首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 999 毫秒
1.
Rhodotorulic acid (RA), a dihydroxamate siderophore produced by Rhodotorula pilimanae, forms 3:2 complexes with ferric and chromic ions (M2RA3) at pH 7. Kinetically inert chromic complexes of RA have been separated into geometrical isomers and for the first time partially resolved into optical isomers. The three isomers delta-cis, delta-trans, and lambda-trans were characterized by their visible and circular dichroism spectra. Inhibition by both delta-isomers of radiolabeled ferric RA uptake in R. pilimanae was equally effective. However the lambda-cis isomer was significantly less effective as an inhibitor. Concentration-dependent uptake kinetics were performed with ferric RA and the ferric complex of synthetic enantio-RA, which form predominantly delta and lambda complexes, respectively. The lambda-enantio-Fe2RA3 was 50% less effective in supplying iron to R. pilimanae than was Fe2RA3. An additional synthetic analog of RA, which lacks a carbonyl group at the diketopiperazine ring, exhibited the same uptake rates as ferric RA. We conclude that stereoselective recognition of optical isomers takes place during iron uptake mediated by RA and that this recognition primarily involves the right-handed delta coordination "propellor" of the metal center and its adjacent functionalities.  相似文献   

2.
The mechanism by which iron uptake is facilitated by the siderophore rhodotorulic acid (RA) in the yeast Rhodotorula pilimanae was investigated with radioactively labeled Fe and RA and kinetically inert, chromic-substituted RA complexes. The weight of the evidence supports a model in which RA mediates iron transport to the cell but does not actually transport iron into the cell. It is proposed that RA exchanges the ferric ion at the cell surface with a membrane-bound chelating agent that completes the active transport of iron into the cell. Uptake of 55Fe in ferric rhodotorulate was much more rapid than uptake of RA itself. Two exchange-inert chromic complexes of RA showed no uptake.  相似文献   

3.
Deferriferrioxamine B (H3DFB) is a linear trihydroxamic acid siderophore with molecular formula NH2(CH2)5[N(OH)C(O)(CH2)2C(O)NH(CH2)5]2N(OH)C(O)CH3 that forms a kinetically and thermodynamically stable complex with iron(III), ferrioxamine B. Under the conditions of our study (pH = 4.30, 25 degrees C), ferrioxamine B, Fe(HDFB)+, is hexacoordinated and the terminal amine group is protonated. Addition of simple hydroxamic acids, R1C(O)N(OH)R2 (R1 = CH3, R2 = H; R1 = C6H5, R2 = H; R1 = R2 = CH3), to an aqueous solution of ferrioxamine B at pH = 4.30, 25.0 degrees C, I = 2.0, results in the formation of ternary complexes Fe(H2DFB)A+ and Fe(H3DFB)A2+, and tris complexes FeA3, where A- represents the bidendate hydroxamate anion R1C(O)N(O)R2-. The addition of a molar excess of ethylenediaminetetraacetic acid (EDTA) to an aqueous solution of ferrioxamine B at pH 4.30 results in a slow exchange of iron(III) to eventually completely form Fe(EDTA)- and H4DFB+. The addition of a hydroxamic acid, HA, catalyzes the rate of this iron exchange reaction: (formula; see text) A four parallel path mechanism is proposed for reaction (1) in which catalysis occurs via transient formation of the ternary and tris complexes Fe(H2DFB) A+, Fe(H3DFB)A2+, and FeA3. Rate and equilibrium constants for the various reaction paths to products were obtained and the influence of hydroxamic acid structure on catalytic efficiency is discussed. The importance of a low energy pathway for iron dissociation from a siderophore complex in influencing microbial iron bio-availability is discussed. The system represented by reaction (1) is proposed as a possible model for in vivo catalyzed release of iron from its siderophore complex at the cell wall or interior, where EDTA represents the intracellular storage depot or membrane-bound carrier and HA represents a low molecular weight hydroxamate-based metabolite capable of catalyzing interligand iron exchange.  相似文献   

