerol (olive oil). The extract was also active on trioctanoin (SA = 655 μmol·min(-1)·mg(-1) ), tributyrin (SA = 1107 μmol·min(-1)·mg(-1) ) and phosphatidylcholine (SA = 923 μmol·min(-1)·mg(-1) ). The optimum pH ranged from 8.0 to 9.0. The protein content of the insoluble fraction of latex was analyzed by electrophoresis followed by mass spectrometry, and 28 different proteins were identified. The protein fraction was incubated with the lipase inhibitor [(14) C]tetrahydrolipstatin, and a 45 kDa protein radiolabeled by the inhibitor was identified as being a putative lipase. A C. papaya cDNA encoding a 55 kDa protein was further cloned, and its deduced sequence had 83.7% similarity with peptides from the 45 kDa protein, with a coverage of 25.6%. The protein encoded by this cDNA had 35% sequence identity and 51% similarity to castor bean acid lipase, suggesting that it is the lipase responsible for the important lipolytic activities detected in papaya latex.  相似文献   

4.
The fungus Cunninghamella verticillata was selected from isolates of oil-mill waste as a potent lipase producer as determined by the Rhodamine-B plate method. The lipase was purified from C. verticillata by ammonium sulphate fractionation, ion exchange chromatography and gel filtration. The purified enzyme was formed from a monomeric protein with molecular masses of 49 and 42 kDa by SDS–PAGE and gel filtration, respectively. The optimum pH at 40 °C was 7.5 and the optimum temperature at pH 7.5 was 40 °C. The enzyme was stable between a pH range of 7.5 and 9.0 at 30 °C for 24 h. The enzyme activity was strongly inhibited by AgNO3, NiCl2, HgCl2, CdCl2 and EDTA. However, the presence of Ca2+, Mn2+ and Ba2+ ions enhanced the activity of the enzyme. The activity of purified lipase with respect to pH, temperature and salt concentration was optimized using a Box–Behnken design experiment. A polynomial regression model used in analysing this data, showed a significant lack of fitness. Therefore, quadratic terms were incorporated in the regression model through variables. Maximum lipase activity (100%) was observed with 2 mM CaCl2, (pH 7.5) at a temperature of 40 °C. Regression co-efficient correlation was calculated as 0.9956.  相似文献   

5.
Lipase production by the potato pathogen Fusarium oxysporum AM3 was investigated in a mineral medium using triolein and sodium nitrate as carbon and nitrogen sources, respectively. Medium design by factorial analysis of the medium components increased enzyme activity 9.4-folds over the standard medium. The simple medium composition promoted easy enzyme recovery to its homogeneity in a single step. The lipase showed optimum activity at pH 9.0 and 35 °C, with a K M value of 7.5 mM for triolein and apparent molecular weight of 29.0 kDa. When assayed with different solvents, FoxAM3 lipase showed an increase on its activity by isooctane, isopropanol and acetone.  相似文献   

6.
Optimizing production of extracellular lipase fromRhodotorula glutinis   总被引:1,自引:0,他引:1  
Production of extracellular lipase byRhodotorula glutinis was substantially enhanced when the type and concentration of carbon and nitrogen source, the initial pH of culture medium and the growth temperature were consecutively optimized. Lipase activity as high as 30.4 U/ml of culture medium was obtained at optimum conditions, comparing favourably with most of the activities reported for other lipase hyperproducing microorganisms. The enzyme was optimally active at pH 7.5 and 35°C and had, at optimum pH, half-lives of 45 and 11.8 min at 45 and 55°C respectively. The high activity and kinetic characteristics of the enzyme make this process worthy of further investigation.  相似文献   

7.
Summary A number of factors affecting production of extracellular lipase by the edible fungus Calvatia gigantea were investigated. Consecutive optimization of carbon and nitrogen sources, initial pH of culture medium and growth temperature resulted in an increase in lipase activity of 87%. Under optimum conditions, activities as high as 22.4 units ml–1 of culture medium were obtained, competing favourably with most activities reported for other lipase hyperproducing microorganisms. The enzyme was optimally active at pH 7.0 and 30°C and had, at optimum pH, half-lives of 75.7 and 22.9 min at 45 and 55°C. Both high activity and kinetic characteristics of the enzyme make this process worthy of further investigation.Correspondence to: B. J. Macris  相似文献   

