首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cryopreservation protocols for umbilical cord blood have been based on methods established for bone marrow (BM) and peripheral blood stem cells (PBSC). The a priori assumption that these methods are optimal for progenitor cells from UCB has not been investigated systematically. Optimal cryopreservation protocols utilising penetrating cryoprotectants require that a number of major factors are controlled: osmotic damage during the addition and removal of the cryoprotectant; chemical toxicity of the cryoprotectant to the target cell and the interrelationship between cryoprotectant concentration and cooling rate. We have established addition and elution protocols that prevent osmotic damage and have used these to investigate the effect of multimolar concentrations of Me(2)SO on membrane integrity and functional recovery. We have investigated the effect of freezing and thawing over a range of cooling rates and cryoprotectant concentrations. CD34(+) cells tolerate up to 60 min exposure to 25% w/w (3.2M) Me(2)SO at +2 degrees C with no significant loss in clonogenic capacity. Exposure at +20 degrees C for a similar period of time induced significant damage. CD34(+) cells showed an optimal cooling range between 1 degrees C and 2.5 degrees C/min. At or above 1 degrees C/min, increasing the Me(2)SO concentration above 10% w/w provided little extra protection. At the lowest cooling rate tested (0.1 degrees C/min), increasing the Me(2)SO concentration had a statistically significant beneficial effect on functional recovery of progenitor cells. Our findings support the conclusion that optimal recovery of CD34(+) cells requires serial addition of Me(2)SO, slow cooling at rates between 1 degrees C and 2.5 degrees C/min and serial elution of the cryoprotectant after thawing. A concentration of 10% w/w Me(2)SO is optimal. At this concentration, equilibration temperature is unlikely to be of practical importance with regard to chemical toxicity.  相似文献   

2.
Transplantation using hematopoietic stem cells from umbilical cord blood (UCB) is a life-saving treatment option for patients with select oncologic diseases, immunologic diseases, bone marrow failure, and others. Often this transplant modality requires cryopreservation and storage of hematopoietic stem cells (HSC), which need to remain cryopreserved in UCB banks for possible future use. The most widely used cryoprotectant is dimethylsulfoxide (Me2SO), but at 37 °C, it is toxic to cells and for patients, infusion of cryopreserved HSC with Me2SO has been associated with side effects. Freezing of cells leads to chemical change of cellular components, which results in physical disruption. Reactive oxygen species (ROS) generation also has been implicated as cause of damage to cells during freezing. We assessed the ability of two bioantioxidants and two disaccharides, to enhance the cryopreservation of UCB. UCB was processed and subjected to cryopreservation in solutions containing different concentrations of Me2SO, bioantioxidants and disaccharides. Samples were thawed, and then analysed by: flow cytometry analysis, CFU assay and MTT viability assay. In this study, our analyses showed that antioxidants, principally catalase, performed greater preservation of: CD34+ cells, CD123+ cells, colony-forming units and cell viability, all post-thawed, compared with the standard solution of cryopreservation. Our present studies show that the addition of catalase improved the cryopreservation outcome. Catalase may act on reducing levels of ROS, further indicating that accumulation of free radicals indeed leads to death in cryopreserved hematopoietic cells.  相似文献   

3.
Evidence has accumulated that periosteal cells have a great potential to regenerate bone. We have demonstrated that cultured periosteum (CP) in membrane form is an effective device to regenerate alveolar bone. To increase the availability of CP in a clinical environment, an effective cryopreservation protocol for CP has been developed. In this study, three different cryoprotectants (Me(2)SO, glycerol, and ethylene glycol) were used. The effect on cell viability of pre-incubation temperature, pre-incubation time, and agitation during incubation was investigated. Samples were stored at -196 degrees C for 10 days. Cell viability was assessed by a colorimetric cell viability assay using a tetrazolium salt, and the assay results were confirmed by confocal laser scanning microscopy after staining with a combination of calcein AM and ethidium homodimer-1. The activity of the cells after thawing was assessed by alkaline phosphatase assay. To assess the osteogenic potential of cryopreserved CP, the CP was grafted to calvarial defects in athymic rats. The greatest cell viability was obtained in the group equilibrated at 37 degrees C for 30 min with Me(2)SO, under agitation, showing 63.3 +/- 10.5% recovery. After cryopreservation, the cell growth of surviving cells was identical when Me(2)SO was used as a cryoprotectant. Alkaline phosphatase (ALP) activity was maintained in the groups cryopreserved with Me(2)SO and glycerol. The transplantation experiment showed that the calvarial defects were completely closed by grafting cryopreserved CP, which demonstrates that the osteogenic property of CP was well maintained. An efficient cryopreservation protocol for CP has been developed and this will provide a convenient and effective treatment option for bone regeneration in clinics.  相似文献   

