首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
1. A new colorimetric method was used for determination of arginase in different tissues of some domestic animals. 2. In all species studied liver was the richest source of arginase. 3. Significant differences were observed in the specific activity of arginase in livers from different species. 4. In all species, besides liver, kidney and brain also contained significant levels of arginase. 5. In the dog, in addition to the three organs mentioned above, lung, heart, spleen and skeletal muscle showed some arginase activity. 6. In sheep and cattle significant arginase activity was observed in the rumen. No differences were observed between epithelial and muscular layers of different parts of digestive system in all species studied. 7. These results are discussed in terms of the possible role of arginase in different tissues of animals.  相似文献   

2.
1. The activities of rhodanese and beta-mercaptopyruvate sulfurtransferase (MST) in different organs of sheep and cattle were measured. 2. Liver, kidney, omasum, and rumen were the richest sources of both enzymes. The activities of both enzymes in other organs of the sheep and the cattle decreased in the order of lung, brain, heart, abomasum, lymph node, urinary bladder, spleen, and the skeletal muscle. 3. The activities of both enzymes in most organs of the sheep were higher than the cattle. 4. Both enzymes showed higher activities in the epithelial layers than the muscular layers of rumen, omasum and reticulum. 5. In most of the tissues of both species the level of rhodanese activity was greater than MST.  相似文献   

3.
Rhodanese (thiosulfate: cyanide sulfurtransferase, EC. 2.8.1.1) is a ubiquitous enzyme present in all living organisms, from bacteria to humans and plays a central role in cyanide detoxification. The purpose of this investigation is to determine and compare rhodanese activity in different tissues of adult male and female goats (Capra hircus). The results showed that the specific activity of rhodanese in different tissues was significantly different (P<0.05). The highest activity of rhodanese was in epithelium of rumen, followed by epithelia of reticulum and omasum and liver. No significant difference was observed when tissues of male and female goats were compared. The lowest specific activity of rhodanese was observed in spleen, urinary bladder, lymph node, ovary, skeletal muscle and pyloric muscle of abomasum. The results of this study may indicate the involvement of rhodanese in cyanide detoxification in goat tissues that have greater potential to be exposed to higher levels of cyanide.  相似文献   

4.
1. Plasma levels of beta-hydroxybutyrate (BHB), and acetoacetate (AcAc) have been measured in camels (Camelus dromedarius) and sheep (Ovis aries). The activity of beta-hydroxybutyrate dehydrogenase (BHB-deH2) (E.C. 1.1.1.30) was studied in the rumen epithelium and the liver of these animals. 2. Concentrations of plasma BHB and AcAc in the camel were in respective order 33 and 4 times lower than that of the sheep. The ratios of BHB to AcAc were 0.61 and 4.8 for the camel and sheep, respectively. 3. The activity of BHB-deH2 in the rumen epithelium of the camel and sheep were 7.15 and 66 mumol/hr/g wet wt tissue, respectively. The activity in both species was higher in the rumen epithelium than in the liver.  相似文献   

5.
The enzyme rhodanese (thiosulfate/cyanide sulfurtransferase) is an ubiquitous enzyme and its activity is present in all living organisms from bacteria to man. Evidence has been accumulated to indicate that this enzyme plays a central role in cyanide detoxification. A comparison was made of rhodanese activity in different tissues of young male and adult male and female pig (Sus scrofa). The highest activity of rhodanese was in liver and kidney cortex of all animals. Among the remaining tissues examined, the kidney medulla and the stomach epithelium tended to have higher levels than other tissues, although this was not significant (P>0.05). The rhodanese activity of heart ventricle tissue of 6-month-old male animals was higher than 7-week-old male animals (P<0.05), and 6-month-old male animals had higher rhodanese activity in lung tissue, compared to 6-month-old female pigs (P<0.05). Medulla and spleen of younger male animals exhibited higher levels of activity (P<0.10) compared to older male pigs. The results of this study may indicate the involvement of rhodanese in cyanide detoxification in pig tissues, which have greater potential to be exposed to higher levels of cyanide.  相似文献   