8.
In an effort to identify a microbial lipase that can catalyze transesterification reactions used in biodiesel production, an organic solvent-tolerant lipase was purified from Streptomyces sp. CS268. The molecular weight of the purified lipase was estimated to be 37.5 kDa by SDS-PAGE. The lipase showed highest activity at a temperature of 30°C and pH 8.0 while it was stable in the pH range 4.0 ∼ 9.0 and at temperatures ≤ 50°C. It showed the highest hydrolytic activity towards medium-length acyl chain p-nitrophenyl decanoate with K m and V max values of 0.59 mM and 319.5 mmol/mg/min, respectively. Also, the lipase showed non-position specificity for triolein hydrolysis. The purified lipase catalyzed transesterification reaction of soybean oil with methanol, suggesting that it can be a potential enzymatic catalyst for biodiesel production.  相似文献   

9.
Thermostable alkaline cellulase (endo-1,4-β-glucanase, EC 3.2.1.4) activity was detected in the culture medium of a strictly alkaliphilic strain of Bacillus, designated KSM-S237. This novel enzyme was purified to homogeneity by a two-step column-chromatographic procedure with high yield. The N-terminal amino acid sequence of the purified enzyme was Glu-Gly-Asn-Thr-Arg-Glu-Asp-Asn-Phe-Lys-His-Leu-Leu-Gly-Asn-Asp-Asn-Val-Lys-Arg. The enzyme had a molecular mass of approximately 86 kDa and an isoelectric point of pH 3.8. The enzyme had a pH optimum of 8.6–9.0 and displayed maximum activity at 45°C. The alkaline enzyme was stable up to 50°C and more than 30% of the original activity was detectable after heating at 100°C and at pH 9.0 for 10 min. The enzyme hydrolyzed carboxymethylcellulose, lichenan (β-1,3;1,4-linkage), and p-nitrophenyl derivatives of cellotriose and cellotetraose. Crystalline forms of cellulose (Avicel and filter paper), H3PO4-swollen cellulose, NaOH-swollen cellulose, curdlan (β-1,3-linkage), laminarin (β-1,3;1,6-linkage), and xylan were barely hydrolyzed at all. Received: April 28, 1997 / Accepted: May 24, 1997  相似文献   

10.
An extracellular lipase produced by Thermomyces lanuginosus in palm fruit chaff infusion broth at 45 °C after 6 days of incubation was purified by a combination of ultrafiltration, ethanol precipitation and fractionation on DEAE-cellulose and gel-filtration on Sephadex G.200. A single peak of lipase activity with a tenfold increase in the activity of the enzyme was obtained. The partially purified T. lanuginosus lipase had a recovery value of 25%. Attempts to purify this enzyme further led to an almost complete loss of activity. The lipase had a pH optimum of 6.5 and peak activity at 40 °C. It readily hydrolysed both natural and synthetic triglycerides at 40 °C with optimal activities recorded on palm oil and triolein respectively.  相似文献   

11.
A thermostable and organic solvent-tolerant lipase produced by Aneurinibacillus thermoaerophilus strain HZ was purified and characterised. The lipase was purified to apparent homogeneity with two steps: anion exchange chromatography on Q-Sepharose and gel filtration on Sephadex-G75. A final specific activity of 43.5 U/mg was obtained with an overall recovery of 19.7% and 15.6 purification fold. The molecular mass of the HZ lipase was estimated to be 50 kDa. The optimum pH for the activity of the purified HZ lipase was 7.0. The stability showed a broad range of pH values between pH 4.0 and 9.0 at 30 °C. The purified HZ lipase exhibited an optimum temperature of 65 °C with a half-life of 3 h and 10 min at 65 °C. The activity of the purified HZ lipase was stimulated in the presence of Ca2+. Organic solvents such as dimethyl sulfoxide (DMSO), methanol, n-tetradecane and n-hexadecane enhanced the lipase activity. Studies on the effect of oil showed that the lipase preferred natural oil, such as sunflower oil, over synthetic substrates.  相似文献   

12.
The marine strain Pseudomonas otitidis was isolated to hydrolyze the cooked sunflower oil (CSO) followed by the production of lipase. The optimum culture conditions for the maximum lipase production were determined using Plackett–Burman design and response surface methodology. The maximum lipase production, 1,980 U/ml was achieved at the optimum culture conditions. After purification, an 8.4-fold purity of lipase with specific activity of 5,647 U/mg protein and molecular mass of 39 kDa was obtained. The purified lipase was stable at pH 5.0–9.0 and temperature 30–80 °C. Ca2+ and Triton X-100 showed stimulatory effect on the lipase activity. The purified lipase was highly stable in the non-polar solvents. The functional groups of the lipase were determined by Fourier transform-infrared (FT-IR) spectroscopy. The purified lipase showed higher hydrolytic activity towards CSO over the other cooked oil wastes. About 92.3 % of the CSO hydrolysis was observed by the lipase at the optimum time 3 h, pH 7.5 and temperature 35 °C. The hydrolysis of CSO obeyed pseudo first order rate kinetic model. The thermodynamic properties of the lipase hydrolysis were studied using the classical Van’t Hoff equation. The hydrolysis of CSO was confirmed by FT-IR studies.  相似文献   