4.
Cord blood is a source of hematopoietic stem cells used in transplantation in which hematopoietic reconstitution is necessary. This transplant modality requires the cryopreservation of hematopoietic stem cells (HSCs). Dimethyl sulfoxide has been used as a cryoprotectant (CPA) in the cryopreservation of HSCs; however, it has been demonstrated that Me2SO exhibits toxic side effects to the human body. Due to its stability upon freezing, disaccharides such as trehalose have been investigated as a cryoprotectant. This study investigated the hypothesis that a cryopreservation solution containing intracellular and extracellular trehalose improves the recovery of stem cells after cryopreservation. After thawing, the cells were tested for their viability using the 7AAD stain, CD45+/CD34+ cells were assessed using flow cytometry and the MTT viability assay, and the proportion of hematopoietic progenitor cells was measured using the CFU assay. Our results showed the effectiveness of the solution containing intracellular and extracellular trehalose in the cryopreservation of cord blood cells, demonstrating that trehalose may be an optimal cryoprotectant when present both inside and outside of cells.  相似文献   

5.
Background aimsDelayed neutrophil recovery following autologous hematopoietic stem cell transplantation (aHSCT) increases transplant-related morbidity. Apoptosis induced by cryopreservation and thawing of hematopoietic progenitor cells collected by apheresis (HPC-A) was investigated in this nested case-control study as a factor associated with delayed neutrophil recovery following aHSCT.MethodsAmong patients with lymphoma who underwent aHSCT between 2000 and 2007 (n = 326), 13 cases of primary delayed neutrophil recovery and 22 age- and sex-matched controls were identified. Apoptosis and viability were measured using multiparameter flow cytometry, and colony-forming capacity was determined using semi-solid methylcellulose assays.ResultsHPC-A grafts from cases and controls had similar percentages of viable mononuclear cells (MNC) and CD34+progenitor cells, as determined by standard 7AAD dye exclusion methods measured before and after cryopreservation. Patients with delayed neutrophil recovery received increased numbers of apoptotic MNC (P = 0.02) but similar numbers of apoptotic CD34+ cells per kilogram measured after thawing. Apoptosis was more pronounced in MNC compared with CD34+ cells after thawing, and apoptosis was negligible in freshly collected HPC-A products. Patients with delayed neutrophil recovery had fewer total colony-forming unites (CFU) and CFU-granulocyte–macrophages (GM) per 105 viable post-thaw MNC compared with controls (P < 0.05).ConclusionsIncreased numbers of apoptotic MNC in thawed HPC-A products are associated with delayed neutrophil recovery after aHSCT. Studies that address factors contributing to increased apoptosis are needed, and measuring apoptosis in thawed HPC-A may have a role in the assessment of graft adequacy.  相似文献   

6.
Since 4-1BB plays a predominant role in CD8+ T cell responses, we investigated the effects of 4-1BB triggering on the primary and memory CD8+ T responses to HSV-1 infection. 4-1BB was detected on 10-15% of CD4+ and CD8+ T cells following the infection. 4-1BB-positive T cells were in the proliferative mode and showed the enhanced expression of anti-apoptotic proteins. Agonistic anti-4-1BB treatment exerted preferential expansion of CD8+ T cells and gB/H-2Kb-positive CD8+ T cells, and enhanced cytotoxicity against HSV-1 that was mainly mediated by CD11c+CD8+ T cells. CD11c+CD8+ T cells were re-expanded following re-challenge with HSV-1 at post-infection day 50, indicating that CD11c+CD8+ phenotype was maintained in memory CD8+ T cell pool. Our studies demonstrated that 4-1BB stimulation enhanced both primary and memory anti-HSV-1 CD8+ T cell responses, which was mediated by a massive expansion of antigen-specific CD11c+CD8+ T cells.  相似文献   

