首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Fibrate drugs improve cardiovascular health by lowering plasma triglycerides, normalize low density lipoprotein levels, and raise high density lipoprotein (HDL) levels in patients with dyslipidemias. The HDL-raising effect of fibrates has been shown to be due in part to an increase in human apolipoprotein AI gene expression. However, it has recently been shown that fibrates can affect HDL metabolism in mouse by significantly decreasing hepatic levels of the HDL receptor scavenger receptor B-I (SR-BI) and the PDZ domain containing protein PDZK1. PDZK1 is essential for maintaining hepatic SR-BI levels. Therefore, decreased SR-BI might be secondary to decreased PDZK1, but the mechanism by which fibrates lower SR-BI has not been elucidated. Here we show that feeding PDZK1-deficient mice fenofibrate resulted in the near absence of SR-BI in liver, definitively demonstrating that the effect of fenofibrate on SR-BI is PDZK1-independent. Metabolic labeling experiments in primary hepatocytes from fenofibrate-fed mice demonstrated that fenofibrate enhanced the degradation of SR-BI in a post-endoplasmic reticulum compartment. Moreover, fenofibrate-induced degradation of SR-BI was independent of the proteasome, calpain protease, or the lysosome, and antioxidants did not inhibit fenofibrate-induced degradation of SR-BI. Using metabolic labeling coupled with cell surface biotinylation assays, fenofibrate did not inhibit SR-BI trafficking to the plasma membrane. Together, the data support a model in which fenofibrate enhances the degradation of SR-BI in a post-ER, post-plasma membrane compartment. The further elucidation of this novel degradation pathway may provide new insights into the physiological and pathophysiological regulation of hepatic SR-BI.  相似文献   

2.
Fibrate treatment in mice is known to modulate high density lipoprotein (HDL) metabolism by regulating apolipoprotein (apo)AI and apoAII gene expression. In addition to alterations in plasma HDL levels, fibrates induce the emergence of large, cholesteryl ester-rich HDL in treated transgenic mice expressing human apoAI (HuAITg). The mechanisms of these changes may not be restricted to the modulation of apolipoprotein gene expression, and the aim of the present study was to determine whether the expression of factors known to affect HDL metabolism (i.e. phospholipid transfer protein (PLTP), lecithin:cholesterol acyltransferase, and hepatic lipase) are modified in fenofibrate-treated mice. Significant rises in plasma PLTP activity were observed after 2 weeks of fenofibrate treatment in both wild-type and HuAITg mice. Simultaneously, hepatic PLTP mRNA levels increased in a dose-dependent fashion. In contrast to PLTP, lecithin:cholesterol acyltransferase mRNA levels in HuAITg mice were not significantly modified by fenofibrate despite a significant decrease in plasma cholesterol esterification activity. Fenofibrate did not induce any change in hepatic lipase activity. Fenofibrate significantly increased HDL size, an effect that was more pronounced in HuAITg mice than in wild-type mice. This effect in wild-type mice was completely abolished in PLTP-deficient mice. Finally, fenofibrate treatment did not influence PLTP activity or hepatic mRNA in peroxisome proliferator-activated receptor-alpha-deficient mice. It is concluded that 1) fenofibrate treatment increases plasma phospholipid transfer activity as the result of up-regulation of PLTP gene expression through a peroxisome proliferator-activated receptor-alpha-dependent mechanism, and 2) increased plasma PLTP levels account for the marked enlargement of HDL in fenofibrate-treated mice.  相似文献   

