首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Eulamprus tympanum is a high-altitude viviparous lizard that was probably used to help define a Type I chorioallantoic placenta. In this article, we (1) describe the net transport of nutrients across the placenta of E. tympanum, and (2) compare placental uptake in E. tympanum with a previous study of Eulamprus quoyii, which occurs in warmer environments, to assess the potential importance of thermal regime on placentotrophy. Freshly ovulated eggs are 387.3+/-19.7 mg. There is a significant net uptake of water and a net loss of dry matter during development, so the dry neonate is only 84% the size of the dry egg. There is no significant change in the total ash or nitrogen in eggs during embryonic development, with the entire loss of dry matter being lipid. Almost the entire loss of lipid occurs in the triacylglycerol fraction, with no net change in phospholipids. A net increase in total cholesterol suggests that cholesterol is synthesised by the developing embryo. The lipid profile of eggs of E. tympanum reflects that of other species with simple placentae in having a relatively high proportion of triacylglycerol and little cholesterol. The fatty acid composition of eggs reflects that expected in the diet of E. tympanum. There is a preservation and some synthesis of arachidonic (20:4n-6) and docosahexaenoic (22:6n-3) acids in the phospholipid fraction during embryonic development. Despite there being no net uptake of ash, there is a net increase in calcium, potassium, sodium, and magnesium in the neonate compared with the egg. We conclude that E. tympanum, like E. quoyii, is predominantly lecithotrophic with little, if any, uptake of organic molecules but with significant uptake of some inorganic ions and water. In addition, there is no difference in placentotrophy correlated with differences in the environments inhabited by each species.  相似文献   

2.
Energy, ionic, protein and lipid contents and fatty acid profiles for the major lipid classes of freshly ovulated eggs and neonates of the viviparous lizard, Pseudemoia spenceri, were measured. Litter size is 1.7 ± 0.1, with larger females producing larger neonates. Placentotrophy results in approximately 23% more dry matter in the neonates than in the fresh egg. The increase in the quantity of protein and lipid during development is not significant and is reflected in the similarity of energy densities of eggs and neonates. As a percentage of dry matter, neonates have slightly lower proportions of lipid and protein than eggs because of significant uptake of ash, calcium, potassium and sodium, but not of magnesium, across the placenta. The amounts of triacylglycerol and phospholipid are not significantly different between the egg and the neonate, but neonates contain significantly more cholesterol and cholesteryl ester. The amounts of the major fatty acids, palmitic and oleic acids, recovered from the total lipids of the neonate do not differ significantly from the amounts present in the egg lipids, but the neonates contain significantly less linoleic and α-linolenic acids and more palmitoleic, stearic and arachidonic acids than the eggs. The amount of docosahexaenoic acid recovered from the lipids of the neonate is 2.6-times greater than the amount initially present in the egg. P. spenceri has a relatively larger egg and a smaller reliance on placentotrophy than other species in the same genus, all of which have a similar placental morphology. Nevertheless, the pattern of embryonic nutrition includes both obligative and facultative placentotrophy. All the major components of yolk of oviparous species are present in eggs of P. spenceri, but most are augmented during development by placental transfer. Accepted: 8 April 1999  相似文献   

3.
Energy metabolism during embryonic development of snakes differs in several respects from the patterns displayed by other reptiles. There are, however, no previous reports describing the main energy source for development, the yolk lipids, in snake eggs. There is also no information on the distribution of yolk fatty acids to the tissues during snake development. In eggs of the water python (Liasis fuscus), we report that triacylglycerol, phospholipid, cholesteryl ester and free cholesterol, respectively, form 70.3%, 14.1%, 5.7% and 2.1% of the total lipid. The main polyunsaturate of the yolk lipid classes is 18:2n-6. The yolk phospholipid contains 20:4n-6 and 22:6n-3 at 13.0% and 3.6% (w/w), respectively. Approximately 10% and 30% of the initial egg lipids are respectively recovered in the residual yolk and the fat body of the hatchling. A major function of yolk lipid is, therefore, to provision the neonate with large energy reserves. The proportion of 22:6n-3 in brain phospholipid of the hatchling is 11.1% (w/w): this represents only 0.24% of the amount of 22:6n-3 originally present in the egg. This also contrasts with values for free-living avian species where the proportion of DHA in neonatal brain phospholipid is 16–19%. In the liver of the newly hatched python, triacylglycerol, phospholipid and cholesteryl ester, respectively, form 68.2%, 7.7% and 14.3% of total lipid. This contrasts with embryos of birds where cholesteryl ester forms up to 80% of total liver lipid and suggests that the mechanism of lipid transfer in the water python embryo differs in some respects from the avian situation.Abbreviations ARA arachidonic acid - DHA docosahexaenoic acidCommunicated by G. Heldmaier  相似文献   