7.
BACKGROUND: We and others have shown a critical role for CD34+ CD38- cells in hematopoietic recovery after autologous stem cell transplantation (ASCT), in particular for platelet reconstitution. Thus a routine assessment of CD34+ CD38- cells in freezing-thawing procedures for autografting could represent an important tool for predicting poor engraftment. METHODS: To compare the impact of cryopreservation on CD34+ CD38+ and CD34+ CD38- hematopoietic stem cell subsets, 193 autograft products collected in 84 patients with malignancies were assessed before controlled-rate cryopreservation in 10% DMSO and after thawing for autografting. RESULTS: Cell counts after thawing were significantly different from the pre-freezing counts for total CD34+ (P<0.0001) and CD34+ CD38+ (P<0.0001) cells, but not for CD34+ CD38- cells (P=0.252). Median losses for CD34+, CD34+ CD38+ and CD34+ CD38- cells were, respectively, 11.8%, 11.4% and 0.0%. The magnitude of fresh/post-thawing percentage cell variation was significantly different when comparing between the CD34+ CD38+ and CD34+ CD38- cell subsets (P<0.001). Moreover, CD34+ CD38- cells exhibited recovery values > or =100% in 85/160 graft products, compared with 51/193 in CD34+ CD38+ cells (P<0.0001). Also, recovery values > or =90% were significantly better in the CD34+ CD38- (98/160 grafts) than in the CD34+ CD38+ subsets (89/193 grafts) (P<0.01). DISCUSSION: In this work we have demonstrated that CD34+ cells that do not express the CD38 Ag show a significantly better resistance to cryopreservation. This could represent another example of the particular ability of less committed progenitor cells to overcome environmental injuries. Moreover, we consider routine assessment of CD34+ CD38- cells before freezing as clinically relevant, but post-thawing controls may be avoided because of their good resistance to freezing.  相似文献   

8.
Dendritic cells (DCs) are professional antigen-presenting cells that are required for the initiation of the immune response. DCs have been shown to be generated from CD34+pluripotent hematopoietic progenitor cells in the bone marrow and cord blood (CB), but relatively little is known about the effect of cryopreservation on functional maturation of DCs from hematopoietic stem cells. In this work we report the generation of DCs from cryopreserved CB CD34+cells. CB CD34+cells were cryopreserved at −80°C for 2 days. Cryopreserved CB CD34+cells as well as freshly isolated CB CD34+cells cultured with granulocyte—macrophage colony-stimulating factor (GM-CSF)/stem cell factor (SCF)/tumor necrosis factor-α (TNF-α) for 14 days gave rise to CD1a+/CD4+/CD11c+/CD14/CD40+/CD80+/CD83+/CD86+/HLA-DR+cells with dendritic morphology. DCs derived from cryopreserved CB CD34+cells showed a similar endocytic capacity for fluorescein isothiocyanate-labeled dextran and lucifer yellow when compared with DCs derived from freshly isolated CB CD34+cells. Flow cytometric analysis revealed that two CC chemokine receptors (CCRs), CCR-1 and CCR-3, were expressed on the cell surface of DCs derived from both cryopreserved and freshly isolated CB CD34+cells, and these DCs exhibited similar chemotactic migratory capacities in response to regulated on activation normal T-cell expressed and secreted. DCs derived from cryopreserved as well as freshly isolated CB CD34+cells were more efficient than peripheral blood mononuclear cells in the primary allogeneic T-cell response. These results indicate that frozen CB CD34+cells cultured with GM-CSF/TNF-α/SCF gave rise to dendritic cells which were morphologically, phenotypically and functionally similar to DCs derived from fresh CB CD34+cells.  相似文献   