3.
4.
The scavenger receptor class B type I (SR-BI), which is expressed in the liver and intestine, plays a critical role in cholesterol metabolism in rodents. While hepatic SR-BI expression controls high density lipoprotein (HDL) cholesterol metabolism, intestinal SR-BI has been proposed to facilitate cholesterol absorption. To evaluate further the relevance of SR-BI in the enterohepatic circulation of cholesterol and bile salts, we studied biliary lipid secretion, hepatic sterol content and synthesis, bile acid metabolism, fecal neutral sterol excretion, and intestinal cholesterol absorption in SR-BI knockout mice. SR-BI deficiency selectively impaired biliary cholesterol secretion, without concomitant changes in either biliary bile acid or phospholipid secretion. Hepatic total and unesterified cholesterol contents were slightly increased in SR-BI-deficient mice, while sterol synthesis was not significantly changed. Bile acid pool size and composition, as well as fecal bile acid excretion, were not altered in SR-BI knockout mice. Intestinal cholesterol absorption was somewhat increased and fecal sterol excretion was slightly decreased in SR-BI knockout mice relative to controls. These findings establish the critical role of hepatic SR-BI expression in selectively controlling the utilization of HDL cholesterol for biliary secretion. In contrast, SR-BI expression is not essential for intestinal cholesterol absorption.  相似文献   

5.
6.
Cholesterol elimination from the body involves reverse cholesterol transport from peripheral tissues in which the elimination of high density lipoprotein (HDL) and low density lipoprotein (LDL) cholesterol by the liver and subsequent biliary excretion as free cholesterol and bile acids are important. In situations of peripheral fat and cholesterol accumulation, such as obesity, these pathways may be overloaded, contributing to increased cholesterol deposition. Leptin has an important role in obesity, suppressing food intake and increasing energy expenditure. This hormone, which is absent in genetically obese ob/ob mice, is also thought to be involved in the coordination of lipid excretion pathways, although available data are somewhat inconsistent. We therefore studied the expression of the hepatic HDL receptor, scavenger receptor class B type I (SR-BI), and the LDL receptor as well as the rate-limiting enzyme in bile acid synthesis, cholesterol 7alpha-hydroxylase (Cyp7a1), in leptin-deficient ob/ob mice and their wild-type controls. In ob/ob mice, protein levels of both LDL receptor and SR-BI were reduced, whereas LDL receptor mRNA levels were increased and those of SR-BI were reduced, regardless of challenge with a 2% cholesterol diet. In ob/ob mice, the enzymatic activity and mRNA for Cyp7a1 were reduced, and the increase in response to dietary cholesterol was blunted. Upon short-term (2 days) treatment with leptin, a dose-dependent increase was seen in the SR-BI protein and mRNA, whereas the Cyp7a1 protein and mRNA were reduced. Our findings indicate that leptin is an important regulator of hepatic SR-BI expression and, thus, HDL cholesterol levels, whereas it does not stimulate Cyp7a1 and bile acid synthesis.  相似文献   

7.
Multiple changes in HDL metabolism occur during infection and inflammation that could potentially impair the antiatherogenic functions of HDL. Scavenger receptor class B type I (SR-BI) promotes cholesterol efflux from peripheral cells and mediates selective uptake of cholesteryl ester into hepatocytes, thereby playing a pivotal role in reverse cholesterol transport. We studied the effect of endotoxin (lipopolysaccharide, LPS) and cytokines [tumor necrosis factor (TNF) and interleukin 1 (IL-1)] on hepatic SR-BI mRNA and protein levels in Syrian hamsters. LPS significantly decreased SR-BI mRNA levels in hamster liver. This effect was rapid and sustained, and was associated with a decrease in hepatic SR-BI protein levels. High cholesterol diet did not change hepatic SR-BI mRNA levels, and LPS was able to decrease SR-BI mRNA levels during high cholesterol feeding. TNF and IL-1 decreased SR-BI mRNA levels in the liver, and the effects of TNF and IL-1 were additive. TNF and IL-1 also decreased SR-BI levels in Hep3B hepatoma cells. More importantly, TNF and IL-1 decreased the uptake of HDL cholesteryl ester into Hep3B cells. In addition, we studied the effect of LPS on SR-BI mRNA in RAW 264.7 cells, a macrophage cell line. LPS rapidly decreased SR-BI mRNA levels in RAW 264.7 cells, but the effect was not sustained and did not lead to a reduction in SR-BI protein levels. Our results suggest that the decrease in hepatic SR-BI levels due to LPS and cytokines during infection and inflammation may decrease selective uptake of cholesteryl ester into the liver and result in impaired reverse cholesterol transport.  相似文献   

