首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
Summary Hypoblast and definitive endoblast derived from young chick embryos were explanted and grown for 24 h in culture. The junctional complexes which characterise these tissues were studied on freeze-fracture replicas and thin sections. Cell membranes of the hypoblast displayed tight junctions only, disposed in randomly arranged strands or narrow belts which included many discontinuous strands. The definitive endoblast showed tight and gap junctions as well as desmosomes in close association with the tight junctions. It is suggested that the differences between the two types of tissue may be related to cell cohesiveness, which appears to be relatively low in the hypoblast and high in the definitive endoblast.  相似文献   

2.
Summary The unincubated chick blastoderm, which consists of a complete upper epithelial layer of one cell thickness (epiblast) and an incomplete lower layer (hypoblast), was examined with the electron microscope in order to define the types of cell contact present. The terminal contacts between the cells of the epiblast invariably involved several focal tight junctions, but only occasionally involved tight junctions. Desmosomes were not observed in these areas, but were encountered in various phases of development in the deeper contact regions between epiblast cells. This deeper region also showed sporadic focal tight junctions and frequent micropapillae. These micropapillae were also common on the surfaces of hypoblast cells. Intercellular spaces between epiblast and hypoblast cells and within the hypoblast were often wide, narrowing to occasional focal tight junctions. Tight junctions and desmosomes were not observed in association with hypoblast cells. Gap junctions were not observed in any region of the embryo.These observations are discussed in relation to the morphogenetic movements occurring in the forming hypoblast and also the influence of this layer on the subsequent development of the embryo. Comparisons are drawn between the contact morphology in the unincubated blastoderm and that in later stages of development.Supported by the Medical Research Council of Canada.  相似文献   

3.
Summary Three types of tissue (hypoblast, germ wall and epiblast) were dissected from early chick embryos and explanted on Falcon plastic dishes. After they had settled and spread, the explants were fixed, usually within 18–24 h after explantation, and sections were cut through the tissue and the Falcon dish. The closeness of the cells to the substrate varied even within the same explant, but the epiblast tended to be closer to the substrate than did the hypoblast or germ wall. Plaques were present in all three tissues in regions where the cell processes contacted the substrate. Extensive desmosomes were visible in the epiblast explants, small desmosomes were present in the germ wall explants, but desmosomes were never seen in hypoblast explants. These differences in cell/substrate and cell/cell morphology are discussed in relation to the different behavioural characteristics of the three tissues. Some mixed cultures were also examined by electron microscopy. When the epiblast was confronted with either hypoblast or germ wall, it underlapped them at the region of contact.  相似文献   

4.
Cell density is known to modify the survival of mammalian cells exposed to elevated temperatures. We have examined the role that cell–cell contact plays in this phenomenon. The formation of cell–cell contact is carried out by cells' junctional complex, i.e., tight junctions, desmosomes, and gap junctions. Lack of formation of tight junctions and desmosomes, or their opening, could interfere with the functions and structures of cell membrane. Membrane damage is at least partially responsible for cell death at elevated temperatures. MDCK cells with high density plated in low calcium medium form confluent monolayers devoid of the formation of tight junctions and desmosomes but quickly assemble them after Ca2+ restoration. We used MDCK cells and the calcium switch technique to investigate effects of cell–cell contact and, independently, of cell density on hyperthermic cell killing. We found that MDCK cells that formed tight junctions and desmosomes were more resistant to hyperthermic treatment than those that did not. Blocking the formation pathway of tight junctions made cells sensitive to heat. Cells growing at lowdensity showed almost the same survival as did cells at high density in the absence of the formation of tight junctions and desmosomes. The results suggest that the formation of tight junctions and desmosomes play a more important role in determining hyperthermic response than does density per se. The formation of tight junctions and desmosomes appears to protect cells modestly against hyperthermic killing. © 1994 Wiley-Liss, Inc.  相似文献   

5.
The cover figure illustrates schematically the molecular linkages of cytoskeletal filaments to epithelial cell‐cell junctions. Microtubules are shown on the left, with schematic motors/cargoes, and connection to the zonula adhaerens and desmosomes. Actin filaments (top) and intermediate filaments (bottom) are shown on the right, with their connections to tight junctions, zonula adhaerens and desmosomes, respectively. See review by Sluysmans et al for identification of molecules.  相似文献   