6.
1. In liver, rumen epithelium and kidney cortex of the sheep, a dehydrogenase active against dl-3-hydroxybutyrate occurred in both the cytosol and particulate fractions of the tissues. In brain, heart, skeletal and smooth muscles, the enzyme occurred only in the particulate fraction. 2. Enzyme activity in the cytoplasmic fraction of liver and rumen epithelium was similar with either d(-)-3-hydroxybutyrate or dl-3-hydroxbutyrate, but was less with acetoacetate as the substrate. The cytosol fraction of kidney cortex showed very little activity with d(-)-3-hydroxybutyrate, confirming that most of the activity with dl-3-hydroxybutyrate was with the l(+) isomer in this tissue. 3. 3-Hydroxybutyrate dehydrogenase activities in the cytosol and particulate fractions of liver, rumen epithelium and kidney cortex and in the particulate fraction of brain tissue were not stimulated by phosphatidylcholine, unlike the enzyme in sheep muscle and in tissues of other species. 4. The activity of 3-hydroxybutyrate dehydrogenase was not increased significantly in any of the tissues of ketonaemic sheep. 5. Comparison of rates of 3-hydroxybutyrate production in vivo with the enzyme activity in ketogenic tissue suggested that in sheep the maximum rate of production might be limited by this activity.  相似文献   

7.
The enzyme rhodanese (thiosulfate:cyanide sulfurtransferase) is a ubiquitous enzyme present in all living organisms, from bacteria to humans and plays a central role in cyanide detoxification. The purpose of this investigation is to determine and compare rhodanese activity in different parts of urogenital systems of male and female sheep fetuses at 2.5, 3, 3.5, 4, 4.5, and 5 months of age. The highest activity of rhodanese in male fetus was in kidney cortex, followed by medulla of the kidney. No significant difference was observed in other organs. In female fetus, the highest activity was in kidney cortex followed by oviduct and medulla of kidney. The enzyme activity of tissues increased with age. There was no significant difference (P > 0.05) between male and female fetuses in levels of rhodanese activity of different tissues except in urinary bladder at 2.5 and 3 months and in urethra at 4.5 months of age. The results of this study might indicate the involvement of rhodanese in cyanide detoxification in tissues which are more exposed to cyanide. On the other hand, rhodanese might perform other functions which are specific in these tissues.  相似文献   

8.
1. The activities of acetoacetyl-CoA thiolase, hydroxymethylglutaryl-CoA synthase and lyase and acetoacetyl-CoA deacylase were measured in homogenates of samples of liver, rumen epithelium (long papillae), kidney and lactating mammary gland derived from slaughtered cows. 2. The activities of the four enzymes in bovine liver were similar to the activities previously reported for the corresponding enzymes in rat liver. 3. Acetoacetyl-CoA thiolase and hydroxymethylglutaryl-CoA synthase and lyase were present in rumen epithelium. The activities of the enzymes were all lower on a wet weight basis than in liver. Only very slight deacylase activity was detected. 4. Kidney contained acetoacetyl-CoA thiolase, hydroxymethylglutaryl-CoA lyase and acetoacetyl-CoA deacylase, but only trace amounts of hydroxymethylglutaryl-CoA synthase. 5. Mammary gland contained acetoacetyl-CoA thiolase and some hydroxymethylglutaryl-CoA lyase, but virtually no hydroxymethylglutaryl-CoA synthase or acetoacetyl-CoA deacylase. 6. Since physiologically significant ketogenesis probably occurs solely via the hydroxymethylglutaryl-CoA pathway, it is evident that, of the four tissues examined, such ketogenesis must be restricted to the liver and the rumen epithelium. 7. All the enzymes except hydroxymethylglutaryl-CoA lyase were also assayed in the four tissues derived from cows suffering from bovine lactational ketosis. Ketosis did not cause a statistically significant change in the activity of any of the enzymes measured. 8. Hepatic hydroxymethylglutaryl-CoA synthase and lyase were found to be associated mainly with the particulate fraction, as in the rat. A considerably greater proportion of these enzymes was found to be present in the cytoplasmic fraction from rumen epithelium, although it was not excluded that this was due to mitochondrial damage during homogenization. 9. Appreciable hydroxymethylglutaryl-CoA synthase was also present in epithelium from the dorsal region of the rumen, from the reticulum and from the omasum, but not from the abomasum.  相似文献   

9.
The activities of phosphoenolpyruvate carboxykinase, ;malic enzyme', citrate-cleavage enzyme and glucose 6-phosphate dehydrogenase were assayed in homogenates of rumen mucosa, liver and adipose tissue of cattle. Rumen mucosa cytoplasm contained activities of ;malic enzyme' approximately sevenfold those of phosphoenolpyruvate carboxykinase, suggesting that the conversion of propionate into lactate by rumen mucosa involves ;malic enzyme'. Neither starvation for 8 days nor feeding with a concentrate diet for at least 3 months before slaughter produced enzyme patterns in the tissues different from those in cattle given only hay, except that the all-concentrate diet caused increased activities of glucose 6-phosphate dehydrogenase and ;malic enzyme' in adipose tissues. Rumen mucosa, liver and adipose tissue contained phosphoenolpyruvate carboxykinase activity. ;Malic enzyme' was absent in liver. Citrate-cleavage enzyme activity was present in liver and adipose tissue but was quite low in rumen mucosa. Liver contained much less glucose 6-phosphate dehydrogenase activity than rumen mucosa or adipose tissue.  相似文献   

