首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 765 毫秒
1.
When closed circular duplex DNAs are exposed to alkali in the presence of ethidium bromide, from 0 to 100% of the DNA can be recovered as the fully base-paired duplex (native) form upon neutralization of the solutions. The fraction of native DNA depends on the concentration of ethidium bromide, time of incubation, ionic strength and temperature of the solutions before neutralization as well as the molecular weight and superhelix density of the DNA. Limiting ethidium concentrations exist below and above which 0 and 100% of the DNA, respectively, is recovered as native material under a given set of incubation conditions regardless of the length of time of incubation before neutralization. The strong molecular weight dependence of the fraction of DNA recovered in the native form after a given time of pre-neutralization incubation at ethidium concentrations between the limiting values noted above allows larger DNAs to remain fully denatured upon neutralization while smaller DNAs in the same mixture are fully renatured. This permits the rapid fractionation of mixtures of closed duplex DNAs on the basis of molecular weight when a technique for the separation of denatured from fully base-paired DNA is applied to such mixtures. Such a separation has been demonstrated through the marked enrichment of plasmid cloning vector DNA containing cloned inserts in the fractions that remain denatured after neutralization of alkaline solutions of these DNAs containing ethidium bromide.  相似文献   

2.
Pools of young (less than 60% replicated) and mature (60-90% replicated) replicating molecules of simian virus 40 (SV40) DNA have been treated at pH 12.2 in order to dissociate growing chains from the parental strands. The molecules are neutralized so that the parental strands can reassociate and they have then been isolated. They are covalently closed structures which sediment rapidly in alkaline sucrose gradients; however, the sedimentation rates are less than the sedimentation rate of SV40 DNA I. Isopycnic banding in CsCl-ethidium bromide and sedimentation velocity studies in the presence of various amounts of ethidium bromide indicate that these structures contain negative superhelical turns and several-fold-higher superhelix densities than SV40 DNA I (the covalently closed DNA molecule). These structures are those that would be predicted if nicking, unwinding, and sealing of the parental strands occurred as replication proceeded. These experiments provide a direct demonstration that there is a progressive decrease in the topological winding number which accompanies SV40 DNA replication.  相似文献   

3.
Addition of the intercalating dye ethidium bromide (EtdBr) to a solution of alkali-denatured double-stranded closed circular PM2, ΦX174, or λb2b5c phage DNAs, under conditions such that the solution remains strongly alkaline, can result in the renaturation of up to 100% of the DNA upon neutralization of the solution. For a fixed time of incubation of the alkaline dye-containing solution before neutralization, there exists a minimum concentration of the dye below which no EtdBr-mediated renaturation is observed for each species of closed circular DNA examined. These minimum concentrations increase, for a given DNA, with increasing ionic strength and temperature. The kinetics of accumulation of forms renaturing upon neutralization of alkaline solutions, at fixed concentrations of dye and DNA, are dependent upon the molecular weight and superhelix density of the starting DNA. After extended periods of incubation at a fixed ionic strength and temperature, however, the profiles of percentage of DNA renatured as a function of ethidium concentration become very similar for all the closed circular DNAs tested and display a transition from an absence of dye-mediated renaturation to virtually 100% renaturation upon neutralization over a small range of dye concentration. Circular DNA containing one or more strand scissions remains strand-separated under all the conditions used to effect the renaturation of closed circular DNA. These findings indicate that configurations of closed circular DNA, in which at least some of the complementary bases are apposed, can be selectively stabilized and accumulate in the presence of ethidium in solutions containing 0.19 N hydroxide ion.  相似文献   

