首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
1. Uridine triphosphate (UTP), uridine diphosphate (UDP), cytidine triphosphate (CTP), and deoxythymidine triphosphate (TTP) caused concentration-dependent increases in the release of thromboxane A2 (TXA2) from cultured glia prepared from the newborn rat cerebral cortex. Although each of the pyrimidine nucleotides displayed similar potencies, CTP and TTP were considerably less effective than either UTP or UDP. The purine nucleotide ATP was equally as potent as the pyrimidine nucleotides but was marginally less effective than either UTP or UDP.2. The ability of UTP, UDP, TTP, and CTP to promote TXA2 release from cultured glia was inhibited in a concentration-dependent manner by suramin and was markedly reduced when incubations were performed either in Ca2+-free medium or on cultures which had been maintained in serum-free growth medium for 4 days prior to experimentation.3. Challenges with UTP and UDP in combination were found to elicit a response which was no different from the effects of these nucleotides alone; in addition, their effects were reversed by the phospholipase A2 inhibitor ONO-RS-082. A slight reduction in UTP-and UDP-stimulated TXA2 release was observed in cultures grown in the presence of leucine methyl ester, a treatment reported to limit microglial survival.4. These results suggest that glia are targets for extracellular pyrimidine nucleotides and that their ability to release eicosanoids from these cells may be important in the brain's response to damage.  相似文献   

2.
Nucleotides are released into the extracellular milieu from infected cells and cells at inflammatory sites. The extracellular nucleotides bind to specific purinergic (P2) receptors and thereby induce a variety of cellular responses including anti-parasitic effects. Here we investigated whether extracellular nucleotides affect leishmanial infection in macrophages, and found that UTP reduces strongly the parasite load in peritoneal macrophages. Ultrastructural analysis of infected cells revealed that UTP induced morphological damage in the intracellular parasites. Uridine nucleotides also induced dose-dependent apoptosis of macrophages and production of ROI and RNI only in infected macrophages. The intracellular calcium measurements of infected cells showed that the response to UTP, but not UDP, increased the sensitivity and amplitude of cytosolic Ca(2+) changes. Infection of macrophages with Leishmania upregulated the expression of P2Y(2) and P2Y(4) receptor mRNA. The data suggest indirectly that Leishmania amazonensis infection induces modulation and heteromerization of P2Y receptors on macrophages. Thus UTP modulates the host response against L. amazonensis infection. UTP and UTP homologues should therefore be considered as novel components of therapeutic strategies against cutaneous leishmaniasis.  相似文献   

3.
1. The metabolism of extracellular nucleotides in NG108-15 cells, a neuroblastoma × glioma hybrid cell line, was studied by means of capillary zone electrophoresis (CZE) and micellar electrokinetic capillary chromatography (MECC).2. In NG108-15 cells ATP, ADP, AMP, UTP, UDP, and UMP were hydrolyzed to the nucleosides adenosine and uridine indicating the presence of ecto-nucleotidases and ecto-phosphatases. The hydrolysis of the purine nucleotides ATP and ADP was significantly faster than the hydrolysis of the pyrimidine nucleotides UTP and UDP.3. ATP and UTP breakdown appeared to be mainly due to an ecto-nucleotide- diphosphohydrolase. ADP, but not UDP, was initially also phosphorylated to some extent to the corresponding triphosphate, indicating the presence of an adenylate kinase on NG108-15 cells. The alkaline phosphatase (ALP) inhibitor levamisole did not only inhibit the hydrolysis of AMP to adenosine and of UMP to uridine, but also the degradation of ADP and to a larger extent that of UDP. ATP and UTP degradation was only slightly inhibited by levamisole.4. These results underscore the important role of ecto-alkaline phosphatase in the metabolism of adenine as well as uracil nucleotides in NG108-15 cells. Dipyridamole, a potent inhibitor of nucleotide breakdown in superior cervical ganglion cells, had no effect on nucleotide degradation in NG108-15 cells.5. Dipyridamole, which is a therapeutically used nucleoside reuptake inhibitor in humans, reduced the extracellular adenosine accumulation possibly by allosteric enhancement of adenosine reuptake into the cells.  相似文献   

4.

Background

Uridine 5''-triphosphate (UTP) and uridine 5''-diphosphate (UDP) act via P2Y receptors to evoke contraction of rat pulmonary arteries, whilst adenosine 5''-triphosphate (ATP) acts via P2X and P2Y receptors. Pharmacological characterisation of these receptors in intact arteries is complicated by release and extracellular metabolism of nucleotides, so the aim of this study was to characterise the P2Y receptors under conditions that minimise these problems.