9.
Drug metabolism and viability studies in cryopreserved rat hepatocytes   总被引:1,自引:0,他引:1  
Rat hepatocytes were cryopreserved optimally by freezing them at 1 degrees C/min to -80 degrees C in cryoprotectant medium containing either 20% (v/v) dimethylsulfoxide (Me2SO) and 25% (v/v) fetal calf serum in Leibowitz L15 medium (Me2SO cryoprotectant) or 25% (v/v) vitrification solution (containing Me2SO, acetamide, propylene glycol and polyethylene glycol) in Leibowitz L15 medium (VS25). The VS25 solution was superior for maintaining viability during short-term storage (24-48 hr) but was slightly toxic during longer storage periods (7 days). Although thawed cells were 40-50% viable on ice after cryopreservation, their viability fell rapidly during incubation in suspension at 37 degrees C. This decline in viability occurred more rapidly after freezing in Me2SO cryoprotectant than in VS25 and was associated with extensive intracellular damage and cell swelling. The loss in viability at 37 degrees C does not appear to be due to ice-crystal damage as it occurred in cells stored at -10 degrees C (above the freezing point of the cryoprotectants) and it may be due to temperature/osmotic shock. Both cryoprotectant media were equally efficient at preserving enzyme activities in the hepatocytes over 7 days at -80 degrees C. Cytochrome P450 and reduced glutathione content and the activities of the microsomal enzymes responsible for aminopyrine N-demethylation and epoxide hydrolysis were well maintained over 7 days storage. In contrast, the cytosolic enzymes glutathione-S-transferase and glutathione reductase were markedly labile during cryopreservation. Cytosolic enzymes may be more susceptible to ice-crystal damage, whereas the microsomal membrane may protect the enzymes which are embedded in it.  相似文献   

10.
Hematopoietic stem cells derived from fetal liver have promising therapeutic potential for allotransplantation but require a specific protocol to minimize the damage produced by cryopreservation procedures. In this study, a fundamental approach was applied for designing a cell preservation protocol. To this end, the biophysical characteristics that describe the osmotic reaction of CD34(+)CD38(-) human fetal liver stem cell candidates were studied using fluorescent microscopy. The osmotically inactive volume of the stem cell candidates was determined as 48% of the isotonic volume. The permeability coefficients for water and Me(2)SO were determined at T = +22 degree C: L(p) = 0.27 +/- 0.03 microm x min(-1)atm(-1), P(Me(2)SO)) = 2.09 +/- 0.85 x 10 (-4) cm x min(-1), sigma (Me(2)SO)) = 0.63 +/- 0.03 and at T = +12 degree C: L(p) = 0.15 +/-0.02 microm x min(-1)atm(-1), P(Me(2)SO)) = 6.44 +/-1.42 x 10 (-5) cm x min(-1), sigma (Me(2)SO)) = 0.46 +/- 0.05. The results obtained suggest that post-hypertonic and hypotonic stress are the possible reasons for damage to a CD34(+)CD38(-) cell during the cryopreservation procedure.  相似文献   

11.
Alphabeta+ and gammadelta+ T cells have different mechanisms of epitope recognition and are stimulated by antigens of different chemical nature. An immunization model with antigens from the spirochete Brachyspira hyodysenteriae was used to examine the requirements for proliferation of circulating porcine CD4+ and gammadelta+ T cells in mixed lymphocyte cultures. CD4+ T cells only responded to stimulation with B. hyodysenteriae antigens, whereas gammadelta+ T cells proliferated when cultures were stimulated with either spirochetal antigens or interleukin-2 (IL-2). T cells that had proliferated expressed high levels of IL-2-receptor-alpha (IL-2Ralpha). Furthermore, neutralization of IL-2 at the beginning of the culture period was more efficient in blocking gammadelta+ than CD4+ T cell proliferation. Immunization induced interferon-gamma (IFN-gamma) production by CD4+ T cells, whereas only a small fraction of the antigen-stimulated gammadelta+ T cells produced this cytokine. Our results indicate that, under the same environmental conditions, CD4+ T cell functions are more tightly regulated when compared to gammadelta+ T cells. We conclude that these differences are due, in part, to the enhanced gammadelta+ T cell responsiveness to IL-2.  相似文献   