8.
Recent studies have indicated that the scavenger receptor class B type I (SR-BI) may play an important role in the uptake of high density lipoprotein (HDL) cholesteryl ester in liver and steroidogenic tissues. To investigate the in vivo effects of liver-specific SR-BI overexpression on lipid metabolism, we created several lines of SR-BI transgenic mice with an SR-BI genomic construct where the SR-BI promoter region had been replaced by the apolipoprotein (apo)A-I promoter. The effect of constitutively increased SR-BI expression on plasma HDL and non-HDL lipoproteins and apolipoproteins was characterized. There was an inverse correlation between SR-BI expression and apoA-I and HDL cholesterol levels in transgenic mice fed either mouse chow or a diet high in fat and cholesterol. An unexpected finding in the SR-BI transgenic mice was the dramatic impact of the SR-BI transgene on non-HDL cholesterol and apoB whose levels were also inversely correlated with SR-BI expression. Consistent with the decrease in plasma HDL and non-HDL cholesterol was an accelerated clearance of HDL, non-HDL, and their major associated apolipoproteins in the transgenics compared with control animals. These in vivo studies of the effect of SR-BI overexpression on plasma lipoproteins support the previously proposed hypothesis that SR-BI accelerates the metabolism of HDL and also highlight the capacity of this receptor to participate in the metabolism of non-HDL lipoproteins.  相似文献   

9.
Scavenger receptor class B, type I (SR-BI) is the high density lipoprotein (HDL) receptor essential for hepatic uptake of HDL cholesterol. SR-BI was shown to impact plasma HDL levels and be anti-atherogenic. Thus, the ability to regulate hepatic SR-BI may allow for the modulation of plasma HDL cholesterol and progression of atherosclerosis. However, regulation of SR-BI in liver is not well understood. Recently, the PDZ domain containing protein PDZK1 was shown to interact with SR-BI and may serve an essential role in SR-BI cell surface expression. Here we identify an in vivo PDZK1-interacting protein that we named small PDZK1-associated protein (SPAP; also known as DD96/MAP17). Unexpectedly, we found that hepatic overexpression of SPAP in mice resulted in liver deficiency of PDZK1. The absence of PDZK1 in SPAP transgenic mice resulted in a deficiency of SR-BI in liver and markedly increased plasma HDL. Metabolic labeling experiments showed that the proteasome plays a role in the turnover of newly synthesized PDZK1, but that SPAP overexpression in liver increased PDZK1 turnover in an alternate, proteasome-independent pathway. Thus, SPAP may be an endogenous regulator of cellular PDZK1 levels by regulating PDZK1 turnover.  相似文献   

10.
By lowering high density lipoprotein (HDL) cholesterol, testosterone contributes to the gender difference in HDL cholesterol and has been accused to be pro-atherogenic. The mechanism by which testosterone influences HDL cholesterol is little understood. We therefore investigated the effect of testosterone on the gene expression of apolipoprotein A-I (apoA-I), hepatic lipase (HL), scavenger receptor B1 (SR-BI), and the ATP binding cassette transporter A1 (ABCA1), all of which are important regulators of HDL metabolism. In both cultivated HepG2 hepatocytes and primary human monocyte-derived macrophages, testosterone led to a dose-dependent up-regulation of SR-BI, which was assessed on both the mRNA and the protein levels. As a functional consequence, we observed an increased HDL(3)-induced cholesterol efflux from macrophages. At supraphysiological dosages, testosterone also increased the expression of HL in HepG2 cells. Testosterone had no effect on the expression of apoA-I in HepG2 cells and ABCA1 in either HepG2 cells or macrophages. These data suggest that testosterone, despite lowering HDL cholesterol, intensifies reverse cholesterol transport and thereby exerts an anti-atherogenic rather than a pro-atherogenic effect.  相似文献   

