首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
We studied the decomposition process and macroinvertebrate colonisation of leaf packs to determine to what extent leaf consumption and invertebrate abundance depend on the pollution level, season, leaf type and patch size. We exposed 400 leaf packs made of two leaf types, alder and chestnut, at two sites of the Erro River (NW Italy) with different environmental alteration levels. Leaf packs were set out as three patch sizes (alone, or in groups of 6 or 12). A first experiment was carried out in winter and a second in summer. Leaf packs were retrieved after 15, 30, 45 and 60 days of submersion to determine the leaf mass loss and to quantify the associated macroinvertebrates. Natural riverbed invertebrates were collected in the same areas. Patch size, season, leaf type and pollution level significantly affected mass loss. The breakdown process was faster for alder leaves, during summer, at the unpolluted site, and in smaller patches. Leaf type and patch size did not affect macroinvertebrate density and richness, but the highest taxon richness was found in winter and at the unpolluted site. There were more shredders and predators than in the natural riverbed. Our study supports two recent ideas regarding leaf processing in streams: that patch size influences the leaf breakdown rate and that the breakdown rate can be used to evaluate water quality and environmental health.  相似文献   

2.
1. Generalized additive models (GAMs) were used to predict macroinvertebrate taxonomic richness and individual taxon diversity at the reach level across seven European glacier-fed river sites from a set of 11 environmental variables. Maximum water temperature and channel stability were found to explain the most deviance in these models.
2. Using this information, and data from other recent studies of glacier-fed rivers, a modified conceptual model based on Milner & Petts (1994) is presented which predicts the occurrence of macroinvertebrate families and subfamilies as determined by maximum water temperature ( T max) and channel stability. This deterministic model only applies to the summer meltwater period when abiotic variables drive community structure.
3. Where maximum water temperature is below 2 °C, Diamesinae chironomids are typically the sole inhabitants, but where T max >2 °C but <4 °C Orthocladiinae are found and, where channels are more stable, Tipulidae and Oligochaeta also occur. Above 4 °C Perlodidae, Taeniopterygidae, Baetidae, Simuliidae and Empididae can be expected to be part of the glacier-fed river community, particularly in Europe.
4. At other times of the year when environmental conditions ameloriate, glacial rivers support higher macroinvertebrate abundance and diversity, with a number of taxa present that are not found during the summer melt period.
5. Dispersal constraints influence macroinvertebrate assemblages of many glacier-fed rivers located on islands and in some alpine areas.  相似文献   

3.
1. Benthic macroinvertebrate assemblages were compared among a diverse array of first‐order alpine tundra streams of the Swiss Alps. 2. A principal components analysis separated sites into three main groups: rhithral streams, rhithral lake outlets, and kryal sites including outlets and streams. Rhithral streams contained the most diverse and taxon rich assemblages, being colonised by both non‐insect taxa and Ephemeroptera, Plecoptera, Trichoptera and Diptera. 3. Rhithral lake outlets supported high densities of non‐insect taxa such as Oligochaeta, Nemathelminthes and crustaceans. Despite low taxon richness, kryal sites had high Ephemeroptera and Plecoptera abundances. Chironomidae were most common at all sites. 4. Collector‐gatherers were dominant at all sites, whereas filter‐feeders were rare. Scrapers and shredders were more common in streams than lake outlets. 5. Water temperature and algal standing crops were higher at rhithral lake outlets than rhithral streams, perhaps providing more favourable habitat for non‐insect taxa. Glacial runoff was the dominant factor influencing macroinvertebrate assemblages of kryal streams and kryal lake outlets. Alpine lakes influenced the environmental conditions of their outlets and, consequently, their macroinvertebrate assemblages unless being constrained by a glacial influence.  相似文献   