4.
We have developed a rapid electrophoretic technique for performing ethidium bromide dye titrations in cylindrical 0.7% agarose gels. The technique was used to analyze the extent of supercoiling in circular covalently closed SV40, Co1E1, and pSC101 DNA. We have estimated the superhelical densities of SV40, Co1E1, and pSC101 DNA to be ?0.050, ?0.078, and ?0.085 respectively. The results obtained for native SV40 DNA correlate well with previously published values for the superhelical density of this DNA when these values are corrected to reflect a 26° duplex unwinding angle for ethidium bromide. Ethidium bromide concentrations sufficient to partially relax a supercoiled DNA allow the DNA to be resolved into a series of discrete bands in agarose gels. The distribution of bands represents a natural heterogeneity in the superhelical densities of the DNA molecules in the population.  相似文献   

5.
Interaction between DNA and an Escherichia coli protein omega   总被引:102,自引:0,他引:102  
An E. coli protein, designated ω, has been purified at least 1000-fold. Treatment of a eovalently closed DNA duplex containing negative superhelical turns with ω results in the loss of most of the superhelical turns. The loss of superhelical turns follows a gradual course rather than a one-hit mechanism. This reaction does not require a cofactor. No other change in the physical properties of the DNA could be detected. The DNA remains covalently closed. Its ultraviolet absorption spectrum, circular dichroism, buoyant density in CsCl, sedimentation properties in neutral media containing varying amounts of ethidium and in an alkaline medium, and its susceptibility toward Neurospora endonuclease, are not significantly different from an untreated DNA containing the same number of superhelical turns. Thus it appears that ω is capable of introducing a “swivel” reversibly into a DNA. A plausible mechanism is postulated.  相似文献   

6.
The interaction of hedamycin with covalently closed circular PM-2 DNA was examined. Hedamycin produced strand breakage detectable in alkaline sucrose gradients. Under neutral conditions hedamycin inhibited ethidium bromide binding and induced conformational changes in PM-2 DNA.  相似文献   

7.
A preparation of the closed circular DNA duplex was obtained from whole rat ascites hepatoma cells, AH66, by lysis of cells with SDS and purification by CsCl-dye buoyant-density centrifugation. RNase A converted the closed circular mitochondrial DNA to open circular molecules. The closed circular DNA was also sensitive to alkali. The conversion to the open form was shown from the results of centrifugal analyses on neutral and alkaline sucrose density gradients and CsCl-ethidium bromide. These results indicate the presence of at least one RNA region in closed circular double stranded mitochondrial DNA.  相似文献   

8.
The formation of 7-methylguanine in rat liver mitochondrial DNA following the administration of the powerful carcinogen, dimethylnitrosamine, and the weak carcinogen, methyl methanesulphonate was measured and compared to the alkylation of nuclear DNA by these agents. At all doses tested mitochondrial DNA was alkylated more extensively than nuclear DNA by dimethylnitrosamine but both types of cellular DNA were alkylated to about the same extent by methyl methanesulphonate. The physical structure of rat liver mitochondrial DNA isolated from animals treated with these agents was investigated by electrophoresis in agarose gels and by isopycnic centrifugation in CsCl gradients. These procedures carried out in the presence of ethidium bromide, an intercalating dye, separate closed circular forms of mitochondrial DNA from open circular molecules (containing a single-strand break) and linear molecules. Administration of dimethylnitrosamine produced a considerable decrease in the amount of mitochondrial DNA which could be isolated in the closed circular form and at higher doses of dimethylnitrosamine no closed circular mitochondrial DNA could be found. Methyl methanesulphonate was less effective at reducing the amount of closed circular mitochondrial DNA. One explantation of these results is that dimethylnitrosamine leads to strand breaks in mitochondrial DNA and the possible use of this system to investigate carcinogen-induced breaks in DNA is discussed.  相似文献   