11.
12.
High density lipoprotein cholesterol is thought to represent a preferred source of sterols secreted into bile following hepatic uptake by scavenger receptor class B type I (SR-BI). The present study aimed to determine the metabolic effects of an endothelial lipase (EL)–mediated stimulation of HDL cholesterol uptake on liver lipid metabolism and biliary cholesterol secretion in wild-type, SR-BI knockout, and SR-BI overexpressing mice. In each model, injection of an EL expressing adenovirus decreased plasma HDL cholesterol (P < 0.001) whereas hepatic cholesterol content increased (P < 0.05), translating into decreased expression of sterol-regulatory element binding protein 2 (SREBP2) and its target genes HMG-CoA reductase and LDL receptor (each P < 0.01). Biliary cholesterol secretion was dependent on hepatic SR-BI expression, being decreased in SR-BI knockouts (P < 0.001) and increased following hepatic SR-BI overexpression (P < 0.001). However, in each model, biliary secretion of cholesterol, bile acids, and phospholipids as well as fecal bile acid and neutral sterol content, remained unchanged in response to EL overexpression. Importantly, hepatic ABCG5/G8 expression did not correlate with biliary cholesterol secretion rates under these conditions. These results demonstrate that an acute decrease of plasma HDL cholesterol levels by overexpressing EL increases hepatic cholesterol content but leaves biliary sterol secretion unaltered. Instead, biliary cholesterol secretion rates are related to the hepatic expression level of SR-BI. These data stress the importance of SR-BI for biliary cholesterol secretion and might have relevance for concepts of reverse cholesterol transport.  相似文献   

13.
Scavenger receptor B, type I (SR-BI) was recently shown to interact with a PDZ domain-containing protein, PDZK1 (CLAMP/Diphor-1/CAP70/NaPi-Cap1), but the importance of this interaction in vivo in terms of SR-BI function has not been determined. In an effort to elucidate the role of this interaction in vivo, the PDZK1-interacting domain of SR-BI was identified and mutated and expressed liver-specifically in mice. The PDZKI-interacting domain on SR-BI was identified as the last three carboxyl-terminal amino acids, Arg-Lys-Leu. A mutant SR-BI (SR-BIdel509) that lacked only the leucine in the PDZ-interacting domain failed to interact with PDZK1 in vitro, while showing normal selective uptake function in nonpolarized cells. Transgenic mice with liver overexpression of SR-BIdel509 showed marked accumulation of SR-BI mRNA with only a moderate increase in SR-BI protein in liver, with no reduction in plasma cholesterol levels. Measurement of cell surface SR-BI levels and HDL cholesteryl ester-selective uptake in primary hepatocytes from transgenic mice revealed that SR-BIdel509 was not expressed at the plasma membrane correlating with normal levels of selective uptake compared with hepatocytes from nontransgenic littermates. This study indicates that the PDZK1-interacting domain of SR-BI is essential for cell surface expression of SR-BI in liver and suggests that PDZK1 or other PDZ domain proteins may play an important role in regulating SR-BI cell surface expression and hence reverse cholesterol transport.  相似文献   

14.
PDZK1 is a scaffold protein containing four PDZ protein interaction domains, which bind to the carboxy termini of a number of membrane transporter proteins, including ion channels (e.g., CFTR) and cell surface receptors. One of these, the HDL receptor, scavenger receptor class B type I (SR-BI), exhibits a striking, tissue-specific dependence on PDZK1 for its expression and activity. In PDZK1 knockout (KO) mice there is a marked reduction of SR-BI protein expression (approximately 95%) in the liver, but not in steroidogenic tissues or, as we show in this report, in bone marrow- or spleen-derived macrophages, or lung-derived endothelial cells. Because of hepatic SR-BI deficiency, PDZK1 KO mice exhibit dyslipidemia characterized by elevated plasma cholesterol carried in abnormally large HDL particles. Here, we show that inactivation of the PDZK1 gene promotes the development of aortic root atherosclerosis in apolipoprotein E (apoE) KO mice fed with a high fat/high cholesterol diet. However, unlike complete SR-BI-deficiency in SR-BI/apoE double KO mice, PDZK1 deficiency in PDZK1/apoE double knockout mice did not result in development of occlusive coronary artery disease or myocardial infarction, presumably because of their residual expression of SR-BI. These findings demonstrate that deficiency of an adaptor protein essential for normal expression of a lipoprotein receptor promotes atherosclerosis in a murine model. They also define PDZK1 as a member of the family of proteins that is instrumental in preventing cardiovascular disease by maintaining normal lipoprotein metabolism.  相似文献   