4.
The n-3 and n-6 fatty acids are transferred across the placenta with consistently higher 22:6n-3 and lower 18:2n-6 in fetal than maternal plasma. This study sought to determine whether maternal and fetal cord blood red blood cell (RBC) phospholipid fatty acids show similar saturation with 22:6n-3, and also addressed the relationship between 18:2n-6 and Δ6 desaturase product/precursor ratios for 97 mothers and newborns. Despite higher fetal than maternal plasma phospholipid 22:6n-3, the maternal and fetal RBC phospholipid 22:6n-3 showed similar curvilinear relationships to the plasma phospholipid 22:6n-3. Risk of failure to achieve high RBC phospholipid 22:6n-3 increased sharply below a plasma phospholipid 22:6n-3 of 6.5g/100g fatty acids. Higher maternal and fetal 18:2n-6 was associated with lower RBC phospholipid 22:6n-3/22:5n-3, 22:5n-6/22:4n-6 and 18:3n-6/18:2n-6. These findings suggest low placental transfer of 18:2n-6 may be a specific mechanism to prevent inhibition of fetal Δ6 desaturase and facilitate fetal cellular phospholipid 22:6n-3 accretion.  相似文献   

5.
We investigated whether maternal fat intake alters amniotic fluid and fetal intestine phospholipid n-6 and n-3 fatty acids. Female rats were fed a 20% by weight diet from fat with 20% linoleic acid (LA; 18:2n-6) and 8% alpha-linolenic acid (ALA; 18:3n-3) (control diet, n = 8) or 72% LA and 0.2% ALA (n-3 deficient diet, n = 7) from 2 wk before and then throughout gestation. Amniotic fluid and fetal intestine phospholipid fatty acids were analyzed at day 19 gestation using HPLC and gas-liquid chromotography. Amniotic fluid had significantly lower docosahexaenoic acid (DHA; 22:6n-3) and higher docosapentaenoic acid (DPA; 22:5n-6) levels in the n-3-deficient group than in the control group (DHA: 1.29 +/- 0.10 and 6.29 +/- 0.33 g/100 g fatty acid; DPA: 4.01 +/- 0.35 and 0.73 +/- 0.15 g/100 g fatty acid, respectively); these differences in DHA and DPA were present in amniotic fluid cholesterol esters and phosphatidylcholine (PC). Fetal intestines in the n-3-deficient group had significantly higher LA, arachidonic acid (20:4n-6), and DPA levels; lower eicosapentaenoic acid (EPA; 20:5n-3) and DHA levels in PC; and significantly higher DPA and lower EPA and DHA levels in phosphatidylethanolamine (PE) than in the control group; the n-6-to-n-3 fatty acid ratio was 4.9 +/- 0.2 and 32.2 +/- 2.1 in PC and 2.4 +/- 0.03 and 17.1 +/- 0.21 in PE in n-3-deficient and control group intestines, respectively. We demonstrate that maternal dietary fat influences amniotic fluid and fetal intestinal membrane structural lipid essential fatty acids. Maternal dietary fat can influence tissue composition by manipulation of amniotic fluid that is swallowed by the fetus or by transport across the placenta.  相似文献   

6.
This study examines the transfer of lipids from the yolk to the embryo of the king penguin, a seabird with a high dietary intake of n-3 fatty acids. The concentrations of total lipid, triacylglycerol (TAG), and phospholipid (PL) in the yolk decreased by ~80% between days 33 and 55 of development, indicating intensive lipid transfer, whereas the concentration of cholesteryl ester (CE) increased threefold, possibly due to recycling. Total lipid concentration in plasma and liver of the embryo increased by twofold from day 40 to hatching due to the accumulation of CE. Yolk lipids contained high amounts of C(20-22) n-3 fatty acids with 22:6(n-3) forming 4 and 10% of the fatty acid mass in TAG and PL, respectively. Both TAG and PL of plasma and liver contained high proportions of 22:6(n-3) ( approximately 15% in plasma and >20% in liver at day 33); liver PL also contained a high proportion of 20:4(n-6) (14%). Thus both 22:6(n-3) and 20:4(n-6), which are, respectively, abundant and deficient in the yolk, undergo biomagnification during transfer to the embryo.  相似文献   

