首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
Aging is associated with profound changes in the structure and function of the heart. A fundamental understanding of these processes, using relevant animal models, is required for effective prevention and treatment of cardiovascular disease in the elderly. Here, we studied cardiac performance in 4- to 5-mo-old (young) and 24- to 26-mo-old (old) Fischer 344 male rats using the Millar pressure-volume (P-V) conductance catheter system. We evaluated systolic and diastolic function in vivo at different preloads, including preload recruitable stroke work (PRSW), maximal slope of the systolic pressure increment (+dP/dt), and its relation to end-diastolic volume (+dP/dt-EDV) as well as the time constant of left ventricular pressure decay, as an index of relaxation. The slope of the end-diastolic P-V relation (EDPVR), an index of left ventricular stiffness, was also calculated. Aging was associated with decrease in left ventricular systolic pressure, +dP/dt, maximal slope of the diastolic pressure decrement, +dP/dt-EDV, PRSW, ejection fraction, stroke volume, cardiac and stroke work indexes, and efficiency. In contrast, total peripheral resistance, left ventricular end-diastolic volume, left ventricular end-diastolic pressure, and EDPVR were greater in aging than in young animals. Taken together, these data suggest that advanced aging is characterized by decreased systolic performance accompanied by delayed relaxation and increased diastolic stiffness of the heart in male Fischer 344 rats. P-V analysis is a sensitive method to determine cardiac function in rats.  相似文献   

2.
Because systole and diastole are coupled and systolic ventricular-vascular coupling has been characterized, we hypothesize that diastolic ventricular-vascular coupling (DVVC) exists and can be characterized in terms of relaxation and stiffness. To characterize and elucidate DVVC mechanisms, we introduce time derivative of pressure (dP/dt) vs. time-varying pressure [P(t)] (pressure phase plane, PPP)-derived analogs of ventricular and vascular "stiffness" and relaxation parameters. Although volume change (dV) = 0 during isovolumic periods, and time-varying left ventricular (LV) stiffness, typically expressed as change in pressure per unit change in volume (dP/dV), is undefined, our formulation allows determination of a PPP-derived stiffness analog during isovolumic contraction and relaxation. Similarly, an aortic stiffness analog is also derivable from the PPP. LV relaxation was characterized via tau, the time constant of isovolumic relaxation, and vascular (aortic pressure decay) relaxation was characterized in terms of its equivalent (windkessel) exponential decay time constant kappa. The results show that PPP-derived systolic and diastolic ventricular and vascular stiffness are strongly coupled [K(Ao)(+)=1.71(K(LV)(+)) +154, r=0.86; K(Ao)(-)=0.677(K(LV)(-))-5.53, r=0.86]. In support of the DVVC hypothesis, a strong linear correlation between relaxation (rate of pressure decay) indexes kappa and tau (kappa = 9.89tau - 90.3, r = 0.81) was also observed. The correlations observed underscore the role of long-term, steady-state DVVC as a diastolic function determinant. Awareness of the PPP-derived DVVC parameters provides insight into mechanisms and facilitates quantification of arterial stiffening and associated increase in diastolic chamber stiffness. The PPP method provides a tool for quantitative assessment and determination of the functional coupling of the vasculature to diastolic function.  相似文献   

3.
The study aimed to assess whether the 12-lead ECG-derived ventricular gradient, a vectorial representation of ventricular action potential duration heterogeneity directed toward the area of shortest action potential duration, can improve ECG diagnosis of chronic right ventricular (RV) pressure load. ECGs from 72 pulmonary arterial hypertension patients recorded <30 days before onset of therapy were compared with ECGs from matched healthy control subjects (n = 144). Conventional ECG criteria for increased RV pressure load were compared with the ventricular gradient. In 38 patients a cardiac magnetic resonance (CMR) study had been performed within 24 h of the ECG. By multivariable analysis, combined use of conventional ECG parameters (rsr' or rsR' in V1, R/S > 1 with R > 0.5 mV in V1, and QRS axis >90 degrees ) had a sensitivity of 89% and a specificity of 93% for presence of chronic RV pressure load. However, the ventricular gradient not only had a higher diagnostic accuracy for chronic RV pressure load by receiver operating characteristic analysis [areas under the curve (AUC) = 0.993, SE 0.004 vs. AUC = 0.945, SE 0.021, P < 0.05], but also discriminated between mild-to-moderate and severe RV pressure load. CMR identified an inverse relation between the ventricular gradient and RV mass, and a trend toward a similar relation with RV volume. In conclusion, chronically increased RV pressure load is electrocardiographically reflected by an altered ventricular gradient associated with RV remodeling-related changes in ventricular action potential duration heterogeneity. The use of the ventricular gradient allows ECG detection of even mildly increased RV pressure load.  相似文献   