4.
Exchange of iron by gallium in siderophores   总被引:2,自引:0,他引:2  
T Emery 《Biochemistry》1986,25(16):4629-4633
Siderophores are iron transport compounds produced by numerous microorganisms and which strongly chelate Fe(III), but not Fe(II). Other trivalent metals, such as Al(III), Cr(III), or Ga(III), are not capable of significantly displacing iron from siderophores. However, I demonstrate here that Ga(III) can effectively displace iron under reducing conditions. With ascorbate as reductant and ferrozine as Fe(II) trapping agent, the kinetics of reductive displacement of iron by Ga(III) were followed spectroscopically by the increase of absorbance at 562 nm due to formation of the Fe(II)-ferrozine complex. No significant reduction of siderophore occurred in the absence of Ga(III). With excess Ga(III), the displacement was quantitative and very rapid. The rate of metal exchange was pseudo first order with respect to Ga(III) concentration and highly pH dependent, suggesting that siderophore ligands are displaced from the iron in a concerted mechanism by Ga(III) and protonation to expose the Fe(III) to reduction by ascorbate. Reaction rates were dependent upon the structure of the siderophore, being greatest for ferric rhodotorulic acid and slowest for ferrichrome A at pH 5.4. The pH profile for ferric rhodotorulic acid was unusual in that it showed a maximum at pH 6.5, while all other siderophores examined showed an increase in rate as pH was lowered from 7.0. The physiological significance of this reaction to the clinical use of gallium is discussed.  相似文献   

5.
Anabaena sp. strain 6411, which produces the dihydroxamate siderophore schizokinen to facilitate iron uptake, is also capable of using the related siderophore aerobactin. The two siderophores compete for the same iron transport system, but there is a markedly higher affinity for ferric schizokinen than for ferric aerobactin. The trihydroxamate siderophore ferrioxamine B is far less effective as an iron donor in this organism. Anabaena sp. strain 7120 appears to be closely related to strain 6411. It synthesizes schizokinen as its major siderophore and shows rates of iron uptake from ferric schizokinen, ferric aerobactin, and ferrioxamine B which are similar to those observed with strain 6411. Anabaena cylindrica Lemm. 7122 and 1611, on the other hand, differ from strain 6411. In contrast to schizokinen, the hydroxamate which they produce in response to iron starvation cannot be extracted with water from the organic layer and does not support the growth of the siderophore auxotroph Arthrobacter flavescens JG-9. Strain 7122 can use its endogenous siderophore or schizokinen to promote iron uptake, but at 50-fold-lower rates than are observed with Anabaena sp. strain 6411 or 7120.  相似文献   