7.
8.
About 50% of the fatty acids in retinal rod outer segments is docosahexaenoic acid [22:6(n-3)], a member of the linolenic acid [18:3(n-3)] family of essential fatty acids. Dietary deprivation of n-3 fatty acids leads to only modest changes in 22:6(n-3) levels in the retina. We investigated the mechanism(s) by which the retina conserves 22:6(n-3) during n-3 fatty acid deficiency. Weanling rats were fed diets containing 10% (wt/wt) hydrogenated coconut oil (no n-3 or n-6 fatty acids), linseed oil (high n-3, low n-6), or safflower oil (high n-6, less than 0.1% n-3) for 15 weeks. The turnover of phospholipid molecular species and the turnover and recycling of 22:6(n-3) in phospholipids of the rod outer segment membranes were examined after the intravitreal injection of [2-3H]glycerol and [4,5-3H]22:6(n-3), respectively. Animals were killed on selected days, and rod outer segment membranes, liver, and plasma were taken for lipid analyses. The half-lives (days) of individual phospholipid molecular species and total phospholipid 22:6(n-3) were calculated from the slopes of the regression lines of log specific activity versus time. There were no differences in the turnover rates of phospholipid molecular species among the three dietary groups, as determined by the disappearance of labeled glycerol. Thus, 22:6(n-3) is not conserved through a reduction in phospholipid turnover in rod outer segments. However, the half-life of [4,5-3H]22:6(n-3) in the linseed oil group (19 days) was significantly less than in the coconut oil (54 days) and safflower oil (not measurable) groups.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
Recent studies on chicken semen have suggested that the lipid and fatty acid composition of spermatozoa may be important determinants of fertility. Phospholipid fatty acid composition, vitamin E content and in vitro susceptibility to lipid peroxidation of duck spermatozoa were investigated using GC-MS and HPLC based methods. The total phospholipid fraction of duck spermatozoa was characterized by high proportions of the n-6 polyunsaturated fatty acids arachidonic (20:4n-6), docosatetraenoic (22:4n-6) and docosapentaenoic (22:5n-6) acids but a substantial proportion of the n-3 fatty acid docosahexaenoic (22:6n-3) acid was also present. Palmitic (16:0) and stearic (18:0) fatty acids were the major saturates in sperm phospholipids. Among the phospholipid classes, phosphatidylserine (PS) had the highest degree of unsaturation due to very high proportions of 22:6n-3, 22:5n-6, 22:4n-6 and 20:4n-6, comprising together more than 75% of total fatty acids in this fraction. Phosphatidylethanolamine (PE) also contained high proportions of these four C(20-22) polyunsaturates, which together formed 60% of total fatty acids in this phospholipid. Spermatozoa and seminal plasma of duck semen were characterized by unexpectedly low content of vitamin E, being more than 4-fold lower than in chicken semen. In duck semen the major proportion of the vitamin E (>70%) was located in the spermatozoa. The very high proportion of 22:6n-3 in PS and PE fractions of duck sperm lipids and the comparatively low levels of vitamin E could predispose semen to lipid peroxidation. Nevertheless the in vitro susceptibilities to Fe2+-stimulated lipid peroxidation of duck and chicken spermatozoa were very similar. The results of the study suggest that increased superoxide dismutase and glutathione peroxidase activity and increased antioxidant activity of seminal plasma may compensate for the low levels of vitamin E to help protect the membranes of duck spermatozoa, which exhibit a high degree of unsaturation from oxidative stress.  相似文献   