4.
1. Benthic macroinvertebrate distribution was examined in relation to channel characteristics (including stability), substratum, hydraulic variables, primary production (chlorophyll a ) and coarse particular organic matter (CPOM) in an alpine glacial stream, the Mutt (Upper Rhône valley, Switzerland). Co-inertia analysis and canonical correspondence analysis were used to identify the major environmental gradients influencing community variations.
2. The Mutt (length: 3.6 km, altitudinal range: 1800–3099 m a.s.l.) exhibited typical characteristics of a kryal stream. Average summer temperature remained below 2 °C immediately downstream from the snout but was on average 5 °C higher 1700 m downstream. Seasonal variations in water sources were evidenced by the high late-summer (September) contribution of groundwater with increased conductivity.
3. Sixty-six taxa were recorded from the five reaches sampled at three periods (snowmelt, ice melt and low water in late summer) in 1996 and 1997, of which 29 were Chironomidae. Three taxa of Diamesinae were the first colonizers of the stream below the glacier, but 16 taxa, including Ephemeroptera, Plecoptera and Trichoptera, were already recorded 200 m downstream. Water depth, channel slope and Pfankuch's Index of channel stability were strongly correlated with the longitudinal faunal gradient. Maximum temperature, current velocity and water conductivity were also correlated, but to a lesser extent.
4. The rapid incorporation of non-chironomid taxa into the stream community represented a departure from Milner & Petts's (1994) conceptual model of invertebrate succession downstream of glacial margins. The results confirmed that glacial stream communities are primarily driven by physical determinants.  相似文献   

5.
1. Seasonal changes in longitudinal patterns of environmental conditions and macroinvertebrate community distributions were examined in an alpine glacial stream (Roseg River, Switzerland). 2. Physico‐chemical parameters reflected seasonal changes in glacial influence via shifts in water sources and flowpaths (glacial meltwater versus ground water), and were best described by turbidity, particulate phosphorus and specific conductance. High nitrogen concentrations indicated snowmelt was the main water source in June. 3. Macroinvertebrate densities and taxon richness were highest during spring (4526 m–2 and 16 taxa, all sites combined) and late autumn/early winter (8676–13 398 m–2 with 16–18 taxa), indicating these periods may be more favourable for these animals than summer when glacial melting is maximal. Diamesa spp. (Chironomidae) dominated the fauna at the upper three sites (>95% of zoobenthos) and were abundant at all locations. Other common taxa at lower sites (1.2–10.6 km downstream of the glacier terminus) included other chironomids (Orthocladiinae, Tanytarsini), the mayflies Baetis alpinus and Rhithrogena spp., the stoneflies Leuctra spp. and Protonemura spp., blackflies (Simulium spp., Prosimulium spp.), and Oligochaeta. 4. Co‐inertia analysis revealed a strong relationship between environmental conditions and benthic macroinvertebrate assemblages. Furthermore, it elucidated temporal variability in longitudinal response patterns, as well as a similarity in temporal patterns among individual sites. 5. Our results suggest that zoobenthic gradients are not solely related to temperature and channel stability. Seasonal shifts in sources and pathways of water (i.e. extent of glacial influence), and periods of favourable environmental conditions (in spring and late autumn/early winter) also strongly influenced zoobenthic distributions.  相似文献   

6.
1. Changes in water chemistry, benthic organic matter (BOM), and macroinvertebrates were examined in four different glacial streams over an annual cycle. The streams experienced strong seasonal changes in water chemistry that reflected temporal changes in the influence from the source glacier, especially in water turbidity, particulate phosphorus and conductivity.
2. Nitrogen concentrations were high (nitrate-N values were 130–274 μg L–1), especially during spring snowmelt runoff. Benthic organic matter attained >600 g m–2 dry mass at certain times, peaks being associated with seasonal blooms of the alga Hydrurus foetidus .
3. Macroinvertebrate taxon richness was two to three times higher (also numbers and biomass) in winter than summer suggesting winter may be a more favourable period for these animals. Benthic densities averaged 1140–3820 ind. m–2, although peaking as high as 9000 ind. m–2. Average annual biomass ranged from 102 to 721 mg m–2, and reached >2000 mg m–2 at one site in autumn.
4. Taxa common to all sites included the dipterans Diamesa spp. and Rhypholophus sp., the plecopterans Leuctra spp. and Rhabdiopteryx alpina , and the ephemeropterans Baetis alpinus and Rhithrogena spp. Principal components analysis clearly separated winter assemblages from those found in summer.  相似文献   