6.
Ye Y  Liu M  Kao JL  Marshall GR 《Biopolymers》2006,84(5):472-489
Novel trihydroxamate-containing peptides were designed to mimic desferrioxamine (Desferal(R), DFO, a naturally occurring siderophore) but possess distinct conformational restrictions and varied lipophilicity to probe structure vs. metal coordination. The synthesis was performed via fragment condensation of hydroxamate-containing oligopeptides such as Fmoc-Leu- Psi[CON(OBz)]-Phe-Ala-Pro-OH and H-Leu-Psi[CON(OBz)]-Phe-Ala-Pro-OBu(t) (Fmoc: 9-fluor enylmethoxycarbonyl; OBz: benzyl; OBu(t): tert-butyl) either in solution or on a solid support. The metal-binding properties were studied by electrospray ionization-mass spectroscopy (ESI-MS), ultraviolet (UV)-visible spectroscopy, and (1)H nuclear magnetic resonance (NMR). Similar to the dihydroxamate analogs previously explored [Biopolymers (Peptide Science), 2003, Vol. 71, pp. 489-515], the compounds with three hydroxamates arrayed at 10-atom intervals, i.e., H-[Leu-Psi[CON(OH)]-Phe-Ala-Pro](3)-OH (P1), cyclo[Leu-Psi[CON(OH)]-Phe-Ala-Pro](3) (P2), and H-[Leu-Psi(CONOH)-Phe-Ala-Pro](2)-Leu-NHOH (P7), exhibited high affinities for intramolecular coordination with Fe(III) and Ga(III). As expected, both P1 and P2 showed higher relative Fe(III)-binding affinities than the corresponding dihydroxamate-containing peptide analogs (P11 and P12). Even though both P1 and P2 did not compete with DFO in the relative metal-binding affinity in both solution and gas phases, P1, P2, and DFO exhibited similar relative binding selectivities to 11 different metal ions including Fe(III), Fe(II), Al(III), Ga(III), In(III), Zn(II), Cu(II), Co(II), Ni(II), Gd(III), and Mn(II). Compared to the other metal ions, they had higher relative binding affinities with Fe(III), Fe(II), Al(III), Ga(III), and In(III). The decreased metal-binding affinities of P1 and P2 in comparison with DFO suggested the conformational restrictions of their backbones perturb their three hydroxamate groups from optimal hexadentate orientations for metal coordination. As detected by ESI-MS, P2 was distinguished from both P1 and DFO by solvation of its Ga(III) and Fe(III) complexes (such as acetonitrile or water), thereby stabilizing the resulting complexes in the gas phase. Noteworthy, P2 led to 69% death rate in Hela cells at a concentration of 50 microM, exhibiting higher cytotoxicity than DFO in vitro despite its much lower affinity for iron. This enhanced toxicity may simply reflect the increased lipophilicity of the cyclic trihydroxamate (P2) together with the improvements in its cell penetration, and/or subsequent intracellular molecular recognition of both side chains and hydroxamate groups. The cytotoxicity was significantly suppressed by precoordination with Ga(III) or Fe(III), suggesting a mechanism of toxicity via sequestration of essential metal ions as well as the importance of curbing the metal coordination before targeting. The potential of such siderophore-mimicking peptides in oncology needs further exploration.  相似文献   

7.
The Rhizobia comprise one of the most important groups of beneficial bacteria, which form nodules on the roots (rarely on the stems) of leguminous plants. They live within the nodules and reduce atmospheric nitrogen to ammonia, which is further assimilated by plants into required nitrogenous compounds. The Rhizobia in return obtain nutrition from the plant. Rhizobia are free-living soil bacteria and have to compete with other microorganisms for the limited available iron in the rhizosphere. In order to acquire iron Rhizobia have been shown to express siderophore-mediated iron transport systems. Rhizobium leguminosarum IARI 917 was investigated for its ability to produce siderophore. It was found to produce a dihydroxamate type siderophore under iron restricted conditions. The siderophore was purified and chemically characterized. The ESMS, MS/MS and NMR analysis indicate the dihydroxamate siderophore to be ‘schizokinen’, a siderophore reported to be produced by Bacillus megaterium that shares a similar structure to ‘rhizobactin 1021’ produced by Sinorhizobium meliloti 1021. This is the first report of production of schizokinen by a strain of R. leguminosarum, therefore it was carefully investigated to confirm that it is indeed ‘schizokinen’ and not a degradation product of ‘rhizobactin 1021’. Since ferric–siderophore complexes are transported across the outer membrane (OM) into the periplasm via an OM receptor protein, R. leguminosarum IARI 917 was investigated for the presence of an OM receptor for ‘ferric–schizokinen’. SDS PAGE analysis of whole cell pellet and extracted OM fractions indicate the presence of a possible iron-repressible OM receptor protein with the molecular weight (MW) of approximately 74 kDa.  相似文献   

8.