9.
Alkali-denatured closed circular DNA forms, on neutralization, a relatively stable species first described by Pouwels et al. (1968). In contrast to single-stranded DNA, this denatured two-stranded closed circular DNA species bands densely and co-bands approximately with closed circular duplex DNA in ethidium bromide-CsCl equilibrium density gradients. In CsCl gradients containing propidium diiodide, denDNA I is denser than DNA I, nicked circular DNA and single-stranded φX174 viral DNA. The magnitude of the separations between the above DNAs allows preparative isolation of each when all four are present in the same gradient. The denDNA I has a novel open circular appearance in the electron microscope when cast on standard aqueous hypophases. This species becomes tightly twisted when cast on either aqueous or formamide hypophases containing ethidium bromide. We have concluded from these observations that the high buoyant density of denDNA I in dye-CsCl gradients, relative to single-stranded DNA, is the result of a restricted uptake of dye.  相似文献   

10.
Systems for gel electrophoresis in the presence of one of the intercalative unwinding ligands, ethidium or chloroquine, have been developed which permit the resolution of highly supercoiled closed circular DNA molecules differing by unit values of the topological winding number, alpha. All native closed circular DNAs examined, including the viral and intracellular forms of SV40 and polyoma DNA, bacterial plasmid DNAs, and the double stranded closed circular DNA genome of the marine bacteriophage, PM2, are more heterogeneous with respect to the number of superhelical turns present than are the thermal distributions observed in the limit products of the action of nicking-closing (N-C) enzyme on the respective DNAs. In the cases of SV40 and polyoma, where it has been shown that the supercoiling is a combined consequence of the binding of the four nucleosomal histones, H2a, H2b, H3 and H4, and the action of N-C enzyme, the breadth of the distributions within the form I DNAs poses specific problems since the work of other laboratories indicates that the number of nucleosomes on the respective minichromosomes falls within a narrow distribution of 21. If it is assumed that all nucleosomes have identical structures, and that the DNA within a nucleosome is not free to rotate, the native DNA would be anticipated to be less heterogeneous than the thermal equilibrium mixtures present in N-C enzyme relaxed SV40 and polyoma DNAs.The absolute number of superhelical turns (at 37 degrees C in 0.2 M NaCl) in virion polyoma DNA has been determined to be 26 +/- 1, which is the same value obtained for virion SV40 DNA. This is consistent with the observations that polyoma DNA has a higher molecular weight, a lower superhelix density, but the same number of nucleosomes as SV40 DNA. In addition, the distributions within the virion and intracellular form I DNAs of both SV40 and polyoma were found to be indistinguishable.Images  相似文献   

11.
The intracellular replication of the single stranded DNA of the non-lytic bullet-shaped Group L1 mycoplasmavirus, MVL51, has been shown to involve three virus specific DNAs: RFI, RFII and SS. The relative sedimentation rates and ethidium bromide CsCl gradient analysis show that RFI is covalently closed circular double stranded DNA and RFII is a nicked form of RFI. SS is circular single stranded progeny viral DNA. RFI and RFII serve as precursors for the synthesis of progeny SS.  相似文献   

12.
To initiate homologous recombination, sequence similarity between two DNA molecules must be searched for and homology recognized. How the search for and recognition of homology occurs remains unproven. We have examined the influences of DNA topology and the polarity of RecA–single-stranded (ss)DNA filaments on the formation of synaptic complexes promoted by RecA. Using two complementary methods and various ssDNA and duplex DNA molecules as substrates, we demonstrate that topological constraints on a small circular RecA–ssDNA filament prevent it from interwinding with its duplex DNA target at the homologous region. We were unable to detect homologous pairing between a circular RecA–ssDNA filament and its relaxed or supercoiled circular duplex DNA targets. However, the formation of synaptic complexes between an invading linear RecA–ssDNA filament and covalently closed circular duplex DNAs is promoted by supercoiling of the duplex DNA. The results imply that a triplex structure formed by non-Watson–Crick hydrogen bonding is unlikely to be an intermediate in homology searching promoted by RecA. Rather, a model in which RecA-mediated homology searching requires unwinding of the duplex DNA coupled with local strand exchange is the likely mechanism. Furthermore, we show that polarity of the invading RecA–ssDNA does not affect its ability to pair and interwind with its circular target duplex DNA.  相似文献   