10.
A method utilizing electrospray ionization coupled with tandem mass spectrometry was developed as a facile and rapid method to identify and quantify lipid remodeling in vivo. Electrospray/tandem mass spectrometric analyses were performed on lipids isolated from liver tissue and resident peritoneal cells from essential fatty acid sufficient and deficient mice. Essential fatty acid deficiency was chosen as the paradigm to evaluate the methodology because it epitomizes the most extreme dietary means of altering fatty acid composition of virtually all cellular lipid species. Qualitative and quantitative changes were measured in the phospholipid and cholesterol ester species directly in the chloroform/methanol lipid extract without any prior chromatographic separation. Lipid remodeling in liver and peritoneal cells from essential fatty acid deficient mice was qualitatively similar in cholesterol ester, phosphatidylcholine, and phosphatidylethanolamine. The monoenoic fatty acids palmitoleic acid (16:1 n-7) and oleic acid (18:1 n-9) were increased markedly, whereas all n-6 and n-3 polyunsaturated fatty acids were nearly depleted in phospholipid and cholesterol ester species. The n-9 polyunsaturated fatty acid surrogate, Mead acid (20:3 n-9), substituted for arachidonic acid (20:4 n-6) and docosahexaenoic acid (22:6 n-3) in phospholipid, but not in cholesterol ester, species. Another notable difference was that adrenic acid (22:4 n-6) and docosapentaenoic acid (22:5 n-6), both metabolites of arachidonic acid, accumulated in phospholipid and cholesterol ester species of peritoneal cells, but not in liver cells, of essential fatty acid sufficient mice. The overall body of data presented illustrates the implementation of electrospray/tandem mass spectrometry as a method for facile and direct quantification of changes in lipid species during lipid metabolic studies.  相似文献   

11.
Because alpha-synuclein may function as a fatty acid binding protein, we measured fatty acid incorporation into astrocytes isolated from wild-type and alpha-synuclein gene-ablated mice. alpha-Synuclein deficiency decreased palmitic acid (16:0) incorporation 31% and arachidonic acid [20:4 (n-6)] incorporation 39%, whereas 22:6 (n-3) incorporation was unaffected. In neutral lipids, fatty acid targeting of 20:4 (n-6) and 22:6 (n-3) (docosahexaenoic acid) to the neutral lipid fraction was increased 1.7-fold and 1.6-fold, respectively, with an increase in each of the major neutral lipids. This was consistent with a 3.4- to 3.8-fold increase in cholesteryl ester and triacylglycerol mass. In the phospholipid fraction, alpha-synuclein deficiency decreased 16:0 esterification 39% and 20:4 (n-6) esterification 43% and decreased the distribution of these fatty acids, including 22:6 (n-3), into this lipid pool. alpha-Synuclein gene-ablation significantly decreased the trafficking of these fatty acids to phosphatidylinositol. This observation is consistent with changes in phospholipid fatty acid composition in the alpha-synuclein-deficient astrocytes, including decreased 22:6 (n-3) content in the four major phospholipid classes. In summary, these studies demonstrate that alpha-synuclein deficiency significantly disrupted astrocyte fatty acid uptake and trafficking, with a marked increase in fatty acid trafficking to cholesteryl esters and triacylglycerols and decreased trafficking to phospholipids, including phosphatidylinositol.  相似文献   

12.
We compared the lipid content and fatty acid composition of (1) the egg yolk of three anuran species (Chirixalus eiffingeri, Rhacophorus moltrechti and Buergeria robustus) and chicken eggs; and (2) C. eiffingeri tadpoles fed conspecific eggs or chicken egg yolk. Anuran and chicken egg yolk contained more non-polar than polar lipids but the proportions varied among species. Chicken egg yolk contained low amounts of 22:5n-3 in the polar lipid fraction, and B. robustus eggs did not contain any n-3 or n-6 non-polar lipids. The specific variation of lipid contents and fatty acid composition may relate to the maternal diet and/or breeding biology. In C. eiffingeri tadpoles that fed chicken yolk or frog egg yolk, the dominant components of polar and non-polar lipids were 16:0, 18:0, 18:1, and 18:2n-6, or 20:4n-6 fatty acids. C. eiffingeri eggs contained more n-3 fatty acids (e.g. 18:3n-3 and 20:5n-3) than chicken egg yolk, and tadpoles fed conspecific eggs contained more of these fatty acids than tadpoles fed chicken egg yolk. The compositional differences in the fatty acids between C. eiffingeri tadpoles that fed frog egg or chicken egg yolk are the reflection of the variation in the dietary sources. Our results suggest a direct incorporation of fatty acids into the body without or minimal modification, which provide an important insight into the physiological aspects of cannibalism.  相似文献   