15.
Pregnane X receptor (PXR) agonism has been shown to affect multiple steps in both the synthesis and catabolism of HDL, but its integrated effect on HDL metabolism in vivo remains unclear. The aim of this study was to evaluate the net effect of PXR agonism on HDL metabolism in ApoE?3-Leiden (E3L) and E3L.CETP mice, well-established models for human-like lipoprotein metabolism. Female mice were fed a diet with increasing amounts of the potent PXR agonist 5-pregnen-3β-ol-20-one-16α-carbonitrile (PCN). In E3L and E3L.CETP mice, PCN increased liver lipids as well as plasma cholesterol and triglycerides. However, whereas PCN increased cholesterol contained in large HDL-1 particles in E3L mice, it dose-dependently decreased HDL-cholesterol in E3L.CETP mice, indicating that CETP expression dominates the effect of PCN on HDL metabolism. Analysis of the hepatic expression of genes involved in HDL metabolism showed that PCN decreased expression of genes involved in HDL synthesis (Abca1, Apoa1), maturation (Lcat, Pltp) and clearance (Sr-b1). The HDL-increasing effect of PCN, observed in E3L mice, is likely caused by a marked decrease in hepatic SR-BI protein expression, and completely reversed by CETP expression. We conclude that chronic PXR agonism dose-dependently reduces plasma HDL-cholesterol in the presence of CETP.  相似文献   

16.
Diets rich in polyunsaturated fatty acids lower plasma HDL cholesterol concentrations when compared to diets rich in saturated fatty acids. We investigated the mechanistic basis for this effect in the hamster and sought to determine whether reduced plasma HDL cholesterol concentrations resulting from a high polyunsaturated fat diet are associated with a decrease in reverse cholesterol transport. Animals were fed semisynthetic diets enriched with polyunsaturated or saturated fatty acids for 6 weeks. We then determined the effect of these diets on the following parameters: 1) hepatic scavenger receptor B1 (SR-BI) mRNA and protein levels, 2) the rate of hepatic HDL cholesteryl ester uptake, and 3) the rate of cholesterol acquisition by the extrahepatic tissues (from de novo synthesis, LDL and HDL) as a measure of the rate of reverse cholesterol transport. Compared to saturated fatty acids, dietary polyunsaturated fatty acids up-regulated hepatic SR-BI expression by approximately 50% and increased HDL cholesteryl ester transport to the liver; as a consequence, plasma HDL cholesteryl ester concentrations were reduced. Although dietary polyunsaturated fatty acids increased hepatic HDL cholesteryl ester uptake and lowered plasma HDL cholesterol concentrations, there was no change in the cholesterol content or in the rate of cholesterol acquisition (via de novo synthesis and lipoprotein uptake) by the extrahepatic tissues.These studies indicate that substitution of polyunsaturated for saturated fatty acids in the diet increases SR-BI expression and lowers plasma HDL cholesteryl ester concentrations but does not affect reverse cholesterol transport.  相似文献   