Methods

The perforated-patch clamp technique was used to record the Ca2+-dependent, Cl- current (ICl,Ca) activated by P2Y receptor agonists in acutely dissociated smooth muscle cells of rat small (SPA) and large (LPA) intrapulmonary arteries, held at -50 mV. Contractions to ATP were measured in isolated muscle rings. Data were compared by Student''s t test or one way ANOVA.

Results

ATP, UTP and UDP (10-4M) evoked oscillating, inward currents (peak = 13–727 pA) in 71–93% of cells. The first current was usually the largest and in the SPA the response to ATP was significantly greater than those to UTP or UDP (P < 0.05). Subsequent currents tended to decrease in amplitude, with a variable time-course, to a level that was significantly smaller for ATP (P < 0.05), UTP (P < 0.001) and UDP (P < 0.05) in the SPA. The frequency of oscillations was similar for each agonist (mean≈6–11.min-1) and changed little during agonist application. The non-selective P2 receptor antagonist suramin (10-4M) abolished currents evoked by ATP in SPA (n = 4) and LPA (n = 4), but pyridoxalphosphate-6-azophenyl-2'',4''-disulphonic acid (PPADS) (10-4M), also a non-selective P2 antagonist, had no effect (n = 4, 5 respectively). Currents elicited by UTP (n = 37) or UDP (n = 14) were unaffected by either antagonist. Contractions of SPA evoked by ATP were partially inhibited by PPADS (n = 4) and abolished by suramin (n = 5). Both antagonists abolished the contractions in LPA.

Conclusion

At least two P2Y subtypes couple to ICl,Ca in smooth muscle cells of rat SPA and LPA, with no apparent regional variation in their distribution. The suramin-sensitive, PPADS-resistant site activated by ATP most resembles the P2Y11 receptor. However, the suramin- and PPADS-insensitive receptor activated by UTP and UDP does not correspond to any of the known P2Y subtypes. These receptors likely play a significant role in nucleotide-induced vasoconstriction.  相似文献   

5.
Microglia engage in the clearance of dead cells or dangerous debris. When neighboring cells are injured, the cells release or leak ATP into extracellular space and microglia rapidly move toward or extend a process to the nucleotides as chemotaxis through P2Y12 receptors. In the meanwhile, microglia express the metabotropic P2Y6 receptors, the activation of which by uridine 5’-diphosphate (UDP) triggers microglial phagocytosis in a concentration-dependent fashion. UDP/UTP was leaked when hippocampal neurons were damaged by kainic acid in vivo and in vitro. Systemic administration of kainic acid in rats resulted in neuronal cell death in the hippocampal CA1 and CA3 regions, where increases in mRNA for P2Y6 receptors in activated microglia. Thus, the P2Y6 receptor is upregulated when neurons are damaged, and would function as a sensor for phagocytosis by sensing diffusible UDP signals.  相似文献   

6.
Human colon-carcinoma cells were exposed to D-glucosamine at 2.5, 5 and 10 mM, concentrations that were growth-inhibitory but not cytocidal in the presence of a physiological glucose concentration. Labelling of these HT-29 cells with D-[14C]-glucosamine, followed by nucleotide analyses, demonstrated that UDP-N-acetyl-hexosamines represented the major intracellular nucleotide pool and the predominant metabolite of the amino sugar. D-[14C]Glucosamine was not a precursor of UDP-glucosamine. After 4h exposure to D-glucosamine (2.5 mM), the pool of UDP-N-acetylhexosamines was increased more than 6-fold, whereas UTP and CTP were markedly decreased. UDP-glucuronate content increased by more than 2-fold, whereas purine nucleotide content was little altered. Uridine (0.1 mM) largely reversed the decrease in UTP, CTP, UDP-glucose and UDP-galactose, while intensifying the expansion of the UDP-N-acetylhexosamine pool. Uridine did not reverse the D-glucosamine-induced retardation of growth in culture. A 50% decrease in growth also persisted when uridine and cytidine, cytidine alone, or UDP, were added together with D-glucosamine. The growth-inhibitory effect of the amino sugar could therefore be best correlated with the quantitative change in the pattern of sugar nucleotides, and, in particular, with the many-fold increase in UDP-N-acetylglucosamine and UDP-N-acetylgalactosamine.  相似文献   