12.
Wang X  Hua TC  Sun DW  Liu B  Yang G  Cao Y 《Cryobiology》2007,55(1):60-65
Cryopreservation of tissue-engineered human dermal replacement plays an important role in skin tissue engineering and skin banking. With the inspection of electronic scanning microscope and viability evaluation by Trypan Blue staining assay and the tetrazolium salt, MTT (3-[4,5-Dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide) assay, this study investigated the toxicity of Me(2)SO to dermal fibroblasts and effects of cryoprotectant concentration and cooling rate on the viability of dermal replacement. The results demonstrated that the Me(2)SO toxicity to fibroblasts was affected by the exposure time, temperature, and concentration. Furthermore adding cryoprotectant solution at low temperature of 4 degrees C significantly reduced the toxic effect on the tissue-engineered dermal equivalent. An optimal cryopreservation protocol consisting of cooling rate at 1 degrees Cmin(-1) in 10% (V/V) Me(2)SO was derived, with the viability of studied dermal equivalent treated by this protocol being 75% of that of fresh control. The micrograph obtained by electronic scanning microscope also confirmed this result.  相似文献   

13.
Platelets prepared in plasma can be frozen in 6% dimethyl sulfoxide (Me2SO) and stored for extended periods at −80 °C. The aim of this study was to reduce the plasma present in the cryopreserved product, by substituting plasma with platelet additive solution (PAS; SSP+), whilst maintaining in vitro platelet quality. Buffy coat-derived pooled leukoreduced platelet concentrates were frozen in a mixture of SSP+, plasma and 6% Me2SO. The platelets were concentrated, to avoid post-thaw washing, and frozen at −80 °C. The cryopreserved platelet units (n = 9) were rapidly thawed at 37 °C, reconstituted in 50% SSP+/plasma and stored at 22 °C. Platelet recovery and quality were examined 1 and 24 h post-thaw and compared to the pre-freeze samples. Upon thawing, platelet recovery ranged from 60% to 80%. However, there were differences between frozen and liquid-stored platelets, including a reduction in aggregation in response to ADP and collagen; increased CD62P expression; decreased viability; increased apoptosis and some loss of mitochondrial membrane integrity. Some recovery of these parameters was detected at 24 h post-thaw, indicating an extended shelf-life may be possible. The data suggests that freezing platelets in 6% Me2SO and additive solution produces acceptable in vitro platelet quality.  相似文献   

14.
Umbilical cord blood (UCB) is an accepted treatment for the reconstitution of bone marrow function following myeloablative treatment predominantly in children and juveniles. Current cryopreservation protocols use methods established for bone marrow and peripheral blood progenitors cells that have largely been developed empirically. Such protocols can result in losses of up to 50% of the nucleated cell population: losses unacceptable for cord blood. The design of optimal cryopreservation regimes requires the development of addition and elution protocols for the chosen cryoprotectant; protocols that minimise damaging osmotic transients. The biophysical parameters necessary to model the addition and elution of dimethyl sulphoxide to and from cord blood CD34(+) cells have been established. An electronic particle counting method was used to establish the volumetric response of CD34(+) cells to changes in osmolality of the suspending medium. The non-osmotic volume of the cell was 0.27 of the cells isotonic volume. The permeation kinetics of CD34(+) cells to water and dimethyl sulphoxide were investigated at two temperatures, +1.5 and +20 degrees C. Values for the hydraulic conductivity were 3.2 x 10(-8) and 2.8 x 10(-7)cm/atm/s, respectively. Values for the permeability of dimethyl sulphoxide at these temperatures were 4.2 x 10(-7) and 7.4 x 10(-6)cm/s, respectively. Clonogenic assays indicated that the ability of CD34(+) cells to grow and differentiate was significantly impaired outside the limits 0.6-4x isotonic. Based on the Boyle van't Hoff plot, the tolerable limits for cell volume excursion were therefore 45-140% of isotonic volume. The addition and elution of cryoprotectant was modelled using a two-parameter model. Current protocols for the addition of cryoprotectant based on exposure at +4 degrees C would require additional time for complete equilibration of the cryoprotectant. During the elution phase current protocols are likely to cause CD34(+) cells to exceed tolerable limits. The addition of a short holding period during elution reduces the likelihood of this occurring.  相似文献   