6.
The process of gastrulation has often been compared with thatof malignant invasion. In this paper, the terms "malignant"and "invasion" are denned and the characteristics of malignantcells are discussed. One of the best examples of invasion duringgastrulation takes place during the formation of the endodermin the chick, when the definitive endoblast invades the hypoblast.Experiments are described in which the hypoblast is invadedby a) definitive endoblast, b) other normal embryonic cells,and c) three types of human malignant cells. It was found thatnot only does the hypoblast react differently to normal andmalignant cells, but that the cell interactions differ alsoaccording to the type of malignant cells. In particular, thereare differences in the behaviour of the cells and in the amountof extracellular material laid down between the hypoblast andmalignant cells. It is concluded that even within the limitsof this experiment, chick gastrulation is not wholly analogousto malignant invasion.  相似文献   

7.
Malignant MO4 mouse fibrosarcoma cells were confronted with fragments of hypoblast from stage 4 (Vakaet 1970) blastoderms in different dispositions either permitting or preventing contact of the hypoblast with the tissue culture plastic. Explantation of an MO4 cell aggregate on top of 24 h-old-hypoblast caused retraction of the hypoblast. Contact inhibition of ruffling in hypoblast cells at the inner margin, by MO4 cells migrating radially from the aggregate, prevented closure of the hole brought about by the initial retraction. Disintegration of hypoblast was not observed. Migration of MO4 cells during the first 24 h was faster from an aggregate explanted on top of hypoblast than from an aggregate explanted on tissue culture plastic. Hypoblast fragments explanted on top of confluent layers of MO4 cells attached and spread during the first 12 h. Later, the hypoblast progressively disintegrated. Here, MO4 cells accumulated underneath the hypoblast. We concluded 1) that the hypoblast attracted the MO4 cells by influencing their pattern of migration and 2) that contact with the artificial substrate allowed survival of hypoblast confronting malignant MO4 cells. Ultrastructural analysis suggested that formation of extracellular material played a major role in the interaction between the normal tissue and the malignant cells.  相似文献   

8.
Summary The intercellular contacts of the migrating edge of chick and quail blastoderms during gastrulation were studied by transmission electron microscopy of thin sections and of freeze-fracture replicas. Tight junctions and gap junctions as well as desmosomes were found. Tight junctions were organized as single junctional strands or as a complex of numerous junctional strands interposed between the lamellae and the bodies of the cells building up the margin of overgrowth. The function of these intercellular junctions is considered in relation to the locomotion of the margin of overgrowth cells.  相似文献   

9.
Measurements of the transepithelial electrical resistance correlated with freeze-fracture observations have been used to study the process of tight junction formation under various experimental conditions in monolayers of the canine kidney epithelial cell line MDCK. Cells derived from previously confluent cultures and plated immediately after trypsin- EDTA dissociation develop a resistance that reaches its maximum value of several hundred ohms-cm(2) after approximately 24 h and falls to a steady-state value of 80-150 ohms- cm(2) by 48 h. The rise in resistance and the development of tight junctions can be completely and reversibly prevented by the addition of 10 μg/ml cycloheximide at the time of plating, but not when this inhibitor is added more than 10 h after planting. Thus tight junction formation consists of separable synthetic and assembly phases. These two phases can also be dissociated and the requirement for protein synthesis after plating eliminated if, following trypsinization, the cells are maintained in spinner culture for 24 h before plating. The requirement for protein synthesis is restored, however, if cells maintained in spinner culture are treated with trypsin before plating. Actinomycin D prevents development of resistance only in monolayers formed from cells derived from sparse rather than confluent cultures, but new mRNA synthesis is not required if cells obtained from sparse cultures are maintained for 24 h in spinner culture before plating. Once a steady-state resistance has been reached, its maintenance does not require either mRNA or protein synthesis; in fact, inhibition of protein synthesis causes a rise in the resistance over a 30-h period. Following treatments that disrupt the junctions in steady- state monolayers recovery of resistance also does not require protein synthesis. These observations suggest that proteins are involved in tight junction formation. Such proteins, which do not turn over rapidly under steady-state conditions, are destroyed by trypsinization and can be resynthesized in the absence of stable cell-cell or cell-substratum contact. Messenger RNA coding for proteins involved in tight junction formation is stable except when cells are sparsely plated, and can also be synthesized without intercellular contacts or cell-substratum attachment.  相似文献   