13.
Abstract: The autoradiographic method with [14C]-docosahexaenoic acid ([14C]22:6 n-3) was used to determine whether a diet deficient in n-3 fatty acids, inducing a decrease in 22:6 n-3 circulating level, was associated with changes in local rates of phospholipid synthesis in the rat brain. As compared with rats fed a normal diet (peanut plus rapeseed oil), a n-3 fatty acid deficiency [peanut oil group (P group)] induced a generalized decrease (?35 to ?76%) of 22:6 n-3 incorporation rates into phospholipids in all the regions examined. This effect was confirmed by using [3H]22:6 n-3 infusion by biochemical analysis and quantifications corrected for the contribution of docosahexaenoate derived from lipid store recycling to the unesterified pool, taken as the precursor pool for phospholipid synthesis in the whole brain. In normal or n-3 fatty acid-deficient rats, the values of the brain-to-plasma 22:6 n-3 specific activity ratio (Ψ) were similar (0.03), indicating that a considerable endogenous source of 22:6 n-3 (97%), likely derived from phospholipid degradation, dilutes the specific activity of the tracer coming from plasma. Using the specific activity of 22:6 n-3 in plasma instead of brain would thus lead to a gross underestimation of the rate of phospholipid synthesis. The results also demonstrate that the pattern of 14C or 3H distribution in brain lipids was not modified by the n-3 fatty acid-deficient diet. The major lipids labeled were phospholipids, particularly phosphatidylethanolamine. Nevertheless, the unesterified 22:6 n-3 concentrations in plasma and brain were significantly reduced (eight- and threefold, respectively) in the P group. In addition, the proportion of 22:6 n-3 in the brain total lipid fraction, total phospholipids, and phosphatidylcholine, -ethanolamine, and -serine was significantly decreased in n-3 fatty acid-deficient rats. This was partially compensated for by an increase in the 22:5 n-6 level. These results are discussed in relation to the limitation of 22:6 n-3 use to quantify, by the quantitative autoradiographic method, changes in local rates of phospholipid synthesis in rat brain.  相似文献   

14.
Seasonal variations in lipid classes and fatty acid composition of triacylglycerols and phospholipids in the digestive gland of Pecten maximus were studied over a period of 16 months. Acylglycerols predominated (19-77% of total lipids), in accordance with the role of the digestive gland as an organ for lipid storage in scallops. Seasonal variations were mainly seen in the acylglycerol content, while phospholipids (2.5-10.0% of total lipids) and sterols (1.9-7.4% of total lipids) showed only minor changes. The most abundant fatty acids were 14:0, 16:0, 18:0, 16:1(n-7), 18:1(n-9), 18:1(n-7), 18:4(n-3), 20:5(n-3) and 22:6(n-3) and these showed similar seasonal profiles in both, triacylglycerol and phospholipid fractions. In contrast to the phospholipid fraction, the triacylglycerol fraction contained more 20:5(n-3) than 22:6(n-3). In three phospholipid samples we noted a high percentage of a 22-2-non-methylene-interrupted fatty acid, previously described to have a structural role in several bivalve species. The main polyunsaturated fatty acids displayed important seasonal variations parallel to those of the acylglycerols, suggesting good nutritional conditions. A positive correlation existed between the level of saturated fatty acids and temperature, whereas the levels of polyunsaturated fatty acids correlated negatively with temperature.  相似文献   