10.
Comparisons were made, by light and electron microscopy, of the rumen epithelium of sheep fed conventionally and fed by infusion of volatile fatty acids and buffer into the rumen and casein into the abomasum. Similar bacterial colonization of the epithelium was observed in each case. The mitotic index of epithelial cells in infused sheep was high, as it was in barley-fed animals, while the mitotic index of cells from animals receiving roughage was low. The bacterial flora appeared to be actively digesting the epithelial cells. The fate of sloughed epithelial cells in the rumen fluid of sheep fed by infusion was also studied. The sloughed cells were rapidly digested, probably by their attached flora of facultatively anaerobic, highly proteolytic bacteria, leaving abundant highly keratinized remnants in rumen fluid. The importance of epithelial cell turnover and of proteolysis by partially facultative bacteria in the rumen is discussed.  相似文献   

11.
Aspects of carnitine ester metabolism in sheep liver   总被引:6,自引:6,他引:0       下载免费PDF全文
1. Carnitine acetyltransferase (EC 2.3.1.7) activity in sheep liver mitochondria was 76nmol/min per mg of protein, in contrast with 1.7 for rat liver mitochondria. The activity in bovine liver mitochondria was comparable with that of sheep liver mitochondria. Carnitine palmitoyltransferase activity was the same in both sheep and rat liver mitochondria. 2. The [free carnitine]/[acetylcarnitine] ratio in sheep liver ranged from 6:1 for animals fed ad libitum on lucerne to approx. 1:1 for animals grazed on open pastures. This change in ratio appeared to reflect the ratio of propionic acid to acetic acid produced in the rumen of the sheep under the two dietary conditions. 3. In sheep starved for 7 days the [free carnitine]/[acetylcarnitine] ratio in the liver was 0.46:1. The increase in acetylcarnitine on starvation was not at the expense of free carnitine, as the amounts of free carnitine and total acid-soluble carnitine rose approximately fivefold on starvation. An even more dramatic increase in total acid-soluble carnitine of the liver was seen in an alloxan-diabetic sheep. 4. The [free CoA]/[acetyl-CoA] ratio in the liver ranged from 1:1 in the sheep fed on lucerne to 0.34:1 for animals starved for 7 days. 5. The importance of carnitine acetyltransferase in sheep liver and its role in relieving ;acetyl pressure' on the CoA system is discussed.  相似文献   

12.
Summary Changes of the specific activity of 3-mercaptopyruvate sulfurtransferase (MPST), rhodanese and cystathionase in Ehrlich ascites tumor cells (EATC) and tumor-bearing mouse liver after intraperitoneal administration of thiazolidine derivatives, L-cysteine, D,L-methionine, thiocystine or thiosulfate were estimated. Thiazolidine derivatives used were: thiazolidine-4-carboxylic acid (CF), 2-methyl-thiazolidine-2,4-dicarboxylic acid (CP) and 2-methyl-thiazolidine-4-carboxylic acid (CA). In the liver, the activity of MPST was significantly increased by all the studied compounds, whereas the activity of rhodanese was by CF and thiocystine and that of cystathionase was by the administration of cysteine and CP. Un the other hand, cysteine lowered the rhodanese activity and the activity of cystathionase was decreased by the administration of methionine and thiocystine. Activities of MPST and rhodanese were even lower in EATC than those in the liver of tumor-bearing mouse and the activity of cystathionase in EATC was not be detected. The thiazolidine derivatives significantly increased the level of MPST activity in EATC, but decreased the rhodanese activity. Thiosulfate also increased the activity of MPST to a lesser degree, but cysteine, methionine and thiocystine gave little change in the activity. The rhodanese activity in EATC was slightly increased only by thiocystine. These findings suggest that the sulfur metabolism in the tumor-bearing mouse liver is different from that in the normal mouse liver, and that sulfur compounds are minimally metabolized to sulfane sulfur, a labile sulfur, in EATC.  相似文献   