13.
An extracellular lipase from Pichia burtonii was purified to homogeneity by a combination of DEAE-Sephadex A-50 ion-exchange chromatography, Sephadex G-100 gel filtration, and isoelectric focusing. The purified enzyme preparation showed a single protein band corresponding to a molecular mass of 51 kDa on sodium dodecyl sulphate/polyacrylamide gel electrophoresis. The molecular mass of the enzyme was estimated to be 47 kDa on Superdex 200 gel filtration, suggesting that the enzyme was a monomeric protein. The pI was about 5.8. The optimum pH and temperature for the hydrolysis of olive oil were about 6.5 and 45°C respectively. Rapid loss of the enzyme activity was observed above 30°C in the absence of olive oil, but the addition of olive oil or trimethylolpropane diallyl ether greatly stabilized the enzyme. At 30°C, the enzyme hydrolysed Spans and Tweens as well as simple triglycerides of short- and middle-chain fatty acids. Although the enzyme cleaved all the ester bonds of triolein, it showed some preference for the outer ester bonds.  相似文献   

14.
A microorganism producing a solvent-tolerant lipase was identified as Fusarium (F.) heterosporum. The lipase was purified from the culture filtrate to homogeneity as judged by disc-PAGE and SDS-PAGE. The purification included SP-Sephadex chromatography, gel filtration and isoelectric focusing, and the recovery yield was 38%. The lipase was a monomeric protein with a molecular weight of 31 kDa estimated by SDS-PAGE, and a pI of 7.0. The optimum pH at 40°C and optimum temperature at pH 5.6 were 5.5–6.0 and 45–50°C, respectively, when olive oil was used as the substrate. The lipase was stable over a pH range of 4–10 at 30°C for 4 h, and up to 40°C at pH 5.6 for 30 min. Furthermore, the enzyme was not inactivated even after incubation at 30°C in 50% solvent such as dimethylsulfoxide (DMSO), hexane, benzene and ether for 20 h. The activity did not decrease in a reaction with stirring in a mixture containing 50% DMSO or dimethylformamide. The lipase preferably reacted on middle-chain fatty acid triglycerides (6≤C≤12), and cleaved only 1,3-ester bonds of triolein. The enzyme had an N-terminal sequence of Ala-Val-Thr-Val-Thr-Thr-Gln-Asp-Leu-Ser, which has not previously been found in any other protein. We compared the properties of lipases from F. heterosporum and another strain F. oxysporum.  相似文献   

15.
Esterase and lipase activity showed significant changes during embryogenesis of camel tick Hyalomma dromedarii. From the elution profile of chromatography on DEAE-cellulose, six forms of H. dromedarii esterase (El to EVI) can be distinguished. Esterase EIII was purified to homogeneity after chromatography on Sepharose 6B. The molecular mass of esterase EIII was 45 kDa for the native enzyme and represented a monomer of 45 kDa by SDS-PAGE. Esterase EIII had an acidic pI at 5.3. Lipase activity was detected in the same DEAE-cellulose peaks (LI to LVI) of H. dromedarii esterases. The highest lipase activity was exhibited by lipase LIII. Esterase EIII and lipase LIII were compared with respect to Michaelis constant, substrate specificity, temperature optimum, heat stability, pH optimum, effect of metal ions and inhibitors. This study suggests that H. dromedarii lipolytic enzymes may play a central role in the interconversion of lipovitellins during embryogenesis.  相似文献   

16.
Thermoalkaliphilic Bacillus sp. strain TAR-1 isolated from soil produced an extracellular xylanase. The enzyme (xylanase R) was purified to homogeneity by ammonium sulfate fractionation and anion-exchange chromatography. The molecular mass of xylanase R was 40 kDa and the isoelectric point was 4.1. The enzyme was most active over the range of pH 5.0 to 10.0 at 50°C. The optimum temperatures for activity were 75°C at pH 7.0 and 70°C at pH 9.0. Xylanase R was stable up to 65°C at pH 9.0 for 30 min in the presence of xylan. Mercury(ll) ion at 1 mM concentration abolished all the xylanase activity. The predominant products of xylan-hydrolysate were xylobiose, xylotriose, and higher oligosaccharides, indicating that xylanase R was an endo-acting enzyme. Xylanase R had a Km of 0.82 mg/ml and a Vmax of 280 μmol min−1 mg−1 for xylan at 50°C and pH 9.0.  相似文献   