4.
Changes in diastolic indexes during normal aging, including reduced early filling velocity (E), lengthened E deceleration time (DT), augmented late filling (A), and prolonged isovolumic relaxation time (IVRT), have been attributed to slower left ventricular (LV) pressure (LVP) decay. Indeed, this constellation of findings is often referred to as the "abnormal relaxation" pattern. However, LV filling is determined by the atrioventricular pressure gradient, which depends on both LVP decline and left atrial (LA) pressure (LAP). To assess the relative influence of LVP decline and LAP, we studied 122 normal subjects aged 21-92 yr by Doppler echocardiography and MRI. LVP decline was assessed by color M-mode (V(p)) and the LV untwisting rate. Early diastolic LAP was evaluated using pulmonary vein flow systolic fraction, pulmonary vein flow diastolic DT, color M-mode (E/V(p)), and tissue Doppler (E/E(m)). Linear regression showed the expected reduction of E, increase in A, and prolongation of IVRT and DT with advancing age. There was no relation of age to parameters reflecting the rate of LVP decline. However, older age was associated with reduced E/V(p) (P = 0.008) and increased pulmonary vein systolic fraction (P < 0.001), pulmonary vein DT (P = 0.0026), and E/E(m) (P < 0.0001), all suggesting reduced early LAP. Therefore, reduced early filling in older adults may be more closely related to a reduced early diastolic LAP than to slower LVP decline. This effect also explains the prolonged IVRT. We postulate that changes in LA active or passive properties may contribute to development of the abnormal relaxation pattern during the aging process.  相似文献   

5.
This study was performed to validate echocardiographic and Doppler techniques for the assessment of left ventricular (LV) diastolic function in spontaneously hypertensive rats (SHR) and normotensive Wistar rats. In 11 Wistar rats and 20 SHR, we compared 51 sets of invasive and Doppler LV diastolic indexes. Noninvasive indexes of LV relaxation were related to the minimal rate of pressure decline (-dP/dt(min)), particularly isovolumic relaxation time (IVRT), the Tei index, the early velocity of the mitral annulus (E(m)) using Doppler tissue imaging, and early mitral flow propagation velocity using M-mode color (r = 0.28-0.56 and P < 0.05-0.0001). When the role of systolic load was considered, the correlation between Doppler indexes of LV diastolic function and relaxation rate [(-dP/dt(min))/LV systolic pressure] improved (r = 0.48-0.86 and P = 0.004-0.0001, respectively). Similarly, Doppler indexes of LV diastolic function and the time constant of isovolumic LV relaxation (tau) correlated well (r = 0.50-0.84 and P = 0.0002-0.0001, respectively). In addition, eight SHR and eight Wistar rats were compared; their LV end-diastolic diameters were similar, whereas the SHR LV mass was greater. Furthermore, IVRT and Tei index were significantly higher and E(m) was lower in SHR. Moreover, tau was higher in SHR, demonstrating impaired LV relaxation. In conclusion, LV relaxation can be assessed reliably using echocardiographic and Doppler techniques, and, using these indexes, impaired relaxation was demonstrated in SHR.  相似文献   

6.

Background

The inherent ability of ventricular myocardium to increase its force of contraction in response to an increase in contraction frequency is known as the cardiac force-frequency relation (FFR). This relation can be easily obtained in the stress echo lab, where the force is computed as the systolic pressure/end-systolic volume index ratio, and measured for increasing heart rates during stress. Ideally, the noninvasive, imaging independent, objective assessment of FFR would greatly enhance its practical appeal.