10.
The nature of interactions between cells migrating through tissues and their structural surroundings are largely unknown. We have therefore examined the ultrastructural relationship between L5222 rat leukemia cells, moving through the loose connective tissue of the mesentery, and components of the extracellular matrix (ECM). Ultrathin tissue sections, fixed in the presence of ruthenium hexammine trichloride (RHT), revealed the following: Constitutents of fibrillar and nonfibrillar elements of the ECM are in contact with the plasma membrane of L5222 cells. Linear nonfibrillar ECM elements contact the plasma membrane at point-like sites, often associated with root-like structures present within the submembraneous microfilament mesh. Aggregates of ECM material are connected to patch-like cell membrane sites, associated with a condensed, plate-like part of the microfilament mesh. Point-like and patch-like contacts are more numerous at the anterior part of polarized migrating L5222 cells than on the posterior end. In round resting leukemia cells they are evenly distributed around the cell periphery. We suggest that the ECM-cell membrane contacts represent tissue adhesion sites. We therefore hypothesize that in migrating cells a coordinate interaction occurs between the contact sites and the continuous microfilament meshwork which results in a simultaneous backward movement of ECM-membrane contacts on the cell body and in a net forward movement of the whole cell. Since Dembo et al. (1981) present a similar mechanism for in vitro locomotion of granulocytes, we assume that blood cell locomotion in vivo and in vitro depends on similar molecular mechanisms: force generation by the cell, transmembraneous linkage between cytoskeletal and ECM elements, and membrane fluidity. The major difference in blood cell locomotion through a three-dimensional tissue or on a plane substratum would then be given by the distribution of contact sites, occurring around the cell periphery or limited to the ventral cell surface, respectively.  相似文献   

11.
In myogenesis in vivo and in the muscle tissue culture certain intercellular junctions have been revealed; they differ in their ultrastructure and functions. For the stage of interaction between a myoblast with another myoblast contacts of adhesive type are distinctive: desmosomes and fasciae adherentes. They are necessary for adhesion of the cells with each other. Besides, gap and punctate contacts occur, serving for exchange of metabolites and electrical conjugation. At more advanced stages of fusion, when the myoblast gets into contact with the early muscle tubule, a bridge contact is observed, resembling the septal one, which is able to transform into a pentalayered (tight) junction. The latter type evidently participates in fusion of the membranes of the interacting cells.  相似文献   

12.
The lower layer of the pre-gastrulating chick embryo is an extra-embryonic tissue made up of two different cell populations, the hypoblast and the endoblast. The hypoblast is characterized by the expression of inhibitory signalling molecules (e.g. Cerberus, Dickkopf1, Crescent) and others (e.g. Otx2, goosecoid, Hex, Hesx1/RPX, FGF8). However, no genes expressed in the endoblast have yet been found. We designed a differential screen to identify markers differentially expressed in these two cell populations. This only revealed one novel gene, Apolipoprotein A1 (APO A1) with restricted endodermal layer expression. Expression of APO A1 begins very early throughout the lower layer (both hypoblast and endoblast). At later stages it is also expressed in the endoderm and its derivatives, the anterior intestinal portal endoderm and the growing liver bud.  相似文献   

13.
Two major types of plaque-bearing adhering junctions are commonly distinguished: the actin microfilament-anchoring adhaerens junctions (AJs) and the desmosomes anchoring intermediate-sized filaments (IFs). Both types of junction usually possess the common plaque protein, plakoglobin, whereas the other plaque proteins and the transmembrane cadherins are mutually exclusive. For example, AJs contain E-, N-, or P-cadherin in combination with α- and β-catenin, vinculin and α-actinin, whereas in desmosomes, desmogleins and desmocollins are associated with desmoplakin and one or several of the plakophilins (PP1–3). Here we describe a novel type of adhering junction comprising proteins of both AJs and desmosomes and the tight junction (TJ) plaque protein, ZO-1, in a newly established, liver-derived tumorigenic rat cell line (RMEC-1). By immunofluorescence microscopy, cell-cell contacts are characterized by mostly continuous-appearing lines which are usually resolved by electron microscopy as extended arrays of closely spaced small plaque subunits. These plaque-covered regions are positive for plakoglobin, α- and β-catenin, the arm-repeat protein p120, vinculin, desmoplakin and protein ZO-1. They are positive for E-cadherin in cultures early on in passaging, but tend to turn negative for all known cadherins in densely grown cultures. On immunoblotting SDS-PAGE-separated proteins from dense-grown cell monolayers, “pan-cadherin” antibodies have reacted with a band at ~140 kDa, identified as N-cadherin by peptide fingerprinting of the immunoprecipitated protein, which for reasons not yet clear is modified or masked in immunolocalization experiments. The exact histological derivation of RMEC-1 cells is not known. However, the observations of several endothelial markers and the fact that all cells are rich in IFs containing vimentin and/or desmin, while only subpopulations also reveal IFs containing CKs 8 and 18, is suggestive of a mesenchymal, probably endothelial origin. We discuss the molecular relationship of this novel type of extended junction with other types of adhering junctions.  相似文献   