7.
Several studies have reported a positive relationship between species richness and ecosystem functioning. However, if much of a particular ecosystem function is performed by one species (i.e. a functionally dominant species) and this species is also a competitive dominant that excludes other taxa from a habitat, then it is possible to obtain a negative relationship between richness and ecosystem functioning. Results of a leaf pack breakdown experiment in a small stream suggested that the caddisfly Pycnopsyche gentilis , a common detritivorous insect in North American headwater streams, was both a functional and competitive dominant. In a second experiment we compared the effect of Pycnopsyche on leaf breakdown to that of other detritivore taxa by enclosing them with leaf packs in a section of headwater stream in which they were uncommon ( Pycnopsyche transplant experiment). Final leaf pack mass was significantly lower in the Pycnopsyche enclosure treatment; leaves exposed to a greater diversity of detritivores displayed little reduction in leaf mass. These results demonstrated that Pycnopsyche was a functionally dominant detritivore. In a third experiment ( Pycnopsyche density experiment) we found that Pycnopsyche was also a competitively dominant species. Leaf packs and large Pycnopsyche were placed in enclosures that were permeable to the majority of other detritivores but not Pycnopsyche . Leaf mass lost increased with increasing Pycnopsyche density. Leaf packs exposed to Pycnopsyche , however, contained fewer detritivore taxa which suggested that Pycnopsyche was also a competitive dominant. There was a negative relationship between three measures of diversity and leaf litter breakdown in the Pycnopsyche density experiment. Experiments conducted in natural communities that incorporate important species interactions may produce diversity-ecosystem function relationships other than the positive ones that are commonly reported.  相似文献   

8.
Functional processes in freshwater ecosystems are highly influenced by acidic conditions. Foodwebs are affected and macroinvertebrate species diversity is decreased. This study aims to investigate leaf decomposition at very low pH in the acidic Banyupahit–Banyuputih river originating from the acidic crater lake Kawah Ijen in Indonesia. Leaf decomposition experiments were carried out for 200 days in the acidic river at pHs of approximately 0.7, 2.3 and 3.0 and in the neutral Kali Sengon river, using leaves from teak, Tectona grandis, and bamboo, Bambusa sp. Two different types of leaf packs were used: fine mesh size packs were used to exclude macroinvertebrates and coarse mesh size packs allowed macroinvertebrate colonization. Clear differences in decomposition rate were observed between the neutral Kali Sengon and the acidic Banyupahit–Banyuputih river with decomposition in the Kali Sengon river proceeding significantly faster for both leaf types. In the Kali Sengon k values (d−1) over 46 days were 0.0202 for fine teak, 0.0236 for coarse teak, 0.0114 for fine bamboo and 0.0151 for coarse bamboo. No significant differences were observed between the three sites in the acidic Banyupahit–Banyuputih river with k values of 0.0034–0.0066 for fine teak, 0.0002–0.0057 for coarse teak, 0.0029–0.0054 for fine bamboo and 0.0000–0.0068 for coarse bamboo. Moreover, no clear adaptation of macroinvertebrates or microbes to low pH conditions could be detected. The coarse mesh leaf packs in the neutral Kali Sengon river revealed that macroinvertebrates are important in the breakdown process. Fine mesh packs revealed that microbial activity is depressed under acidic conditions. Based on this evidence, we conclude that the toxicity at low pH conditions, and probably also the precipitation of metals on the leaf material, seriously affects leaf decomposition.  相似文献   

9.
  1. We investigated how compositional differences in riparian leaf litter derived from burned and undisturbed forests influenced leaf breakdown and macroinvertebrate communities using experimental mixed-species leaf packs in boreal headwater streams. Leaf pack mixtures simulating leaf litter from dominant riparian woody-stem species in burned and undisturbed riparian zones were incubated in two references and two fire-disturbed streams for 5 weeks prior to measuring temperature-corrected breakdown rates and macroinvertebrate community composition, richness, and functional metrics associated with decomposers such as shredder abundance and % shredders.
  2. Leaf litter breakdown rates were higher and had greater variability in streams bordered by reference riparian forests than in streams where riparian forests had been burned during a wildfire. Streams bordered by fire disturbance showed significant effects of litter mixture on decomposition rates, observed as significantly higher decomposition rates of a fire-simulated leaf mixture compared to all other mixtures.
  3. Variation among sites was higher than variation among litter mixtures, especially for macroinvertebrate community composition. In general, fire-simulated leaf mixtures had greater shredder abundances and proportions, but lower overall macroinvertebrate abundance; however, the shredder abundance trend was not consistent across all leaf mixtures at each stream.
  4. These results show that disturbance-driven riparian forest condition and resulting composition of leaf subsidies to streams can influence aquatic invertebrate community composition and their function as decomposers. Therefore, if one of the primary goals of modern forest management is to emulate natural disturbance patterns, boreal forest managers should adapt silvicultural practices to promote leaf litter input that would arise post-fire, thereby supporting stream invertebrate communities and their function.
  相似文献   