Objectives

1 – To evaluate the feasibility of the cardiac force measurement by a precordial cutaneous sensor. 2 – To build the curve of force variation as a function of the heart rate. 3 – To compare the standard stress echo results vs. this sensor operator-independent built FFR.

Methods

The transcutaneous force sensor was positioned in the precordial region in 88 consecutive patients referred for exercise, dipyridamole, or pacing stress. The force was measured as the myocardial vibrations amplitude in the isovolumic contraction period. FFR was computed as the curve of force variation as a function of heart rate. Standard echocardiographic FFR measurements were performed.

Results

A consistent FFR was obtained in all patients. Both the sensor built and the echo built FFR identifiy pts with normal or abnormal contractile reserve. The best cut-off value of the sensor built FFR was 15.5 g * 10-3 (Sensitivity = 0.85, Specificity = 0.77). Sensor built FFR slope and shape mirror pressure/volume relation during stress. This approach is extendable to daily physiological exercise and could be potentially attractive in home monitoring systems.  相似文献   

7.
Increased dietary salt intake induces cardiac fibrosis in the spontaneously hypertensive rat (SHR), yet little information details its effects on left ventricular (LV) function. Additionally, young normotensive rats are more sensitive to the trophic effect of dietary sodium than older rats. Thus cardiac responses to salt loading were evaluated at two ages in the SHR; LV collagen content was also examined. SHR (8 or 20 wk of age) were given an 8% salt diet; their age-matched controls received standard chow. Echocardiographic indexes, arterial pressure, and LV hydroxyproline concentration were measured at 16 and 52 wk in the younger and older SHR groups, respectively. In most SHR, salt excess increased arterial pressure, LV mass, and hydroxyproline concentration and impaired LV relaxation manifested by prolonged isovolumic relaxation time, decreased early and atrial filling velocity ratio (V(E)/V(A)), and slower propagation velocity of E wave (V(P)). LV systolic function remained normal. However, one-quarter of the young salt-loaded SHR developed cardiac failure with systolic and diastolic dysfunction associated with greater LV mass and ventricular fibrosis. They also had lower arterial pressure, decreased fractional shortening, and a restrictive pattern of mitral flow. Moreover, the shorter deceleration time of the E wave and increased V(E)/V(P), an index of LV filling pressure, indicated increased LV stiffness in these rats. These findings demonstrated that sodium sensitivity in SHR is manifested not only by further pressure elevation but also by significant LV functional impairment that most likely is related to enhanced ventricular fibrosis. Moreover, the SHR are more susceptible to cardiac damage when high dietary salt is introduced earlier in life.  相似文献   

8.

Introduction

It is generally known that positive pressure ventilation is associated with impaired venous return and decreased right ventricular output, in particular in patients with a low right atrial pressure and relative hypovolaemia. Altered lung mechanics have been suggested to impair right ventricular output in COPD, but this relation has never been firmly established in spontaneously breathing patients at rest or during exercise, nor has it been determined whether these cardiopulmonary interactions are influenced by right atrial pressure.

Methods

Twenty-one patients with COPD underwent simultaneous measurements of intrathoracic, right atrial and pulmonary artery pressures during spontaneous breathing at rest and during exercise. Intrathoracic pressure and right atrial pressure were used to calculate right atrial filling pressure. Dynamic changes in pulmonary artery pulse pressure during expiration were examined to evaluate changes in right ventricular output.

Results

Pulmonary artery pulse pressure decreased up to 40% during expiration reflecting a decrease in stroke volume. The decline in pulse pressure was most prominent in patients with a low right atrial filling pressure. During exercise, a similar decline in pulmonary artery pressure was observed. This could be explained by similar increases in intrathoracic pressure and right atrial pressure during exercise, resulting in an unchanged right atrial filling pressure.