14.
The behaviour of primary cultures of dissociated embryonic chick pigmented retina epithelial (PRE) cells has been investigated. Isolated PRE cells have a mean speed of locomotion of 7-16 mum/h. Collisions between the cells normally result in the development of stable contacts between the cells involved. This leads to a gradual reduction in the number of isolated cells and an increase in the number of cells incorporated into islands. Ultrastructural observations of islands of cells after 24 h in culture show that junctional complexes are present between the cells. These complexes consist of 2 components: (a) an apically situated region of focal tight junctions and/or gap junctions, and (b) a more ventrally located zonula adhaerens with associated cytoplasmic filaments forming a band running completely around the periphery of each cell. The intermembrane gap in the region of the zonula is 6-0-12-0 nm. The junctional complexes become more differentiated with time and after 48 h in culture consist of an extensive region of tight junctions and/or gap junctions and a more specialized zonula adhaerens. It is suggested that the development of junctional complexes may be responsible for the stable contacts that the cells display in culture.  相似文献   

15.
Glucocorticoids and prolactin (PRL) have a direct effect on the formation and maintenance of tight junctions (TJs) in cultured endothelial and mammary gland epithelial cells. In this work, we investigated the effect of a synthetic glucocorticoid dexamethasone (DEX) and PRL on the paracellular barrier function in MDCK renal epithelial cells. DEX (4 microM)+PRL (2 microg/ml) and DEX alone increased significantly the transepithelial electrical resistance after chronic treatment (4 days) of confluent MDCK monolayers or after 24 h treatment of subconfluent monolayers. Immunoblotting and immunocytochemistry revealed no changes in the expression and distribution of TJ-associated proteins occludin, ZO-1 and claudin-1 in confluent monolayers after hormone addition. However, a marked increase in junctional content for occludin and ZO-1 with no changes in their total expression was observed in subconfluent MDCK monolayers 24 h exposed to DEX or DEX+PRL. No change in cell proliferation/growth was detected at subconfluent conditions following hormone treatment. An increase in the total number of viable cells was observed only in confluent MDCK monolayers after exposure to DEX+PRL suggesting that the main effect of these hormones on already established barrier may be associated with the inhibition of cell death. In conclusion, our data suggest that these hormones (specially dexamethasone) have an effect on TJ structure and function only during the formation of MDCK epithelial barrier by probably modulating the localization, stability or assembly of TJ proteins to membrane sites of intercellular contact.  相似文献   

16.
Primary monolayer cultures were obtained in 60-mm petri dishes by incubating 3 X 10(6) isolated hepatocytes at 37 degrees C in Dulbecco's medium supplemented with 17% fetal calf serum. The ultrastructure of monolayer cells was examined after various incubation periods. Within 4 h of plating, the isolated spherical cells adhere to the plastic surface, establish their first contacts by numerous intertwined microvilli, and form new hemidesmosomes. After 12 h of culture, wide branched trabeculae of flattened polyhedral cells extend in all directions. Finally, after 24 h of culture, bile canaliculi are reconstituted, and a biliary polarity is recovered: the Golgi elements, which are scattered throughout the cytoplasm in the isolated cells, are reassembled in front of the newly formed bile canalculi, symmetrically in the adjacent cells; lysosomes are concentrated in that region, and microtubules reappear. Concomitantly, plasma membrane differentiations, namely desmosomes and tight junctions, develop. Tight junctions sealing the bile ducts constitute a barrier to the passage of ruthenium red and horseradish peroxidase. De novo formation of these junctions was studied by the freeze-etching technique: 10-nm particles compose a network of anastomosed linear arrays in the vicinity of the bile canaliculi; in the next step of differentiation, the particles fuse, form short ridge segments and finally continuous branched smooth strands, characteristic of the mature tight junction.  相似文献   