15.
Semimature dendritic cells (smDCs) can induce autoimmune tolerance by activation of host antigen-specific CD4+CD25+ regulatory T (Treg) cells. We hypothesized that donor smDCs injected into recipients would induce effector T-cell hyporesponsiveness by activating CD4+CD25+Treg cells, and promote skin allograft survival. Myeloid smDCs were derived from C57BL/6J mice (donors) in vitro. BALB/c mice (recipients) were injected with smDCs to generate antigen-specific CD4+CD25+Treg cells in vivo. Allograft survival was prolonged when BALB/c recipients received either C57BL/6J smDCs prior to grafting or C57BL/6J smDC-derived CD4+CD25+Treg cells post-grafting, and skin flaps from these grafts showed the highest IL-10 production regardless of rapamycin treatments. Our findings confirm that smDCs constitute an independent subgroup of DCs that play a key role for inducing CD4+CD25+Treg cells to express high IL-10 levels, which induce hyporesponsiveness of effector T cells. Pre-treating recipients with donor smDCs may have potential for transplant tolerance induction.  相似文献   

16.
We have been investigating whether alloantigen-specific CD4(+)25+ regulatory T cells can be identified for use in treating graft-versus-host disease. CD150, which is upregulated on the surface of all activated T lymphocytes, was identified as a candidate marker for alloantigen-activated CD4(+)25+ regulatory T cells by gene chip analysis. Freshly isolated CD4(+)25+ cells had only low cell-surface expression of CD150, comparable to that of CD4(+)25- T cells. Increased CD150 expression was observed on all T cells after coculture with allogeneic stimulator cells. When purified CD4(+)25+ cells were precultured with allogeneic stimulator cells, then sorted into CD150+ and CD150- subsets, allosuppressive activity was contained primarily in the CD150+ fraction. These cells also suppressed the proliferation of alloantigen-activated autologous T cells, and they could be expanded in vitro without loss of their suppressive capacity. These results suggest that CD150 can be used as a marker for the identification of purified alloantigen-activated CD4(+)25+ regulatory T cells.  相似文献   

17.
The cryoprotectants dimethyl sulfoxide (Me2SO) and glycerol have been used for the cryopreservation of fetal rat pancreases but only Me2SO has been reported for the cryopreservation of adult rat islets. Since glycerol may be preferred to Me2SO for clinical use, this study was undertaken to compare the effectiveness of these cryoprotectants during the slow cooling of isolated adult rat islets. Islets of Langerhans prepared from the pancreases of WAG rats by collagenase digestion were stored at -196 degrees C after slow cooling (0.3 degrees C/min) to -70 degrees C in the presence of multimolar concentrations of either Me2SO or glycerol. Samples were rewarmed slowly (approximately 10 degrees C/min) and dilution of the cryoprotectant was achieved using medium containing sucrose. Function was assessed by determination of the time course of the glucose-induced insulin release during in vitro perifusion at 37 degrees C and also by isograft transplantation. Transplants were carried out by intraportal injection of a minimum of 1700 frozen and thawed islets into streptozotocin-induced diabetic recipients and tissue function was assessed by monitoring blood glucose levels and body weight changes. Without exception the islets frozen and thawed in the presence of glycerol failed to reduce high serum glucose levels of recipient rats and in vitro dynamic release curves showed to demonstrate a glucose-sensitive insulin release pattern. Reversal of the diabetic conditions was achieved in two of five animals receiving islets which had been frozen and thawed with 2 M Me2SO; and in one of three animals receiving islets cryopreserved with 3 M Me2SO. Nevertheless, perifusion studies showed that the pattern of insulin secretion from groups of cryopreserved islets which did show an ability to secrete insulin was atypical compared with that of untreated controls, suggesting that the tissue was altered or damaged in some way.  相似文献   