15.
Peroxidation is a well-known natural phenomenon associated with both health and disease. We compared the peroxidation kinetics of phosphatidylcholine (PC) molecules with different fatty acid compositions (i.e. 18:0, 18:1n-9, 18:2n-6, 20:4n-6 and 22:6n-3 at the sn-2 and 16:0 at sn-1 position) either as molecules free in solution or formed into liposomes. Fatty acid levels, oxygen consumption plus lipid hydroperoxide and malondialdehyde production were measured from the same incubations, at the same time during maximal elicitable peroxidation. PCs with highly peroxidizable fatty acids (i.e. 20:4n-6 and 22:6n-3) in the same incubation were found to be either fully peroxidized or intact. Rates of peroxidation of PCs with multiple bisallylic groups (i.e. 20:4n-6 and 22:6n-3) peroxidized at 2-3 times the rate per bisallylic bond than the same phospholipid with 18:2n-6. The results suggest that propagation of peroxidation (H-atom transfer) is firstly an intramolecular process that is several-fold faster than intermolecular peroxidation. PCs in solution peroxidized twice as fast as those in liposomes suggesting that only half of the phospholipids in liposomes were available to peroxidize i.e. the outer leaflet. Experiments on liposomes suggest that even after heavy peroxidation of the outer leaflet the inner leaflet is unaffected, indicating how cells may protect themselves from external peroxidation and maintain control over internal peroxidation. Intramolecular peroxidation may produce highly concentrated, localized sites of peroxidation product that together with internal control of peroxidation of the inner leaflet of membranes provide new insights into how cells control peroxidation at the membrane level.  相似文献   

16.
In this review, changes in brain lipid composition and metabolism due to aging are outlined. The most striking changes in cerebral cortex and cerebellum lipid composition involve an increase in acidic phospholipid synthesis. The most important changes with respect to fatty acyl composition involve a decreased content in polyunsaturated fatty acids (20:4n-6, 22:4n-6, 22:6n-3) and an increased content in monounsaturated fatty acids (18:1n-9 and 20:1n-9), mainly in ethanolamine and serineglycerophospholipids. Changes in the activity of the enzymes modifying the phospholipid headgroup occur during aging. Serine incorporation into phosphatidylserine through base-exchange reactions and phosphatidylcholine synthesis through phosphatidylethanolamine methylation increases in the aged brain. Phosphatidate phosphohydrolase and phospholipase D activities are also altered in the aged brain thus producing changes in the lipid second messengers diacylglycerol and phosphatidic acid.  相似文献   

17.
The effects of a vegetable oil-based infant formula, virtually devoid of n-6 and n-3 long chain polyenoid fatty acids (LCP) and high in 18:2(n-6) and 18:2(n-6)/18:3(n-3) ratio, on brain synaptosome lipid composition and enzyme thermotropic behavior were studied in neonatal piglets. Term gestation piglets were fed either sow milk (SMF) or formula (FF) from birth for 5, 10, 15, or 25 days. Synaptosomal cholesterol, total lipid phosphorus, and phospholipid class composition did not differ between SMF and FF piglets. Synaptosomal fatty acid composition, however, was influenced by diet. The proportion of n-3 LCP, especially 22:6(n-3), was decreased, while the n-6 LCP, especially 22:4(n-6) and 22:5(n-6), were increased in FF compared to SMF piglets. These diet-related changes were most pronounced in the ethanolamine glycerophospholipid fraction and increased with the duration of feeding. FF thus reversed an apparent developmental increase in the synaptosomal n-3/n-6 LCP ratio. The monoene content, especially 18:1, was also reduced in the synaptosomes of FF compared to SMF pigs. FF had no effect on the activity of synaptosomal acetylcholinesterase. However, higher transition temperatures for this enzyme, indicating decreased membrane fluidity, were found in the FF compared to SMF piglets. The data suggest that exclusive feeding of proprietary formulae, devoid of LCP and high in 18:2(n-6) and/or the 18:2 (n-6)/18:3(n-3) ratio, may compromise normal fatty acid accretion and physical properties of brain synaptosomal membranes.  相似文献   