7.
Purinergic P2 receptors are a class of plasma membrane receptors that are express in many tissues and are ligated by extracellular nucleotides [such as adenosine triphosphate (ATP), adenosine diphosphate (ADP), uridine 5'-triphosphate (UTP) and uridine 5'-diphosphate (UDP)], which are released as a consequence of cell damage, cell stress, bacterial infection or other noxious stimuli. According to the molecular structure, P2 receptors are divided into two subfamilies: P2X and P2Y receptors. The P2X receptors are ligand-gated channels, whereas P2Y receptors are G-protein-coupled seven-membrane-spanning receptors. Several studies indicate that nucleotides play an important role in immune response modulation through their action on multiple cell types, including monocytes, mast cells, dendritic cells, neutrophils, and eosinophils. Recent work by our group and others identified extracellular nucleotides as chemotaxins for various human immune cells, including eosinophils, neutrophils and dendritic cells. In this review, we summarise recent findings in this field and put forward a hypothesis on the role of P2 receptors in the early recruitment of human immune cells to the site of inflammation.  相似文献   

8.
Uridine, the major circulating pyrimidine nucleoside, participating in the regulation of a number of physiological processes, is readily uptaken into mammalian cells. The balance between anabolism and catabolism of intracellular uridine is maintained by uridine kinase, catalyzing the first step of UTP and CTP salvage synthesis, and uridine phosphorylase, catalyzing the first step of uridine degradation to β-alanine in liver. In the present study we report that the two enzymes have an additional role in the homeostatic regulation of purine and pyrimidine metabolism in brain, which relies on the salvage synthesis of nucleotides from preformed nucleosides and nucleobases, rather than on the de novo synthesis from simple precursors. The experiments were performed in rat brain extracts and cultured human astrocytoma cells. The rationale of the reciprocal regulation of purine and pyrimidine salvage synthesis in brain stands (i) on the inhibition exerted by UTP and CTP, the final products of the pyrimidine salvage pathway, on uridine kinase and (ii) on the widely accepted idea that pyrimidine salvage occurs at the nucleoside level (mostly uridine), while purine salvage is a 5-phosphoribosyl-1-pyrophosphate (PRPP)-mediated process, occurring at the nucleobase level. Thus, at relatively low UTP and CTP level, uptaken uridine is mainly anabolized to uridine nucleotides. On the contrary, at relatively high UTP and CTP levels the inhibition of uridine kinase channels uridine towards phosphorolysis. The ribose-1-phosphate is then transformed into PRPP, which is used for purine salvage synthesis.  相似文献   

9.
Uridine, a pyrimidine nucleoside essential for the synthesis of RNA and biomembranes, has several trophic functions in the central nervous system, that involve a physiological regulation of pyrimidine nucleotides and phospholipids content, and a maintenance of brain metabolism under ischemia, or pathological situations. The understanding of uridine production in the brain is therefore of fundamental importance. Brain has a limited capacity to synthesize ex novo the pyrimidine ring, and a reasonable source of brain uridine is UTP. The kinetics of UTP breakdown, as catalysed by post-mitochondrial brain extracts and membrane preparations reported herein suggests that in normoxic conditions uridine is locally generated in brain exclusively in the extracellular space, and that any uptaken uridine is salvaged to UTP. It is now well established that cytosolic UTP can be released to interact with a subset of P2Y receptors, inducing a variety of molecular and cellular effects, leading to neuroprotection, while uridine is uptaken via an equilibrative or a Na+-dependent transport system, to exert its trophic effects in the cytosol. An ATP driven uridine–UTP cycle can be envisaged, based on the strictly compartmentalized processes of uridine salvage to UTP and uridine generation from UTP, in which uptaken uridine is anabolised to UTP in the cytosol, and converted back to uridine in extracellular space.  相似文献   