In this mini-review we present an environmental iron mobility/transport scheme consisting of inter-related controls, whereby the first coordination shell of iron modulates the iron redox potential (E1/2), and the oxidation state of iron controls the chemistry of the first coordination sphere and therefore the immediate chemical environment of the iron. Siderophores (microbially generated iron specific chelators) may be viewed as iron redox mediators. Siderophore chelation of environmental iron in a reduced (Fe(II)) oxidation state results in facile air oxidation of iron due to the negative redox potentials observed for Fe-siderophore complexes. This solubilizes the iron and locks it into a specific coordination environment, thereby preventing hydrolysis and precipitation. The high-spin Fe3+ → Fe+ electron transfer process may be viewed as a switch that controls the thermodynamic stability and kinetic lability of the first coordination shell. Reduction of iron(III)-siderophore complexes to iron(II)-siderophore complexes decreases thermodynamic stability, increases the rate of siderophore ligand exchange, and increases the ease of siderophore donor atom protonation, thus facilitating a rapid turnover of the first coordination shell. Results are presented for iron-siderophore pH and oxidation state dependent speciation studies that are relevant to environmental and microbial iron mobility and transport.  相似文献   

9.
A series of dihydroxamic acid ligands of the formula [RN(OH)C(O)]2(CH2)n, (n = 2, 4, 6, 7, 8; R = CH3, H) has been studied in 2.0 M aqueous sodium perchlorate at 25.0 °C. These ligands may be considered as synthetic analogs to the siderophore rhodotorulic acid. Acid dissociation constants (pKa) have been determined for the ligands and for N-methylacetohydroxamic acid (NMHA). The pKa1 and pKa2 values are: n = 2, R = CH3 (8.72, 9.37); N = 4, R = CH3 (8.79, 9.37); N = 6, R = CH3; N = 7, R = CH3 (8.95, 9.47); N = 8, R = CH3 (8.93, 9.45); N = 8, R = H (9.05, 9.58). Equilibrium constants for the hydrolysis of coordinated water (log K) have been estimated for the 1:1 feeric complexes of the ligands n = 2, 4, 8; R = CH3. The N = 8 ligand forms a monomeric complex with Fe(III) while the n = 2 and 4 ligands form dimeric complexes. For hydrolysis of the n = 8 monomeric complex, log K1 = −6.36 and log K2 = −9.84. Analysis of the spectrophotometric data for the dimeric complexes indicates deprotonation of all four coordinated waters. The successive hydrolysis constants, log K1–4, for the dimeric complexes are as follows: n = 2 (−6.37, −5.77, −10.73, −11.8); n = 4 (−5.54, −5.07, −11.57, −10.17). The log K2 values for the dimers are unexpectedly high, higher in fact than log K1, inconsistent with the formation of simple ternary hydroxo complexes. A scheme is proposed for the hydrolysis of the ferric dihydroxamate dimers, which includes the possible formation of μ-hydroxo and μ-oxo bridges.  相似文献   

10.
The biological activity of six synthetic siderophore analogues (two dihydroxamates, two trihydroxamates, one tetrahydroxamate and one 3-hydroxy-4(1H)pyridinone) has been studied in Escherichia coli, Morganella morganii 13 and Proteus mirabilis 8993 strains by using growth promotion tests. Various transport-deficient mutants of E. coli were used to study the route of entry into gram-negative bacteria. The results indicated that the synthetic hydroxamate compounds are transported via Fhu-mediated transport systems, although receptor specificity was low. This could be proven by using a delta (fhuA-B) E. coli mutant as a control in which growth promotion by natural hydroxamates was completely abolished, suggesting that a periplasmic binding-protein-dependent transport system (FhuB, C, D) is required for the transport of all synthetic ferric hydroxamate complexes. Although utilization of the synthetic hydroxamates was generally lower than that of the natural siderophores, differences in growth promotion could be detected. Highest activity was observed with the dihydroxamate DOCYDHAMA ligand which supported growth at concentrations <1 mM. In comparison with other polyamino-polyhydroxamate ligands studied, this dihydroxamate ligand has an extra diamide backbone that could be important for the interaction with the receptors or with FhuD. The synthetic trihydroxamate and tetrahydroxamate ligands showed a relatively low siderophore activity. Studies with Proteus and Morganella in the presence of increasing bipyridyl concentrations showed a decreased growth promotion with the synthetic ferric hydroxamates, suggesting the involvement of a reduction step during iron mobilization or an increased toxicity of bipyridyl. This was not observed in the case of the 3-hydroxy-4(1H)pyridinone where bipyridyl had no effect.  相似文献   