10.
1. We studied 10 first-order Icelandic streams differing in geothermal influence in separate catchments. Summer temperature (August–September) ranged between 6 and 23 °C.
2. Macroinvertebrate evenness and species overlap decreased significantly with temperature whereas taxon richness showed no response. In total, 35 macroinvertebrate species were found with Chironomidae the dominant taxonomic group. Macroinvertebrate density increased significantly with temperature. Dominant species in the warm streams were Lymnaea peregra and Simulium vittatum . Algal biomass, macrophyte cover and richness were unrelated to temperature. Densities of trout ( Salmo trutta ), the only fish species present, reflected habitat conditions and to a lesser degree temperature.
3. Density of filter-feeders increased significantly with temperature whereas scraper density, the other dominant functional feeding group, was unrelated to temperature. Stable isotope analysis revealed a positive relationship between δ15N and temperature across several trophic levels. No pattern was found with regard to δ13C and temperature.
4. Leaf litter decomposition in both fine and coarse mesh leaf bags were significantly correlated to temperature. In coarse mesh leaf packs breakdown rates were almost doubled compared with fine mesh, ranging between 0.5 and 1.3 g DW 28 days−1. Nutrient diffusion substrates showed that the streams were primarily nitrogen limited across the temperature gradient while a significant additional effect of phosphorous was found with increasing temperature.
5. Structural and functional attributes gave complementary information which all indicated a change with temperature similar to what is found in moderately polluted streams. Our results therefore suggest that lotic ecosystems could be degraded by global warming.  相似文献   

11.
12.
SUMMARY 1. Field and laboratory experiments were conducted to assess the relative influence of water quality and substratum quality on benthic macroinvertebrate communities in the Animas River, a metal-polluted stream in south-western Colorado (U.S.A.).
2. A community-level in situ toxicity test measured direct effects of Animas River water on benthic invertebrates collected from a reference stream (Elk Creek). The effects of metal-contaminated biofilm were examined by comparing macroinvertebrate colonisation of clean and contaminated substrata placed in Elk Creek. A feeding experiment with the mayfly Baetis tricaudatus Dodds (Ephemeroptera: Baetidae) examined metal bioaccumulation and effects of metal-contaminated biofilm on growth and survival.
3. Animas River water was acutely toxic to most taxa, with greatest effects observed on mayflies (Heptageniidae, Ephemerellidae) and stoneflies (Taeniopterygidae and Capniidae).
4. Although Animas River biofilm was characterised by high concentrations of metals and low algal biomass, most taxa colonised substratum from the reference stream and the Animas River equally. The exceptions were Ephemerellidae, Taeniopterygidae and Simuliidae, which were less abundant on Animas River substratum. Mayflies grazing Animas River biofilm accumulated significantly more metals and showed reduced growth compared with organisms feeding on Elk Creek biofilm.
5. Results of our experiments demonstrated that effects of heavy metals on benthic community structure in the Animas River were complex, and that responses to metals in water and contaminated substratum were species-specific. Predicting recovery of benthic communities following remediation requires an understanding of these species-specific responses.  相似文献   

13.
Effects of snow cover on the benthic fauna in a glacier-fed stream   总被引:4,自引:0,他引:4  
1. Alpine streams above the tree line are covered by snow for 6–9 months a year. However, winter dynamics in these streams are poorly known. The annual patterns of macroinvertebrate assemblages were studied in a glacial stream in the Austrian Alps, providing information on conditions under the snow.
2. Snow cover influenced water temperature, the content of benthic organic matter and insect development. Taxa richness and abundance of macroinvertebrates did not show a pronounced seasonal pattern. The duration of the autumn period with stable stream beds was important in determining the abundance and composition of the winter fauna.
3. There were significant differences in species composition between summer and winter. Two potential strategies in larval survival were evident: adaptation to the extreme abiotic conditions in summer (e.g. Diamesa spp.) or avoidance of these conditions and development during winter (e.g. Ephemeroptera and Plecoptera).
4. A comparison of a stream reach with continuous snow cover and a stream reach that remained open throughout winter showed that conditions under snow are suboptimal. At the open stream site, with higher water temperatures and greater food supply (benthic organic matter content), abundance and taxa richness was higher and larval growth was faster. Several taxa were found exclusively at this site.
5. Winter conditions did not provide an entirely homogeneous environment, abiotic conditions changed rapidly, especially at the onset of snowfall and at snowmelt. Continuous monitoring is necessary to recognize spatial and temporal heterogeneity in winter environments and the fauna of alpine streams.  相似文献   