10.
11.
12.
Agonist-promoted regulation of the uridine nucleotide-activated human P2Y4 receptor (P2Y4-R) and P2Y6 receptor (P2Y6-R) was studied. Incubation of P2Y4-R-expressing 1321N1 human astrocytoma cells with the cognate agonist UTP resulted in rapid desensitization of the inositol phosphate response and a 50% loss of cell surface receptors. In contrast, incubation of P2Y6-R-expressing cells with the cognate agonist UDP caused neither rapid desensitization nor rapid loss of cell surface receptors. Removal of UTP from the medium of UTP-pretreated cells resulted in rapid and complete recovery of surface P2Y4-R even after 12 h of agonist treatment. Although extended incubation with UDP also caused a loss of surface P2Y6-R, rapid recovery of surface P2Y6-R did not occur following removal of agonist. Pharmacological studies indicated that neither protein kinase C nor other Ca(2+)-activated kinases were involved in agonist-promoted desensitization or loss of surface P2Y4-R or P2Y6-R. Mutational analyses were carried out to identify domains involved in agonist-dependent regulation of P2Y4-R. Sequential truncation of the carboxyl-terminal domain revealed that sequence between amino acids 332 and 343 was necessary for UTP-promoted desensitization and internalization. Further mutational analyses of the three serines in this domain confirmed that Ser-333 and Ser-334 play a major role in these agonist-promoted changes in P2Y4-R. Experiments were carried out with [(32)P]P(i)-labeled cells to ascertain the role of phosphorylation in regulation of P2Y4-R. Incubation with UTP for 2 min caused a marked increase in phosphorylation of both the wild-type P2Y4-R and the P2Y4-343 truncation mutant. In contrast, no UTP-promoted phosphorylation of the P2Y4-332 truncation mutant was observed. Taken together, these results demonstrate differential regulation of uridine nucleotide-activated P2Y4-R and P2Y6-R and indicate that Ser-333 and Ser-334 in the carboxyl terminus of P2Y4-R are important for UTP-dependent phosphorylation, desensitization, and loss of surface receptors.  相似文献   

13.
Uridine, the major circulating pyrimidine nucleoside, participating in the regulation of a number of physiological processes, is readily uptaken into mammalian cells. The balance between anabolism and catabolism of intracellular uridine is maintained by uridine kinase, catalyzing the first step of UTP and CTP salvage synthesis, and uridine phosphorylase, catalyzing the first step of uridine degradation to β-alanine in liver. In the present study we report that the two enzymes have an additional role in the homeostatic regulation of purine and pyrimidine metabolism in brain, which relies on the salvage synthesis of nucleotides from preformed nucleosides and nucleobases, rather than on the de novo synthesis from simple precursors. The experiments were performed in rat brain extracts and cultured human astrocytoma cells. The rationale of the reciprocal regulation of purine and pyrimidine salvage synthesis in brain stands (i) on the inhibition exerted by UTP and CTP, the final products of the pyrimidine salvage pathway, on uridine kinase and (ii) on the widely accepted idea that pyrimidine salvage occurs at the nucleoside level (mostly uridine), while purine salvage is a 5-phosphoribosyl-1-pyrophosphate (PRPP)-mediated process, occurring at the nucleobase level. Thus, at relatively low UTP and CTP level, uptaken uridine is mainly anabolized to uridine nucleotides. On the contrary, at relatively high UTP and CTP levels the inhibition of uridine kinase channels uridine towards phosphorolysis. The ribose-1-phosphate is then transformed into PRPP, which is used for purine salvage synthesis.  相似文献   

14.
In the absence of added Mg2+, alkylsulfatase induction in resting cells of Pseudomonas aeruginosa was inhibited 17% by exogenous 0.05 mM UTP. Under these conditions, the cells converted UTP to ATP and rapid degradation of these nucleotides did not occur. In the presence of 0.73 mM Mg2+, 0.05 mM UTP repressed the synthesis of the enzyme by 71%. Under these conditions, the cells rapidly degraded both ATP derived from UTP as well as residual UTP. In the presence of Mg2+ and 0.1 mM UTP, full repression of alkylsulfatase formation occurred whereas Mg2+-depleted cell suspensions were still capable of synthesizing 47% of the enzyme under these conditions compared with control levels. The inhibition of alkylsulfatase induction was highly specific for UTP. Some inhibition was observed with exogenous uracil, uridine, and pyrophosophate but only at concentrations greater than 1.0 mM. Exogenous UMP and UDP (2mM) had no effect.  相似文献   

15.
The subcellular compartmentation of nucleoside diphosphate kinase (EC 2.7.4.6) and the uridine nucleotides has been studied in leaves. Membrane filtration of barley (Hordeum vulgare L.) leaf mesophyll protoplasts and differential centrifugation of spinach (Spinacia oleracea L.) leaf extracts showed that about half the nucleoside diphosphate kinase is present in the cytosol. The activity is adequate to account for the turnover of UTP and UDP during photosynthetic sucrose synthesis. Nonaqueous density gradient centrifugation of freeze-stopped, lyophilized spinach leaf material showed that the uridine nucleotides are predominantly located in the cytosol and that the cytosolic UDP-glucose pool is considerably larger than the UTP or UDP pools.  相似文献   