13.
The objective of this experiment was to investigate the effects of feed supplementation with equivalent doses of selenium from sodium selenite (SS) or selenized yeast (SY) on Se deposition, selenoenzyme activity and lipid peroxidation in tissues as well as in bacterial and protozoal fractions of rumen contents in sheep. The phagocytic activity of monocytes and neutrophils in whole blood was also assessed after 3 months of dietary treatment. While animals in the control group were fed with unsupplemented basal diet (BD) containing only background Se (0.16 mg/kg DM), the diet of the other two groups (n = 6) consisted of identical BD enriched with 0.4 mg Se/kg DM either from SS or SY. Concentrations of Se in blood and tissues were found to be significantly increased in both supplemented groups. No response in Se deposition was recorded in the musculus longissimus dorsi of sheep given dietary SS. The intake of SY resulted in a significantly higher Se level in the blood, kidney medulla, skeletal muscles, heart, intestinal and ruminal mucosa than in the case of SS supplementation. No differences appeared between tissue Se contents in the liver and kidney cortex due to the source of added Se. Regardless of source, Se supplementation to feeds significantly increased the glutathione peroxidase (GPx) activity in blood and tissues except the kidney medulla and jejunal mucosa. Supplementation with SY resulted in significantly higher activity of thioredoxin reductase in the liver and ileal mucosa, and also reduced malondialdehyde content in the liver and duodenal mucosa. Dietary Se intake increased Se concentrations in the total rumen contents and bacterial and protozoal fractions. The accumulation of Se in rumen microbiota was associated with increased GPx activity. Phagocytic cell activity was enhanced by Se supplementation. Our results indicate that Se from both sources has beneficial effects on antioxidant status in sheep and can be utilized by rumen microflora.  相似文献   

14.
In our previous study, we found that mercaptopyruvate sulfurtransferase (MST) was evolutionarily related to mitochondrial rhodanese. To elucidate the difference between MST and rhodanese, the tissue, cellular, and subcellular distribution of rat MST was determined biochemically and immunohistochemically by using anti-MST antibody raised in rabbit. In an immunohistochemical study, tetramethyl rhodamine isothiocyanate-conjugated phalloidin against F-actin and fluorescein isothiocyanate-conjugated goat anti-rabbit immunoglobulin as a secondary antibody to the anti-MST antibody were used for double fluorescent staining. They were detected by confocal laser fluorescence microscopy. In the immunoelectron microscopic study of hepatocyte and renal tubular epithelium, a postembedding immunogold method was used. Biochemical studies including western blot analyses of various tissues and subcellular fractions of the liver were also performed. MST was widely distributed in rat tissues but the cellular distribution was found to be different in each tissue. MST was predominantly localized in proximal tubular epithelium in the kidney, pericentral hepatocytes in the liver, cardiac cells in the heart, and neuroglial cells in the brain. This immunocytochemical study also found that MST was localized in both mitochondria and cytoplasm.  相似文献   

15.
【目的】本研究旨在通过显微观察和16SrRNA基因高通量测序技术来探究饲喂生物发酵稻秸对湖羊肠道上皮形态及微生物区系的影响。【方法】试验选择70日龄、体重相近(25.15±0.47)kg的湖羊公羔21只,根据饲粮中粗饲料的组成随机分为3组:稻秸组、生物发酵稻秸组和苜蓿干草组,饲粮精粗比为6:4,试验持续7周,其中适应期3周,正试期4周,结束后屠宰取样,采集瘤胃、空肠和结肠上皮组织进行观察测量,收集对应肠段内容物用于微生物区系和代谢产物测定。【结果】与稻秸组相比,饲喂生物发酵稻秸显著提高湖羊瘤胃中纤维杆菌(Fibrobacteres)的相对丰度和挥发性脂肪酸(volatile fatty acids, VFA)的含量,促进瘤胃上皮的发育;显著提高湖羊空肠中厚壁菌门(Firmicutes)和疣微菌门(Verrucomicrobia)的相对丰度,改变空肠微生物菌群结构,促进空肠上皮组织的发育;改变湖羊结肠微生物菌群结构。【结论】饲喂生物发酵稻秸有利于湖羊肠道上皮的发育,并增加消化道内的微生物多样性。  相似文献   

16.
The effect of ciliate protozoa on the activity of polysaccharide-degrading enzymes in microbial populations from the digesta solids and liquor fractions of rumen contents was examined after the refaunation of ciliate-free sheep with an A-type rumen protozoal population. Although the culturable rumen bacterial population was reduced after refaunation the number of fibrolytic micro-organisms detected was higher; the xylanolytic bacterial population and numbers of fungal zoospores were increased after refaunation. The proportion of propionic acid was lower in the refaunated animals, whereas the concentration of ammonia and the acidic metabolites acetate, butyrate and valerate were all increased. The range of enzyme activities present in the digesta subpopulations were the same in defaunated and refaunated animals. The activities of the polysaccharide-degrading enzymes, however, were increased in the microbial populations associated with the digesta solids after refaunation, and at 16 h after feeding the activities were 4–8 times (β-d-xylosidase 20 times) higher than the levels detected in the adherent population from defaunated sheep. The protozoa, either directly through their own enzymes or indirectly as a consequence of their effects on the population size and activity of the other fibrolytic micro-organisms present, have an important role in determining the level of activity of polysaccharide-degrading enzymes in the rumen ecosystem. Although the extent of ryegrass ( Lolium perenne ) hay digestion was similar after 24 h in the absence or presence of protozoa, the initial ruminal degradation was higher in refaunated sheep.  相似文献   