11.
The oxalate catalyzed iron(III) transfer from a trihydroxamate siderophore ferrioxamine B, [Fe(Hdfb)+], to ethylenediaminetetraacetic acid (H4edta) has been studied spectro-photometrically in weakly acidic aqueous solutions at 298 K and a constant 2.0 M ionic strength maintained by NaClO4. The results reveal that oxalate is a more efficient catalyst than the so far studied synthetic monohydroxamic acids. Any role of reduction of Fe(Hdfb)+ by oxalate in the catalysis has been rejected by the experimentally observed preservation of the oxalate concentration during the reaction time. Therefore, catalysis has been proposed to be a substitution based process. Under our experimental conditions Fe(Hdfb)+ is hexacoordinated and addition of oxalate results in the formation of Fe(H2dfb)(C2O4), Fe(H3dfb)(C2O4)2 and Fe(C2O4)3−3. Therefore, catalysis was proposed to be accomplished by the intermediate formation of the ternary and tris(oxalato) complexes. All three complexes react with H2edta2− to form thermodynamically stable Fe(edta) as a final reaction product. Whereas the formation of the ternary complexes is fast enough to feature a pre-equilibrium process to the iron exchange reaction, the formation of Fe(C2O4)3−3 is slow and is directly involved in the rate determining step of the Fe(edta) formation. Nonlinear dependencies of the rate constant on the oxalate and the proton concentrations have been observed and a four parallel path mechanism is proposed for the exchange reaction. The rate and equilibrium constants for the various reaction paths were determined from the kinetic and equilibrium study involving the desferrioxamine B- (H4dfb+), oxalate- and proton-concentration variations. The observed proton catalysis was attributed to the fast monoprotonation of ferrioxamine B as well as of the oxalate ligand. The observed catalysis of iron dissociation from the siderophore has been discussed in view of its significance with respect to in vivo microbial iron transport.  相似文献   

12.
Three new dihydroxamic acids (HO(CH3)NCO-(CH2)2-CO-NH-(CH2)x-CON(CH3)OH where the x values are 4; 3 and 2, and the compounds are abbreviated as 2,4-DIHA, 2,3-DIHA and 2,2-DIHA), containing the peptide group in a certain position to one of the two functional groups and in different distances to the other one, were synthesized and their complexation with Fe(III), Mo(VI) and V(V) was studied by pH-potentiometric, spectrophotometric and in some cases by CV methods to evaluate the redox behaviour of the Fe(III) complexes and assess their potential biological activity as siderophore models. All these compounds are structural models for the natural siderophore, desferrioxamine B (DFB). The results were compared to those of the complexes of 2,5-DIHA having the same connecting chain structure and length as DFB has, and the effects of the length of the connecting chain on the co-ordination mode and on the stability of the complexes formed were evaluated.Very similar stability of the mono-chelated complexes formed with all these dihydroxamic acids was found. All the results obtained suggest that one dihydroxamic acid (even the 2,2-DIHA) is able to complete the four coordination sites of a MoO2 2+ core forming simple mononuclear complexes. Favoured monomeric structures of the bis-chelated complexes of these dihydroxamic acids are also suggested with V(V) having the smallest ionic radius among the three metal ions studied. In the case of iron(III), however, clear indication was obtained for the slightly different complexation behaviour of 2,2-DIHA. Namely, the formation of the mononuclear bis-chelated complex with this shortest ligand seems to have sufficient strain to induce the formation of bimetallic species such as [Fe(2,2-DIHA)2Fe)]2+.  相似文献   