Conclusions

We show that in spontaneously breathing COPD patients the pulmonary artery pulse pressure decreases during expiration and that the magnitude of the decline in pulmonary artery pulse pressure is not just a function of intrathoracic pressure, but also depends on right atrial pressure.  相似文献   

9.
Transmitral Doppler echocardiography is the preferred method of noninvasive diastolic function assessment. Correlations between catheterization-based measures of isovolumic relaxation (IVR) and transmitral, early rapid filling (Doppler E-wave)-derived parameters have been observed, but no model-based, causal explanation has been offered. IVR has also been characterized in terms of its duration as IVR time (IVRT) and by tau, the time-constant of IVR, by approximating the terminal left ventricular IVR pressure contour as Pt= Pinfinity + P(o)e(-t/tau), where Pt is the continuity of pressure, Pinfinity and Po are constants, t is time, and tau is the time constant of IVR. To characterize the relation between IVR and early rapid filling more fully, simultaneous (micromanometric) left ventricular pressure and transmitral Doppler E-wave data from 25 subjects undergoing elective cardiac catheterization and having normal physiology were analyzed. The time constant tau was determined from the dP/dt vs. P (phase) plane and, simultaneous Doppler E-waves provided global indexes of chamber viscosity/relaxation (c), chamber stiffness (k), and load (xo). We hypothesize that temporal continuity of pressure decay at mitral valve opening and physiological constraints permit the algebraic derivation of linear relations relating 1/tau to both peak atrioventricular pressure gradient (kxo) and E-wave-derived viscosity/relaxation (c) but does not support a similar, causal (linear) relation between deceleration time and tau or IVRT. Both predicted linear relations were observed: kxo to 1/tau (r = 0.71) and viscosity/relaxation to 1/tau (r = 0.71). Similarly, as anticipated, only a weak linear correlation between deceleration time and IVRT or tau was observed (r = 0.41). The observed in vivo relationship provides insight into the isovolumic mechanism of relaxation and the changing-volume mechanism of early rapid filling via a link of the respective relaxation properties.  相似文献   

10.
We sought to examine the hemodynamic determinants and clinical application of the peak acceleration rate of early (Ea) diastolic velocity of the mitral annulus by tissue Doppler. Simultaneous left atrial and left ventricular (LV) catheterization and Doppler echocardiography were performed in 10 dogs. Preload was altered using volume infusion and caval occlusion, whereas myocardial lusitropic state was altered with dobutamine and esmolol. The clinical application was examined in 190 consecutive patients (55 control, 41 impaired relaxation, 46 pseudonormal, and 48 restrictive LV filling). In addition, in 60 consecutive patients, we examined the relation between it and mean wedge pressure with simultaneous Doppler echocardiography and right heart catheterization. In canine studies, a significant positive relation was present between peak acceleration rate of Ea and transmitral pressure gradient only in the stages with normal or enhanced LV relaxation, but with no relation in the stages where the time constant of LV relaxation (tau) was > or =50 ms. Its hemodynamic determinants were tau, LV minimal pressure, and transmitral pressure gradient. In clinical studies, peak acceleration rate of Ea was significantly lower in patients with impaired LV relaxation irrespective of filling pressures (P < 0.001) and with similar accuracy to peak Ea velocity (area under the curve for septal and lateral peak acceleration rates: both 0.78) in identifying these patients. No significant relation was observed between peak acceleration rate and mean wedge pressure. Peak acceleration rate of Ea appears to be a useful index of LV relaxation but not of filling pressures and can be applied to identify patients with impaired LV relaxation irrespective of their filling pressures.  相似文献   

11.
This review on the global cardiac function covers cardiac mechanics, energetics, and informatics that I have developed with my collaborators over the last 30 years in Japan and USA. We first established E(max) (end-systolic maximum elastance or pressure/volume ratio) as a new index of ventricular contractility using canine hearts. We then expanded the E(max) concept to PVA (systolic pressure-volume area consisting of external mechanical work and mechanical potential energy) as an innovative measure of total mechanical energy of ventricular contraction and discovered it to be a reliable determinant of ventricular energetics or O(2) consumption (V(O(2))). We have discovered that E(max) shifts the V(O(2))-PVA relation and the E(max) dependency (O(2) cost of E(max)) varies among different pathophysiological hearts. We also searched for the basis of E(max) in crossbridge behavior information contained in an X-ray diffraction of papillary muscle. Recently, we established a new integrative analysis to estimate total Ca(2+) recruited for excitation-contraction coupling in a beating heart using the E(max)-PVA-V(O(2)) information. These global, mechano-energetico-informatic approaches seem to facilitate better understanding of cardiac function, as required in the present post-genomic era when more physiomic knowledge is required not only in cardiac function but also in all other physiologic functions.  相似文献   

12.