13.
14.
DNA topoisomerase activity can be rapidly assayed by measuring the change in ethidium bromide fluorescence intensity after treatment of closed duplex DNA with enzyme. The sensitivity of the fluorometric assay has been enhanced 3-fold by a 10-fold reduction in ethidium bromide concentration to 0.1 microgram/ml. The results of the fluorometric assays are in close agreement with agarose gel electrophoretic analyses of reacted DNA. A sensitive fluorometric method using 0.1 microgram/ml ethidium bromide has also been developed to determine the fraction of nicked and linear DNAs in a mixture containing closed duplex DNA by measuring the fluorescence intensities of ethidium-DNA complexes at pH 7.0 and pH 12.0. These methods make possible very rapid and sensitive measurements of DNA topoisomerase and endonuclease activities.  相似文献   

15.
Complementary circular single strands of plasmid PβG or bacteriophage PM2 DNA but not of single-stranded φX174 DNA associate under hybridisation conditions, giving rise to a two-stranded complex. This DNA, which we call form V, has well-defined physico-chemical properties. It sediments as a sharp peak in neutral sucrose gradients; its electrophoretic mobility in agarose gels is between that of covalently closed (form I) and denatured DNA. In the electron microscope form V appears as highly folded duplex molecules indistinguishable from form I. However, increasing concentrations of ethidium bromide which lead to relaxation and recoiling of form I DNA have no comparable effect upon form V. At 260 nm form V PβG DNA has a hypochromicity of 18.6%, as compared to 23.4% in the case of PβG form II DNA and 10.5% in the case of single-stranded φX174 DNA. The thermal melting of form V is non-cooperative with gradual increase in absorbance similar to that of single-stranded DNA. The circular dichroism spectrum of form V DNA differs from that of form I, circular nicked (form II) and single-stranded φX174 DNA in that it shows a negative band at 295 nm and a shift for the main positive band from 273 to 266 nm. We propose that form V consists of right-handed Watson-Crick type double-helices which are compensated by an equal number of left-handed duplex turns and negative supercoils. Wo cannot decide whether left-handed duplex turns are stabilised by base-stacking and hydrogen bonding, as for example in the models described by Rodley et al. (1976) or Sasisekharan &; Pattabiraman (1976), or whether they are merely compensatory turns without inherent stability.  相似文献   

16.
The sedimentation coefficient and intrinsic viscosity of nicked and closed circular PM2 bacteriophage DNA have been measured as a function of pH in the alkaline region. A gradual increase in the sidimentation coefficient, and a corresponding decrease in the intrinsic viscosity, are observed for the superhelical (closed) circle in the pH region from 10.5 to about 10.9. This has been tentatively interpreted in terms of the known dependence of sedimentation coefficient upon the number of superhelical turns. At slightly higher pH values, the curve passes through the minimum (sedimentation coefficient) and maximum (intrinsic viscosity) expected when the superhelical turns present at neutral pH are unwound by partial alkaline denaturation. Sedimentation studies of the relaxed (nicked) circular species have revealed the existence of DNA forms in the pH region from 11.27 to 11.37 which sediment considerably faster than the closed circle in the same pH region. These have been identified as partially denatured nicked circles, in which varying fractions of the duplex structure have undergone alkaline denaturation, but strand separation has not yet occurred. Varying fractions of a slower species, either undenatured or completely denatured nicked circles, are also observed in some of these experiments. A corresponding result is observed in the intrinsic viscosity vs. pH curve. When nicked circular PM2 DNA is exposed to various alkaline pH's, rapidly neutralized, and sedimented at neutral pH, the expected sharp transition from native to denatured (strand-separated) molecules is seen. However, a very narrow pH range is noted in which native and denatured forms coexist in a single experiment. The above experiments carried out upon the closed form also reveal a narrow pH range in which the bulk of the transition from native closed circles to the collapsed cyclic coil takes place, in acccord with an earlier study on a different DNA. This transition is shown never to be completely effected, however, as there is a fraction (7–8%)of the closed circles which renature to the native form, regardless of the alkaline pH employed. This same phenomenon was not observed in the case of artificially closed λb2b5c DNA circles. Possible explanations for some of the above results are discussed.  相似文献   