14.
1. Macroinvertebrate assemblages were studied in the glacial river West-Jökulsá, originating from the Hofsjökull Ice Cap in central Iceland at an altitude of 860 m. Sampling sites were distributed from the source to 45 km downstream at 160 m a.s.l. Comparative studies were carried out on non-glacial rivers and tributaries in the area, at similar altitudes and distances from the glacial source.
2. Detrended correspondence analysis (DCA) demonstrated that species composition of benthic macroinvertebrates was related to the distance from the glacier. Assemblages at sampling sites furthest from the glacier were similar in species composition to sites in non-glacial rivers. Temporal variation was small compared with longitudinal zonation.
3. Based on canonical correspondence analysis (CCA) of data from the main glacial river, distance from the glacier, altitude, bryophyte biomass and the Pfankuch Index of channel stability were the measured explanatory variables having a significant effect on the structure of macroinvertebrate assemblages, accounting for 31% of the total variation in the data set. When data from all the rivers were analysed, altitude, bryophyte biomass, channel slope, suspended sediment concentration and maximum water temperature explained 21% of the variance.
4. Macroinvertebrate communities were in general agreement with the predictions of the conceptual model of Milner & Petts (1994) for the upstream reaches. The assemblages consisted mainly of Orthocladiinae and Diamesinae (Chironomidae), although other taxa such as Simuliidae, Plecoptera and Trichoptera were also found in low numbers. Shredders were lacking from the benthic communities, apparently because of continued glacial influence in the river even 45 km downstream from the glacier and lack of allochthononus inputs from riparian vegetation.  相似文献   

15.
16.
The mechanisms of leaf decay, leaf-associated macroinvertebrate community structure, leaf-associated microbial activity and physicochemical stream characteristics were investigated on a mid-Michigan headwater stream in summer. An undisturbed wooded site was compared with two agriculturally perturbed sites. Discharge, total suspended particulates, and nutrients were all higher and more variable throughout the season within the agricultural reaches. Leaf decay rates were higher at the agricultural sites and results suggest discharge abrasion was the major leaf processing mechanism at these sites while microbial decay and macroinvertebrate shredding appear to be the primary mediators of leaf weight loss at the wooded site. Total macroinvertebrate densities on leaf packs at the agricultural sites were 1.9 times the densities at the wooded site. It is suggested that experimentally introduced leaf packs acted as a lure for net-spinning invertebrates limited by stable substratum at the agricultural sites. Species shifts were observed from wooded reaches where Pychnopsyche spp., Gammarus, Ephemeroptera, Bezzia, and Nigronia serricornis were important, to downstream agricultural reaches which were dominated by Cheumatopsyche, Chironomidae, Elmidae, Hydracarina, Hemerodromia, and Caecidotea.  相似文献   

17.
An exclosure experiment was carried out in the reed-dominated littoral zone of a volcanic lake (Lake Vico, central Italy) to test whether the impact of predatory fish on benthic invertebrates cascades on fungal colonisation and breakdown of leaf detritus. The abundance, biomass, and Shannon diversity index of the invertebrate assemblage colonising Phragmites australis leaf packs placed inside: (1) full-exclosure cages, (2) cages allowing access only to small-sized fish predators, and (3) cageless controls, were monitored over a 45-day period together with the mass loss and associated fungal biomass of leaf packs. The species composition of the fungal assemblage was further assessed at the end of the manipulation. In general, invertebrate predators did not show any significant response to fish exclusion, either on a trophic guild or on a single taxon level. In contrast, the exclusion of large predatory fish induced a diverse spectrum of changes in the abundance and population size-structure of dominant detritivore taxa, ultimately increasing the biomass and Shannon diversity index of the whole detritivorous guild. These changes corresponded with significant variations in leaf detritus decay rates as well as in the biomass and assemblage structure of associated fungal colonisers. Our experimental findings provide evidence that in Lake Vico effects of fish predators on invertebrate detritivores influence the fungal conditioning and breakdown of the detrital substrate. We conclude that in lacustrine littoral zones predator-driven constraints may structure lower trophic levels of detritus-based food webs and affect the decomposition of leaf detritus originated from the riparian vegetation.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号