17.
The lipA gene, a structural gene encoding for protein of molecular mass 48 kDa, and lipB gene, encoding for a lipase-specific chaperone with molecular mass of 35 kDa, of Pseudomonas aeruginosa B2264 were co-expressed in heterologous host Escherichia coli BL21 (DE3) to obtain in vivo expression of functional lipase. The recombinant lipase was expressed with histidine tag at its N terminus and was purified to homogeneity using nickel affinity chromatography. The amino acid sequence of LipA and LipB of P. aeruginosa B2264 was 99–100% identical with the corresponding sequence of LipA and LipB of P. aeruginosa LST-03 and P. aeruginosa PA01, but it has less identity with Pseudomonas cepacia (Burkholderia cepacia) as it showed only 37.6% and 23.3% identity with the B. cepacia LipA and LipB sequence, respectively. The molecular mass of the recombinant lipase was found to be 48 kDa. The recombinant lipase exhibited optimal activity at pH 8.0 and 37°C, though it was active between pH 5.0 and pH 9.0 and up to 45°C. K m and V max values for recombinant P. aeruginosa lipase were found to be 151.5 ± 29 μM and 217 ± 22.5 μmol min−1 mg−1 protein, respectively.  相似文献   

18.
The fungus Geotrichum candidum was selected from isolates of oil-mill waste as a potent lipase producer. Factors affecting lipase production by the fungus G. candidum in yeast-extract-peptone medium have been optimized by using a Box–Behnken design with seven variables to identify the significant correlation between effects of these variables in the production of the enzyme lipase. The experimental values were found to be in accordance with the predicted values, the correlation coefficient is 0.9957. It was observed that the variables days (6), pH (7.0), temperature (30 °C), carbon (1.25%), nitrogen (2.0%), Tween (1.0%) and salt concentrations (0.5 mM) were the optimum conditions for maximum lipase production (87.7 LU/ml). The enzyme was purified to homogeneity with an apparent molecular mass of 32 kDa by SDS-PAGE. The optimum pH at 40 °C was 7.0 and the optimum temperature at pH 7.0 was 40 °C. The enzyme was stable within a pH range of 6.5 to 8.5 at 30 °C for 24 h. The enzyme activity was strongly inhibited by AgNO3, NiCl2, HgCl2, and EDTA. However, the presence of Ca2+ and Ba2+ ions enhanced the activity of the enzyme.  相似文献   

19.
Abstract

Fungal lipases occupy a place of prominence among biocatalysts owing to their novel, multifold applications and resistance to high temperature and other operational conditions. In the present study, Aspergillus fumigatus isolated from oil-contaminated soil produced good amount of lipase activity with galactose (1%) as carbon source and peptone (0.1%) as nitrogen source after 72?h of incubation in the production medium at 45?°C and pH 10.0. The isolated enzyme was found to give its optimum reaction temperature at 40?°C and pH 9.0 with the substrate used as p-nitrophenyl benzoate. The activity of lipase was inhibited by the presence of metal ions. A 6.68-fold increase for lipase production was obtained by one variable at a time. Based on the findings of present study, lipase of A. fumigatus is a potential lipase and a candidate for industrial applications such as bioremediation, detergent, leather and pharmaceutical industries.  相似文献   

20.
The novel chitinolytic bacterium Clostridium beijerinckii strain JM2 was isolated from the stool of healthy volunteers supplied daily per orally with 3 g of chitosan. The bacterium grown on colloidal chitin produced a complete array of chitinolytic enzymes. Significant activities of endochitinase, exochitinase and chitosanase were excreted into the medium (301, 282 and 268 nkat/μg protein, respectively). The high cellular activity of N-acetyl-β-glucosaminidase (NAGase) and chitosanase were detected (732.4 and 154 nkat/μg protein, respectively). NAGase activity represented the main activity associated with the cellular fraction. The activities of both enzymes tested increased from 20 to 50 °C; the optimum reaction temperature estimated being 50 °C. Endochitinase as well as NAGase showed an activity in the pH interval of 4.0–8.0; the optimum pH values were 6.5 and 6.0, respectively. The extracellular endochitinase complex consisted of six isoenzymes with molar mass of 32–76 kDa; in the cellular fraction five bands with molar mass of 45–86 kDa were detected. Exochitinase activity was demonstrated in the form of three bands (with molar mass of 30–57 kDa), NAGase activity displayed one band of 45 kDa.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号