18.
不同降温速率对脐血干细胞冷冻复苏后生物学特性的影响   总被引:4,自引:0,他引:4  
考察了不同降温速率对脐血造血干细胞各种生物学特性的影响。在4℃~-40℃的降温范围内,分别选择-0.5℃/min, -1℃/min, -5℃/min的降温速率进行降温,对复苏后的脐血单个核细胞的回收率、活性和CD34+含量的变化以及BFU-E、CFUGM和CFU-MK集落的回收率进行了考察,发现在-1℃/min的降温速率下,脐血MNC回收率可达93.3%±1.8%,活性可达95.0%±3.9%, CD34细胞回收率达80.0%±17.9%,BFUE回收率为87.1%±5.5%,CFUGM回收率达88.5%±8.9%,CFUMK的回收率也达到86.2%±7.4%。并且对复苏后的细胞进一步进行体外培养,发现在-1℃/min的降温速率下复苏的细胞仍然具有与未经冷冻细胞相似的扩增能力,而-0.5℃/min和-5℃/min这两种降温速率条件下复苏的细胞与未经冷冻的细胞相比差距较大。因而-1℃/min的降温速率对冻存脐血干细胞比较合适。  相似文献   

19.
Cryopreservation is widely used for long-term conservation of various tissues, embryos or gametes. However, few studies have described cryopreservation of invertebrate primary cell cultures and more particularly of marine invertebrate somatic cells. This technique would however be of great interest to facilitate the study of various metabolic processes which vary seasonally. The aim of the present study was to develop a protocol for cryopreservation of Crassostrea gigas vesicular cells. Different parameters were adjusted to improve recovery of cells after freezing. The most efficient cryoprotectant agent was a mix of Me(2)SO, glycerol, and ethylene glycol (4% each). The optimal cooling rate was -1 degrees Cmin(-1) down to -70 degrees C before transfer into liquid nitrogen. In these conditions the percentage of viable cells reached 70% of the control. The glucose metabolism of thawed cells was evaluated using radioactive glucose as a tracer. Immediately after thawing, glucose uptake involving membrane transporters was greatly reduced (24% of control) whereas glucose incorporation into glycogen was less affected (68% of control).  相似文献   

20.
BACKGROUND: Umbilical cord blood (UCB) is an important source of hematopoietic stem and progenitor cells (HSC/HPC) for the reconstitution of the hematopoietic system after clinical transplantation. Cryopreservation of these cells is critical for UCB banking and transplantation as well as for research applications by providing readily available specimens. The objective of this study was to optimize cryopreservation conditions for CD34+ HSC/HPC from UCB. METHODS: Cryopreservation of CD34+ HSC/HPC from UCB after mononuclear cell (MNC) preparation was tested in a research-scale setup. Experimental variations were concentration of the cryoprotectant, the protein additive and cell concentration. In addition, protocols involving slow, serial addition and removal of DMSO were compared with standard protocols (fast addition and removal of DMSO) in order to avoid osmotic stress for the cryopreserved cells. Viability and recoveries of MNC, CD34+ cells and total colony-forming units (CFU) were calculated as read-outs. In addition, sterility testing of the collected UCB units before further processing was performed. RESULTS: The optimal conditions for cryopreservation of CD34+ HPC in MNC preparations were 10% DMSO and 2% human albumin at high cell concentrations (5 x 10(7) MNC/mL) with fast addition and removal of DMSO. After cryopreservation using a computer-controlled freezer, high viabilities (89%) and recoveries for CD34+ cells (89%) as well as for CFU (88%) were observed. Microbial contamination of the collected UCB samples was reduced to a rate of 6.4%. DISCUSSION: Optimized cryopreservation conditions were developed for UCB MNC in respect of the composition of the cryosolution. In addition, our results showed that fast addition of DMSO is essential for improved cryopreservation and post-thaw quality assessment results, whereas the speed of DMSO removal after thawing has little influence on the recoveries of CD34+ cells and CFU.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号