17.
By moving boundary sedimentation it is shown that the interaction of H1 histone with superhelical circular SV40 DNA results in the formation of giant heterogeneous aggregates. The size of these aggregates grows with increasing H1 concentration. s20,w values of some 10 000 S were measured. As compared with open relaxed circular DNA a preferential interaction of superhelical DNA with H1 histone is observed, irrespective of the sign of the superhelical turns which was reversed by the addition to DNA of ethidium bromide. The addition to the H1 complexed aggregates of ethidium bromide effects a progressive breakdown of the aggregates. Furthermore, the superhelicity of DNA is not changed by the addition of small amounts of H1 histone.  相似文献   

18.
Ethidium DNA agarose gel electrophoresis: how it started   总被引:1,自引:0,他引:1  
Borst P 《IUBMB life》2005,57(11):745-747
We started ethidium DNA agarose gel electrophoresis when our ultracentrifuge broke down and we needed an alternative method to check the quality of our mitochondrial DNA preparations. Agarose proved convenient for sizing DNA; ethidium in gel and buffer allowed visualization of DNA bands immediately after the run and improved the separation of the closed and open duplex forms of mitochondrial DNA circles. At smaller gel pore size mitochondrial DNA circles were excluded from the gel, whereas long linear DNAs were not. We concluded that the linear DNAs 'crawl like snakes head on through the gel'. This paper reviews some of the early experiments preceding the introduction of ethidium agarose gel electrophoresis.  相似文献   

19.
Duplex DNA molecules and DNA bacteriophages have been sedimented through 5--25% sucrose gradients containing ethidium bromide. The location of DNA within the gradients has been determined by illuminating gradients with ultraviolet light and observing the ethidium bromide fluorescence enhancement induced by the DNA. The relative sedimentation rates of linear, duplex DNAs from bacteriophages T4, T5, T7 and an 8.3% T7 deletion mutant have been determined. The distances sedimented by DNA have been corrected, when necessary, for a progressive decrease in sedimentation rate that occurs after the DNA has traversed 40% of the sucrose gradient. The corrected distances sedimented by two DNA molecules, r1' and r2', are related to the DNA molecular weights, m1 and m2, by the equation: r1'/r2' = (m1/m2)0.38 when 0.025--0.70 microgram of each type of DNA is sedimented. Intact bacteriophages were also sedimented in ethidium bromide--sucrose gradients and detected by fluorescence enhancement.  相似文献   

20.
Camptothecin specifically interacted with closed superhelical circular SV40 DNA during incubation in 1.0 M NaCl at 37 degrees C and induced an alkali-labile linkage in the E strand. No interaction occurred in the reaction mixture containing 0.1 M NaCl, or at 4 degrees C. As camptothecin did not affect linear SV40 DNA, the superhelical structure of DNA appeared to be essential. The site of the alkali-labile linkage induced in SV40 DNA I through interaction with camptothecin was near the origin of replication on the basis of the results of experiments with restriction enzymes. Neither sulfhydryl reagents nor EDTA affected the interaction between camptothecin and SV40 DNA I, so the action of camptothecin is different from those of antitumor antibiotics, bleomycin or neocarzinostatin. Analysis of the s20,0w value of SV40 DNA I after the interaction with camptothecin and the sedimentation profiles of DNA after heating in the reaction mixture indicated that the interaction between camptothecin and SV40 DNA I was different from those of intercalating or alkylating agents such as ethidium bromide and methylmethanesulfonate. Replacement of the OH group at C-20 in the E ring of camptothecin by H-, CH3-, and Cl- resulted in the reduction, in this order, of the potency for interaction with SV40 DNA I to induce an alkali-labile linkage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号