13.
In many aquatic environments the essential micronutrient iron is predominantly complexed by a heterogeneous pool of strong organic chelators. Research on iron uptake mechanisms of cyanobacteria inhabiting these environments has focused on endogenous siderophore production and internalization. However, as many cyanobacterial species do not produce siderophores, alternative Fe acquisition mechanisms must exist. Here we present a study of the iron uptake pathways in the unicellular, planktonic, non-siderophore producing strain Synechocystis sp. PCC 6803. By applying trace metal clean techniques and a chemically controlled growth medium we obtained reliable and reproducible short-term (radioactive assays) and long-term (growth experiments) iron uptake rates. We found that Synechocystis 6803 is capable of acquiring iron from exogenous ferrisiderophores (Ferrioxamine-B, FeAerobactin) and that unchelated, inorganic Fe is a highly available source of iron. Inhibition of iron uptake by the Fe(II)-specific ligand, ferrozine, indicated that reduction of both inorganic iron and ferrisiderophore complexes occurs before transport through the plasma membrane. Measurements of iron reduction rates and the inhibitory effect of ferrozine on growth supported this conclusion. The reduction-based uptake strategy is well suited for acquiring iron from multiple complexes in dilute aquatic environments and may play an important role in other cyanobacterial strains.  相似文献   

14.
Iron reduction and uptake was studied in wild-type and haem-deficient strains of Saccharomyces cerevisiae. Haem-deficient strains lacked inducible ferri-reductase activity and were unable to take up iron from different ferric chelates such as Fe(III)-citrate or rhodoturulic acid. In contrast, ferrioxamine B was taken up actively by the mutants as well as by the wild-type strains. At a low extracellular concentration, uptake was insensitive to ferrozine and competitively inhibited by Ga(III)-desferrioxamine B. Extracellular reductive dissociation of the siderophore occurred at higher extracellular concentrations. Two mechanisms appear to contribute to the uptake of ferrioxamine B by S. cerevisiae: one with high affinity, by which the siderophore is internalized as such and another with lower affinity by which iron is dissociated from the ligand prior to uptake.  相似文献   

15.
In the present study, 22 different bacteria were isolated from open ocean water from the Gulf of Mannar, India. Of the 22 isolates, 4 were identified as Vibrio spp. (VM1, VM2, VM3 and VM4) and found to produce siderophores (iron-binding chelators) under iron-limited conditions. Different media were found to have an influence on siderophore production. Maximum siderophore production was observed with VM1 isolate in MM9 salts medium at 48 h of incubation. The isolate was confirmed as Vibrio harveyi based on 16S rRNA gene sequencing and phylogenetic analysis. Fourier-transform infrared (FTIR) and 1H nuclear magnetic resonance (NMR) spectra revealed the hydroxamate nature of the siderophore produced. Further characterization of the siderophore revealed it to be of dihydroxamate nature, forming hexadentate ligands with Fe(III) ions. A narrow shift in ultraviolet (UV)–Vis spectrum was observed on photolysis due to ligand oxidation. Growth-promotion bioassay with Aeromonas hydrophila, Staphylococcus aureus and E. coli confirmed the iron-scavenging property of the siderophore produced by Vibrio harveyi.  相似文献   

16.
Erwinia chrysanthemi 3937 possesses a saturable, high-affinity transport system for the ferric complex of its native siderophore chrysobactin, [N-alpha-(2,3-dihydroxybenzoyl)-D-lysyl-L-serine]. Uptake of 55Fe-labeled chrysobactin was completely inhibited by respiratory poison or low temperature and was significantly reduced in rich medium. The kinetics of chrysobactin-mediated iron transport were determined to have apparent Km and Vmax values of about 30 nM and of 90 pmol/mg.min, respectively. Isomers of chrysobactin and analogs with progressively shorter side chains mediated ferric iron transport as efficiently as the native siderophore, which indicates that the chrysobactin receptor primarily recognizes the catechol-iron center. Free ligand in excess only moderately reduced the accumulation of 55Fe. Chrysobactin may therefore be regarded as a true siderophore for E. chrysanthemi.  相似文献   