Background

Hemodynamic characteristics of the interaction influence among support level and model of LVAD, and coupling β-blocker has not been reported.

Methods

In this study, the effect of support level and model of LVAD on cardiovascular hemodynamic characteristics is investigated. In addition, the effect of β-blocker on unloading with LVAD is analyzed to elucidate the mechanism of LVAD coupling β-blocker. A multi-scale model from cell level to system level is proposed. Moreover, LVAD coupling β-blocker has been researching to explain the hemodynamics of cardiovascular system.

Results

Myocardial force was decreased along with the increase of support level of LVAD, and co-pulse mode was the lowest among the three support modes. Additionally, the β-blocker combined with LVAD significantly reduced the left ventricular volume compared with LVAD support without β-blocker. However, the left ventricular pressure under both cases has no significant difference. External work of right ventricular was increased along with the growth of support level of only LVAD. The LVAD under co-pulse mode achieved the lowest right-ventricular EW among the three support modes.

Conclusions

Co-pulse mode with β-blocker could be an optimal strategy for promoting cardiac structure and function recovery.
  相似文献   

13.

Objective

The purpose of this study was to observe left ventricular function during acute high-altitude exposure in a large group of healthy young males.

Methods

A prospective trial was conducted in Szechwan and Tibet from June to August, 2012. By Doppler echocardiography, left ventricular function was examined in 139 healthy young Chinese men at sea level; within 24 hours after arrival in Lhasa, Tibet, at 3700 m; and on day 7 following an ascent to Yangbajing at 4400 m after 7 days of acclimatization at 3700 m. The resting oxygen saturation (SaO2), heart rate (HR) and blood pressure (BP) were also measured at the above mentioned three time points.

Results

Within 24 hours of arrival at 3700 m, the HR, ejection fraction (EF), fractional shortening (FS), stroke volume (SV), cardiac output (CO), and left ventricular (LV) Tei index were significantly increased, but the LV end-systolic dimension (ESD), end-systolic volume (ESV), SaO2, E/A ratio, and ejection time (ET) were significantly decreased compared to the baseline levels in all subjects. On day 7 at 4400 m, the SV and CO were significantly decreased; the EF and FS Tei were not decreased compared with the values at 3700 m; the HR was further elevated; and the SaO2, ESV, ESD, and ET were further reduced. Additionally, the E/A ratio was significantly increased on day 7 but was still lower than it was at low altitude.

Conclusion

Upon acute high-altitude exposure, left ventricular systolic function was elevated with increased stroke volume, but diastolic function was decreased in healthy young males. With higher altitude exposure and prolonged acclimatization, the left ventricular systolic function was preserved with reduced stroke volume and improved diastolic function.  相似文献   

14.

Background

Mathematical modeling can be employed to overcome the practical difficulty of isolating the mechanisms responsible for clinical heart failure in the setting of normal left ventricular ejection fraction (HFNEF). In a human cardiovascular respiratory system (H-CRS) model we introduce three cases of left ventricular diastolic dysfunction (LVDD): (1) impaired left ventricular active relaxation (IR-type); (2) increased passive stiffness (restrictive or R-type); and (3) the combination of both (pseudo-normal or PN-type), to produce HFNEF. The effects of increasing systolic contractility are also considered. Model results showing ensuing heart failure and mechanisms involved are reported.

Methods

We employ our previously described H-CRS model with modified pulmonary compliances to better mimic normal pulmonary blood distribution. IR-type is modeled by changing the activation function of the left ventricle (LV), and R-type by increasing diastolic stiffness of the LV wall and septum. A 5th-order Cash-Karp Runge-Kutta numerical integration method solves the model differential equations.

Results

IR-type and R-type decrease LV stroke volume, cardiac output, ejection fraction (EF), and mean systemic arterial pressure. Heart rate, pulmonary pressures, pulmonary volumes, and pulmonary and systemic arterial-venous O2 and CO2 differences increase. IR-type decreases, but R-type increases the mitral E/A ratio. PN-type produces the well-described, pseudo-normal mitral inflow pattern. All three types of LVDD reduce right ventricular (RV) and LV EF, but the latter remains normal or near normal. Simulations show reduced EF is partly restored by an accompanying increase in systolic stiffness, a compensatory mechanism that may lead clinicians to miss the presence of HF if they only consider LVEF and other indices of LV function. Simulations using the H-CRS model indicate that changes in RV function might well be diagnostic. This study also highlights the importance of septal mechanics in LVDD.