17.
The effect of ciliate protozoa on the activity of polysaccharide-degrading enzymes in microbial populations from the digesta solids and liquor fractions of rumen contents was examined after the refaunation of ciliate-free sheep with an A-type rumen protozoal population. Although the culturable rumen bacterial population was reduced after refaunation the number of fibrolytic micro-organisms detected was higher; the xylanolytic bacterial population and numbers of fungal zoospores were increased after refaunation. The proportion of propionic acid was lower in the refaunated animals, whereas the concentration of ammonia and the acidic metabolites acetate, butyrate and valerate were all increased. The range of enzyme activities present in the digesta subpopulations were the same in defaunated and refaunated animals. The activities of the polysaccharide-degrading enzymes, however, were increased in the microbial populations associated with the digesta solids after refaunation, and at 16 h after feeding the activities were 4-8 times (beta-D-xylosidase 20 times) higher than the levels detected in the adherent population from defaunated sheep. The protozoa, either directly through their own enzymes or indirectly as a consequence of their effects on the population size and activity of the other fibrolytic micro-organisms present, have an important role in determining the level of activity of polysaccharide-degrading enzymes in the rumen ecosystem. Although the extent of ryegrass (Lolium perenne) hay digestion was similar after 24 h in the absence or presence of protozoa, the initial ruminal degradation was higher in refaunated sheep.  相似文献   

18.
1. The total capacities of homogenates of bovine liver and rumen epithelium to activate acetate, propionate and butyrate were determined. 2. Activating capacities were assayed by measuring the rate of formation of the corresponding CoA esters. The methods used for determining the concentrations of the CoA esters allowed the CoA esters of acetate, propionate and butyrate to be distinguished. It was thus possible to investigate the effect of the presence of a second volatile fatty acid on the rate at which a given volatile fatty acid was activated. 3. The propionate-activating capacity in rumen epithelium was decreased by about 87% in the presence of butyrate, the acetate-activating capacity in liver was decreased by about 55% in the presence of either propionate or butyrate, and the butyrate-activating capacity in liver was decreased by about 40-50% in the presence of propionate. 4. All three activating capacities in liver appeared to be located in the mitochondrial matrix and membrane. The three activating capacities had similar locations to each other in rumen epithelium as well, although in this case activity was more evenly divided between the mitochondria and the cytoplasm. 5. The relative activating capacities towards the volatile fatty acids in the two tissues, together with the ability of one volatile fatty acid to inhibit the activation of another volatile fatty acid, appear to ensure that butyrate is mainly metabolized in the rumen epithelium and that propionate is metabolized in the liver.  相似文献   

19.
Urease activity of adherent bacteria in the sheep rumen   总被引:1,自引:0,他引:1  
In experiments on six sheep fed on a low protein diet (6.2 g N/day), it was found that the urease activity of the rumen fluid did not change significantly in the first 6 hours after feeding and that it ranged from 45 to 75 nkat.ml-1. The major portion was bound to the bacterial fraction and formed about 70% of total rumen fluid activity. Urease activity determined in food particles with adherent bacteria removed from the rumen before and 3 and 6 hours after feeding ranged from 20 to 26 nkat.g-1 food (wet weight), and on rumen wall samples with adherent bacteria from 30 to 800 nkat per 2.5 cm2 tissue. Again, no significant changes correlated to the time after feeding were found. The results show that urease activity in the sheep rumen is localized on food particles and on rumen wall epithelium with adherent bacteria, as well as in the rumen fluid.  相似文献   

20.
1. The investigators studied annual changes in rhodanese activity in mitochondria and cytosol of frog liver cells (Rana temporaria) and found that the value of the enzyme-specific activity was higher in mitochondria than in cytosol, showing significant seasonal fluctuations. 2. The character of changes in the rhodanese activity in mitochondria, regardless of the sex of the studied animal, was demonstrated to be dependent upon the seasonal changes in frog thyroid gland function. 3. In the supernatant fraction of R. temporaria liver homogenate, seasonal changes of rhodanese specific activity seemed to be related to changes in hepatic function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号