17.
Schizokinen, a citrate-containing dihydroxamate, is a siderophore produced by Bacillus megaterium and Anabaena sp. The involvement of the citrate α-hydroxycarboxylate moiety in iron chelation was investigated by comparing the iron binding behavior of schizokinen with that of acetylschizokinen, a derivative in which the citrate hydroxyl group was modified by acetylation. Ferric schizokinen was found to exhibit an absorption spectrum (λmax = 460 nm) characteristic of a dihydroxamate below pH 2.5, with an isosbestic shift to a citrate dihydroxamate spectrum (λmax = 395 nm) above pH 4. Ferric acetylschizokinen also had a dihydroxamate absorption spectrum (λmax = 465 nm) at low pH. However, its spectral shift (λmax = 420 nm) and intensity above pH 4 were more typical of a ferric trihydroxamate. The molecular weight and electrophoretic mobility of ferric acetylschizokinen are consistent with a dimeric Fe2 (acetylschizokinen)3 structure, whereas ferric schizokinen appears to exist as a monomeric 1:1 complex Despite the differences in molecular weight and α-hydroxycarboxylate coordination, both complexes are effective in promoting iron uptake in Anabaena.  相似文献   

18.
The phytopathogenic bacteriumErwinia chrysanthemi produces the monocatecholate siderophore chrysobactin under conditions of iron deprivation. Only the catecholate hydroxyl groups participate in metal coordination, and chrysobactin is therefore unable to provide full 1:1 coordination of Fe(III). The stoichiometry in aqueous solution is a variable dependent on pH and metal/ligand ratio, in addition to being concentration dependent. At neutral pH and concentrations of about 0.1mm, ferric chrysobactin exists as a mixture of bis and tris complexes. Chrysobactin and its isomers form optically active tris complexes. The dominant configuration depends on the chirality of the amino acid to which the catecholate moiety is attached.  相似文献   

19.
Pyridoxal isonicotinoyl hydrazone and its analogs are orally effective Fe(III) chelators which show potential as drugs to treat iron overload disease. The present investigation describes the measurement of the partition coefficient of the apochelator and Fe(III) complex of 20 of these ligands. These measurements have been done to investigate the relationship between lipophilicity and the efficacy of iron chelation in rabbit reticulocytes loaded with non-heme 59Fe. The results demonstrate a linear relationship between the partition coefficient (P) of the apochelator and its Fe(III) complex, and a simple equation has been derived relating these two parameters. Experimental data in the literature are in agreement with the equation. The relationship of the partition coefficients of the iron chelators and of their Fe(III) complexes to the effectiveness of the ligands in mobilizing iron in vitro and in vivo is also discussed.  相似文献   

20.
Iron acquisition by iron‐limited cyanobacteria is typically considered to be mediated mainly by siderophores, iron‐chelating molecules released by iron‐limited cyanobacteria into the environment. In this set of experiments, iron uptake by iron‐limited cells of the cyanobacterium Anabaena flos‐aquae (L.) Bory was investigated in cells resuspended in siderophore‐free medium. Removal of siderophores decreased iron‐uptake rates by ~60% compared to siderophore‐replete conditions; however, substantial rates of iron uptake remained. In the absence of siderophores, Fe(III) uptake was much more rapid from a weaker synthetic chelator [N‐(2‐hydroxyethyl)ethylenediamine‐N,N′,N′‐triacetic acid (HEDTA); log Kcond = 28.64 for Fe(III)HEDTA(OH)?] than from a very strong chelator [N,N′‐bis(2‐hydroxybenzyl)‐ethylenediamine‐N,N′‐diacetic acid (HBED); log Kcond = 31.40 for Fe(III)HBED?], and increasing chelator:Fe(III) ratios decreased the Fe(III)‐uptake rate; these results were evident in both short‐term (4 h; absence of siderophores) and long‐term (116 h; presence of siderophores) experiments. However, free (nonchelated) Fe(III) provided the most rapid iron uptake in siderophore‐free conditions. The results of the short‐term experiments are consistent with an Fe(III)‐binding/uptake mechanism associated with the cyanobacterial outer membrane that operates independently of extracellular siderophores. Iron uptake was inhibited by temperature‐shock treatments of the cells and by metabolically compromising the cells with diphenyleneiodonium; this finding indicates that the process is dependent on active metabolism to operate and is not simply a passive Fe(III)‐binding mechanism. Overall, these results point to an important, siderophore‐independent iron‐acquisition mechanism by iron‐limited cyanobacterial cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号