17.
18.
Scavenger receptor class B type I (SR-BI) has recently been identified as a high density lipoprotein (HDL) receptor that mediates bidirectional flux of cholesterol across the plasma membrane. We have previously demonstrated that oxidized low density lipoprotein (OxLDL) will increase expression of another class B scavenger receptor, CD36 (Han, J., Hajjar, D. P., Febbraio, M., and Nicholson, A. C. (1997) J. Biol. Chem. 272, 21654-21659). In studies reported herein, we evaluated the effects of OxLDL on expression of SR-BI in macrophages to determine how exposure to this modified lipoprotein could alter SR-BI expression and cellular lipid flux. OxLDL decreased SR-BI expression in a dose- and time-dependent manner. Incubation with OxLDL had no effect on the membrane distribution of SB-BI, and it decreased expression of both cytosolic and membrane protein. Consistent with its effect on SR-BI protein expression, OxLDL decreased SR-BI mRNA in a dose-dependent manner. The ability of OxLDL to decrease SR-BI expression was dependent on the degree of LDL oxidation. OxLDL decreased both [(14)C]cholesteryl oleate/HDL uptake and efflux of [(14)C]cholesterol to HDL in a time-dependent manner. Incubation of macrophages with 7-ketocholesterol, but not free cholesterol, also inhibited expression of SR-BI. Finally, we demonstrate that the effect of OxLDL on SR-BI is dependent on the differentiation state of the monocyte/macrophage. These results imply that in addition to its effect in inducing foam cell formation in macrophages through increased uptake of oxidized lipids, OxLDL may also enhance foam cell formation by altering SR-BI-mediated lipid flux across the cell membrane.  相似文献   

19.
Scavenger receptor BI (SR-BI) mediates selective uptake of high density lipoprotein (HDL) cholesteryl ester in the liver and adrenal gland. Adrenal SR-BI is increased both in adrenocorticotropic hormone (ACTH)-treated mice and also in apolipoprotein A-I knock-out (apoA-I0) mice which have depleted adrenal cholesterol stores. The goal of the present study was to determine whether adrenal cholesterol stores and ACTH have independent effects on SR-BI expression in adrenal gland. Adrenal SR-BI levels were 5-fold higher in apoA-I0 than wild-type mice when killed under low stress condition, and plasma ACTH levels were similar in both strains. After male apoA-I0 or wild-type mice were treated with dexamethasone to suppress ACTH release, adrenal SR-BI protein levels were decreased in both groups but remained 13-fold higher in apoA-I0 than in wild-type mice. By contrast, uncontrolled stress or supplemental ACTH treatment increased SR-BI levels but narrowed the difference in SR-BI expression between apoA-I0 and wild-type. Cholesterol depletion by beta-cyclodextrin in cultured Y1-BS1 adrenal cells also led to a rapid 2- to 3-fold increase in SR-BI mRNA and protein levels, in association with a significant depletion of cellular free cholesterol.These results indicate that depletion of adrenal cholesterol stores can act independently from ACTH to increase SR-BI expression, but in vivo this effect is diminished under high ACTH conditions. Both stimuli may increase selective uptake via increased SR-BI as a means of replenishing cholesterol stores for steroid hormone synthesis.  相似文献   

20.
High density lipoprotein (HDL) promotes reverse cholesterol transport from peripheral tissues to the liver where its cholesterol is secreted preferentially into bile. The scavenger receptor class B type I (SR-BI) is believed to play a pivotal role in unloading HDL cholesterol and its ester to hepatocytes. Here, using male SR-BI "att" mice with a dysfunctional mutation in the Sr-b1 promoter, we studied whether approximately 50% of normal SR-BI expression influences gallstone susceptibility in these mice fed a lithogenic diet containing 1% cholesterol, 0.5% cholic acid and 15% butterfat. Our results showed that the disruption of SR-BI expression reduced cholesterol secretion by 37% in the chow-fed state and 10% on the lithogenic diet, and while delaying incidence slightly, did not influence cumulative susceptibility to cholesterol gallstones. The lithogenic diet induced marked increases in biliary cholesterol and phospholipid secretion rates but not of bile salts. Basal expression of hepatic SR-BI protein was dissimilar in both wild-type and SR-BI mice, and remained unaltered in response to the lithogenic diet. By two independent dual isotope methods, intestinal cholesterol absorption was unimpaired by attenuation of the SR-BI which also displays low-density expression on small intestinal enterocytes. We conclude that although HDL cholesterol is a principal source of biliary cholesterol in the basal state, uptake of cholesterol from chylomicron remnants appears to be the major contributor to biliary cholesterol hypersecretion during diet-induced cholelithogenesis in the mouse.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号