Conclusion

The model demonstrates that abnormal LV diastolic performance alone can result in decreased LV and RV systolic performance, not previously appreciated, and contribute to the clinical syndrome of HF. Furthermore, alterations of RV diastolic performance are present and may be a hallmark of LV diastolic parameter changes that can be used for better clinical recognition of LV diastolic heart disease.  相似文献   

15.

Background

High-rate pacing is a valid stress test to be used in conjunction with echocardiography; it is independent of physical exercise and does not require drug administration. There are two main applications of pacing stress in the echo lab: the noninvasive detection of coronary artery disease through induction of a regional transient dysfunction; and the assessment of contractile reserve through peak systolic pressure/end-systolic volume relationship at increasing heart rates to assess global left ventricular contractility.

Methods

The pathophysiologic rationale of pacing stress for noninvasive detection of coronary artery disease is obvious, with the stress determined by a controlled increase in heart rate, which is a major determinant of myocardial oxygen demand, and thereby tachycardia may exceed a fixed coronary flow reserve in the presence of hemodynamically significant coronary artery disease. The use of pacing stress echo to assess left ventricular contractile reserve is less established, but promising. Positive inotropic interventions are mirrored by smaller end-systolic volumes and higher end-systolic pressures. An increased heart rate progressively increases the force of ventricular contraction (Bowditch treppe or staircase phenomenon). To build the force-frequency relationship, the force is determined at different heart rate steps as the ratio of the systolic pressure (cuff sphygmomanometer)/end-systolic volume index (biplane Simpson rule). The heart rate is determined from ECG.

Conclusion

Two-dimensional echocardiography during pacing is a useful tool in the detection of coronary artery disease. Because of its safety and ease of repeatability noninvasive pacing stress echo can be the first-line stress test in patients with permanent pacemaker. The force-frequency can be defined as up- sloping (normal) when the peak stress pacing systolic pressure/end-systolic volume index is higher than baseline and intermediate stress values, biphasic with an initial up- sloping followed by a later down-sloping trend, or flat or negative when peak stress pacing systolic pressure/end-systolic volume index is equal or lower than baseline stress values. This approach is certainly highly feasible and allows a conceptually immaculate definition of contractility with prognostic usefulness, but its therapeutic implications remains to be established. Bowditch treppe, assessed with pacing stress, can be used to assess the optimal stimulation frequency and to optimise the patient's chronotropic response in programming rate-adaptive pacemakers.  相似文献   

16.

Introduction

Endoscopic lung volume reduction (ELVR) provides a minimally invasive therapy for patients with severe lung emphysema. As its impact on right ventricular (RtV) function is undefined, we examined the extent of RtV functional changes following ELVR, as assessed by use of speckle tracking-based RtV deformation analysis.

Methods

We enrolled 32 patients with severe emphysematous COPD scheduled for bronchoscopic LVR using endobronchial valves (Zephyr, PulmonX, Inc.), comprising 16 matched clinical responders and 16 non-responders. Echocardiography was conducted one day prior to ELVR and at an eight-week postprocedural interval.

Results

Patients were predominantly of late middle-age (65.8±8.7yrs), male (62.5%) and presented advanced COPD emphysema (means FEV1 and RV: 32.6% and 239.1% of predicted, respectively). After ELVR, RtV apical longitudinal strain improved significantly in the total study cohort (-7.96±7.02% vs. -13.35±11.48%, p=0.04), whereas there were no significant changes in other parameters of RtV function such as RtV global longitudinal strain, TAPSE or pulmonary arterial systolic pressure. In responding patients, 6MWT-improvement correlated with a decrease in NT-proBNP (Pearson´s r: -0.53, p=0.03). However, clinical non-responders did not exhibit any RtV functional improvement.

Discussion

ELVR beneficially impacts RtV functional parameters. Speckle tracking-based RtV apical longitudinal strain analysis allows early determination of RtV contractile gain and identification of clinical responsiveness.  相似文献   

17.