18.
The ability of juvenile turbot, Scophthalmus maximus (L.), to elongate and desaturate various polyunsaturated fatty acids (PUFA) was examined in relation to their lipid composition. Triacylglycerols were the most abundant lipid class present in the fish and phosphatidylcholine was the predominant phospholipid. In all lipid classes examined the levels of (n-3) PUFA exceeded that of (n-6) PUFA. 18C PUFA were minor components in comparison with 20:5(n-3) and 22:6(n-3). 20:4(n-6) was present in highest concentration in phosphatidylinositol in which it accounted for 16.9% of the fatty acids. When the fish were injected with either 14C-labelled 18:2(n-6), 18:3(n-3), 20:4(n-6), 20:5(n-3) or 22:6(n-3) the highest percentage recovery of radioactivity (69%) in body lipid was observed with 22:6(n-3). With all labelled substrates free fatty acids contained only a small proportion of the total recovered radioactivity whereas triacylglycerols were highly labelled. Phosphatidylcholine/sphingomyelin was the most highly labelled polar lipid fraction. With 14C-20:4(n-6) as injected substrate, 23.2% of the radioactivity recovered in total lipid was present in phosphatidylinositol in comparison with less than 6% with the other substrates. Only small proportions of radioactivity from 14C-18:2(n-6) and 14C-18:3(n-3) were recovered in the 20 and 22C fatty acids of triacylglycerols and total polar lipid. With 14C-20:5(n-3) as substrate, 27 and 33% of the total radioactivity recovered in the fatty acids of triacylglycerols and polar lipids respectively was present in 22C fatty acids. The corresponding values for l4C-20:4(n-6) as substrate were 19 and 18%. The results confirm the limited capacity of turbot to convert 18C PUFA to longer chain PUFA but demonstrate their ability to synthesize 22C PUFA from 20C PUFA. They also suggest a small but specific requirement for 20:4(n-6).  相似文献   

19.
Transplacental transfer of maternal fatty acids is critical for fetal growth and development. In the placenta, a preferential uptake of fatty acids toward long-chain polyunsaturated fatty acids (LCPUFAs) has been demonstrated. Adipose differentiation-related protein (ADRP) is a lipid droplet-associated protein that has been ascribed a role in cellular fatty acid uptake and storage. However, its role in placenta is not known. We demonstrate that ADRP mRNA and protein are regulated by fatty acids in a human placental choriocarcinoma cell line (BeWo) and in primary human trophoblasts. LCPUFAs of the n-3 and n-6 series [arachidonic acid (20:4n-6), docosahexaenoic acid (22:6n-3), and eicosapentaenoic acid (20:5n-3)] were more efficient than shorter fatty acids at stimulating ADRP mRNA expression. The fatty acid-mediated increase in ADRP mRNA expression was not related to the differentiation state of the cells. Synthetic peroxisome proliferator-activated receptor and retinoic X receptor agonists increased ADRP mRNA level but had no effect on ADRP protein level in undifferentiated BeWo cells. Furthermore, we show that incubation of BeWo cells with LCPUFAs, but not synthetic agonists, increased the cellular content of radiolabeled oleic acid, coinciding with the increase in ADRP mRNA and protein level. These studies provide new information on the regulation of ADRP in placental trophoblasts and suggest that LCPUFA-dependent regulation of ADRP could be involved in the metabolism of lipids in the placenta.  相似文献   

20.
There is currently little information regarding the metabolic fates of yolk lipid and individual fatty acids during embryonic development of free-living avian species. Here we report the pattern of lipid utilization during embryonic development of the coot (Fulica atra) and the moorhen (Gallinula chloropus), two related species producing precocial offspring from eggs with a distinctive fatty acid composition and with an incubation period similar to that of the chicken. By the time of hatching, the proportions of the initial yolk lipid that had been transferred to the embryo were 88.2% and 79.8% for the coot and moorhen respectively. During the whole incubation period, 42.9% and 40.0% of the initial yolk lipid of the coot and moorhen respectively were lost from the system due to oxidation for energy, equating to 47.8% and 50.0% respectively of the actual amount of lipid transferred over this time. Thus, the lipid received by the embryos of both species is partitioned almost equally between the alternative fates of energy metabolism and incorporation into tissue lipids. In the coot, this 50:50 split between oxidation and tissue formation was maintained during the hatching process. The proportions of arachidonic (20:4n-6) and docosahexaenoic (22:6n-3) in the yolk lipids of these species were 2.5-3.5 times higher than in eggs of domestic poultry. In contrast to the situation in the chicken, there was no preferential uptake of 22:6n-3 from the yolk during coot and moorhen development. The fatty acid compositions of the whole body lipids of the coot and moorhen hatchlings were almost identical to those of the initial yolks indicating that, unlike the chicken, these species display relatively little overall biomagnification of 20:4n-6 and 22:6n-6 during development. It is suggested that the yolk fatty acid profiles of the coot and moorhen are particularly well matched to the requirements of the embryo, reducing the need for selective uptake of 22:6n-3 and for the overall biomagnification of 22:6n-3 and 20:4n-6.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号