17.
The relationship between the organization of cytoskeletal elements and locomotory activity was studied in single cells of the V2 rabbit carcinoma. Like migratory fibroblasts, and unlike colony-forming epithelial cells, these cells show a pronounced horizontal polarization, and develop a large lamella at their leading front. With affinity-purified antibodies and a combination of light and electron microscopic techniques, actin and alpha-actinin (but not myosin and tropomyosin) were found highly concentrated within the marginal region of the leading lamella, both in ruffles and in the underlying zone of contacts with the substratum. Close contacts prevailed in the locomotory cells and small focal contacts developed only in cells detaching from others. Focal contacts always contained small microfilament bundles. Reorganization of actin filaments is suggested as the fundamental event for the dynamic contact formation of the leading lamella. Large microfilament bundles (stress fibers) were absent in all stages of locomotion.Since locomotory behavior and shape changes of V2 cells are the same on glass as on the surface of a natural membrane, the rabbit mesentery, organization and distribution of contractile elements of cultured V2 cells probably reflect the in vivo situation.  相似文献   

18.
In early chick blastodermal morphogenesis, the hypoblast layer is organized beneath the epiblast and induces an axial structure. However, the origin of hypoblast cells and the mechanism of hypoblast layer formation are poorly understood. We hypothesized that the hypoblast layer is formed by an invasive process across the basement membrane of the juxtaposing epiblast, and tested the idea in vitro . Primary and secondary hypoblast cells from embryos at various pre-streak stages were dissociated into single cells and cultured on reconstituted basement membrane gel, laminin gel or fibronectin gel in the culture medium with or without serum for 24–48 h. As a result, we found that after 24 h of serum-supplemented culture, up to 35% of the hypoblast cells dissolved the gel and made holes on it. Similarly, up to 36% of the hypoblast cells showed invasiveness after 48 h in the serum-free culture. Furthermore, it was observed that Koller's sickle cells, which are regarded to be the progenitors of secondary hypoblast cells, penetrated those gels on which they were seeded. The posterior epiblast cells covering Koller's sickle were also invasive. These results suggest that the presumptive primary hypoblast cells that are known to mingle with epiblast cells invade through the basement membrane to form the hypoblast layer. Furthermore, the present results imply that invasion through the basement membrane may be involved in the formation of Koller's sickle, the anlage of secondary hypoblast.  相似文献   

19.
Confronting subsurface cisternae (CSC) and desmosomes are abundant at sites of parallel apposition of plasma membranes in confluent epitheloid monolayers of HeLa cells. Both structures are absent in young and subconfluent cultures, where stable intercellular contacts do not occur. They first appear when the plane of intercellular contact approaches towards the vertical; they disappear when cells separate spontaneously at superconfluency or by treatment with EDTA. The structure of CSC, lacking ribosomes at their side facing the plasma membrane, might fit the production of glycoproteins involved in intercellular adhesion.  相似文献   

20.
A DISTINCTIVE CELL CONTACT IN THE RAT ADRENAL CORTEX   总被引:8,自引:4,他引:4       下载免费PDF全文
Extensive cell contacts which resemble septate junctions occur between cells in the three major zones of the rat adrenal cortex. Characteristically, they extend between small intercellular canaliculi and the periendothelial space, frequently interrupted by gap junctions and rarely by desmosomes. Zonulae occludentes have not been identified in the adrenal cortex. Along this distinctive cell contact, the cell membranes of apposing cells are separated by 210–300 a bisected by irregularly spaced 100–150-A extracellular particles which are often circular in profile. In lanthanum preparations, these particles appear to form a continuous chain throughout the intercellular space and are visualized as an alveolate structure in sections parallel to the plane of the cell membrane. The cell membrane in the area of septate-like contact does not differ from nonjunctional areas of the cell membrane in freeze-fracture replicas. The cell contact retains its integrity after cell dispersion and after the separation of cell membranes from disrupted cells. The intercellular particles also persist after brief extraction in lipid solvents. Besides adherence, possible functions of this adrenal contact include maintenance of the width of the extracellular space, the provision of channels between intercellular canaliculi and the bloodstream, and utilization as cation depots. Similar structures are also present between adrenal cortical cells of several other species and between interstitial cells of the testis. This type of cell contact may, in fact, be a typical feature of steroid-hormone-secreting tissues in vertebrates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号