Key message

Different groundwater conditions affect leaf hydraulic conductance and leaf pressure–volume parameters in Populus euphratica at the extremely arid zone in the northwest of China.

Abstract

Efficient water transport inside leaves constitutes a major determinant of plant function, especially in drought-stressed plants. The previous researches have reported the correlation between leaf hydraulic properties and water availability. In this study, we tested the hypothesis that water relation parameters of Populus euphratica in an extremely arid zone of China are sensitive and acclimated to groundwater depth. We measured leaf hydraulic conductance (K leaf) using rehydration kinetics methods (RKM), pressure–volume (P–V) curves, and leaf vulnerability curves of P. euphratica growing at four groundwater depth gradients. We also assessed the hydraulic safety margins across groundwater depth gradients. We found that K leaf–max shows an increasing trend as the groundwater depth increases, while osmotic potential at full turgor (πft) and turgor loss point (Ψtlp) exhibits a decreasing trend, suggesting that increased tolerance to drought is formed as the groundwater depth increases. Furthermore, safety margins showed positive and negative variations under different groundwater depths, indicating that P. euphratica has formed special drought survival strategies, which can be summarized as a “conservative” strategy in favorable water conditions or a “risk” strategy in severe drought stress.
  相似文献   

18.

Objective

This study aimed to investigate the effect of left ventricular aneurysm (LVA) volume and left ventricular global torsion on cardiac function by real time three-dimensional echocardiography (RT-3DE) and two-dimensional speckle tracking imaging(2D-STI), to determine the accuracy of RT-3DE and 2D-STI in assessing LV function.

Methods

Thirty New Zealand rabbit models of with LVA were prepared by ligation of the middle segment of the left anterior descending and left circumflex arteries. Four weeks post-procedure, RT-3DE was conducted to obtain data on LVEF, left ventricular end-diastolic volume (LVEDV), left ventricular end-systolic volume (LVESV), and LVA volume (LVAV), Peak rotation angles at the mitral valve annulus level (MV-ROT), peak rotation angles at the apical level (AP-ROT), and left ventricular global torsion angles (LV-TOR) were measured by 2D-STI.

Results

Compared with controls, LVEDV and LVESV were significantly increased in the LVA group, while LVEF, MV-ROT, AP-ROT, and LV-TOR were consistently reduced (p<0.01). Moreover, LVEF correlated with LVA volume and LV torsion angle (r= -0.778 and 0.821, p<0.01). LVA volume/LVEDV had the strongest inverse relationship with LVEF (r= -0.911, p<0.01).

Conclusion

LVA volume, LVA volume/LVEDV, and LV torsion may be used as an indicator for evaluation of cardiac function after LVA. Moreover, LVA volume/LVEDV may be a more sensitive and reliable marker of cardiac function after LVA formation.  相似文献   

19.
We sought to extract additional physiological information from the time-dependent left ventricular (LV) pressure contour and thereby gain new insights into ventricular function. We used phase plane analysis to characterize high-fidelity pressure data in selected subjects undergoing elective cardiac catheterization. The standard hemodynamic indexes of LV systolic and diastolic function derived from the time-dependent LV pressure contour could be easily obtained using the phase plane method. Additional novel attributes of the phase plane pressure loop, such as phase plane pressure loop area, graphical representation of the isovolumic relaxation time constant, and quantitative measures of beat-to-beat systolic-diastolic coupling were characterized. The asymmetry between the pressures at which maximum isovolumic pressure rise and pressure fall occur, as well as their load dependence, were also easily quantitated. These results indicate that the phase plane method provides a novel window for physiological discovery and has theoretical and applied advantages in quantitative ventricular function characterization.  相似文献   

20.

Background  

The phase-space relationship between simultaneously measured myoplasmic [Ca2+] and isovolumetric left ventricular pressure (LVP) in guinea pig intact hearts is altered by ischemic and inotropic interventions. Our objective was to mathematically model this phase-space relationship between [Ca2+] and LVP with a focus on the changes in cross-bridge kinetics and myofilament Ca2+ sensitivity responsible for alterations in Ca2+-contraction coupling due to inotropic drugs in the presence and absence of ischemia reperfusion (IR) injury.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号