16.
Extracellular nucleotides regulate ion transport and mucociliary clearance in human airway epithelial cells (HAECs) via the activation of P2 receptors, especially P2Y(2). Therefore, P2Y(2) receptor agonists represent potential pharmacotherapeutic agents to treat cystic fibrosis (CF). Nucleotides also modulate inflammatory properties of immune cells like dendritic cells (DCs), which play an important role in mucosal immunity. Using DNA-microarray experiments, quantitative RT-PCR and cytokine measurements, we show here that UTP up-regulated approximately 2- to 3-fold the antimicrobial chemokine CCL20 expression and release in primary HAECs cultured on permeable supports at an air-liquid interface (ALI). Both P2Y(2) (ATPgammaS, UTP, INS365) and P2Y(6) (UDP, INS48823) agonists increased CCL20 release. UTP-induced CCL20 release was insensitive to NF-kappaB pathway inhibitors but sensitive to inhibitors of ERK1/2 and p38/MAPK pathways. Furthermore, UTP had no effect on interleukin-(IL)-8 release and reduced the release of both CCL20 and IL-8 induced by TNF-alpha and LPS. Accordingly, UTP reduced the capacity of basolateral supernatants of HAECs treated with TNF-alpha or LPS to induce the chemoattraction of both CD4(+) T lymphocytes and neutrophils. In addition, we show that, in monocyte-derived DCs, ATPgammaS, and UDP but not UTP/INS365-stimulated CCL20 release. Likewise, UDP but not ATPgammaS was also able to increase CCL20 release from monocytes. Pharmacological experiments suggested an involvement of P2Y(11) or P2Y(6) receptors through NF-kappaB, ERK1/2, and p38/MAPK pathways. Altogether, our data demonstrate that nucleotides may modulate chemokine release and leukocyte recruitment in inflamed airways by acting on both epithelial and immune cells. Our results could be relevant for further clinical investigations in CF.  相似文献   

17.
Whereas the chemotactic peptide, N-formyl-L-methionyl-L-leucyl-L-phenylalanine (fMet-Leu-Phe), induced NADPH-oxidase-catalyzed superoxide (O2-) formation in human neutrophils, purine and pyrimidine nucleotides per se did not stimulate NADPH oxidase but enhanced O2- formation induced by submaximally and maximally stimulatory concentrations of fMet-Leu-Phe up to fivefold. On the other hand, FMet-Leu-Phe primed neutrophils to generate O2- upon exposure to nucleotides. At a concentration of 100 microM, purine nucleotides enhanced O2- formation in the effectiveness order adenosine 5'-O-[3-thio]triphosphate (ATP[gamma S]) greater than ITP greater than guanosine 5'-O-[3-thio]triphosphate (GTP[gamma S]) greater than ATP = adenosine 5'-O-[2-thio]triphosphate (Sp-diastereomer) = GTP = guanosine 5'-O-[2-thio]diphosphate (GDP[beta S] = ADP greater than adenosine 5'-[beta, gamma-imido]triphosphate = adenosine 5'-O-[2-thio]triphosphate] (Rp-diastereomer). Pyrimidine nucleotides stimulated fMet-Leu-Phe-induced O2- formation in the effectiveness order uridine 5'-O-[3-thio]triphosphate (UTP[gamma S]) = UTP greater than CTP. Uracil (UDP[beta S]) = uridine 5'-O[2-thio]triphosphate (Rp-diastereomer) (Rp)-UTP[beta S]) = UTP greater than CTP. Uracil nucleotides were similarly effective potentiators of O2- formation as the corresponding adenine nucleotides. GDP[beta S] and UDP[beta S] synergistically enhanced the stimulatory effects of ATP[gamma S], GTP[gamma S] and UTP[gamma S]. Purine and pyrimidine nucleotides did not induce degranulation in neutrophils but potentiated fMet-Leu-Phe-induced release of beta-glucuronidase with similar nucleotide specificities as for O2- formation. In contrast, nucleotides per se induced aggregation of neutrophils. Treatment with pertussis toxin prevented aggregation induced by both nucleotides and fMet-Leu-Phe. Our results suggest that purine and pyrimidine nucleotides act via nucleotide receptors, the nucleotide specificity of which is different from nucleotide receptors in other cell types. Neutrophil nucleotide receptors are coupled to guanine-nucleotide-binding proteins. As nucleotides are released from cells under physiological and pathological conditions, they may play roles as intercellular signal molecules in neutrophil activation.  相似文献   

18.
19.
ATP, UTP, ADP and UDP induced intracellular Ca(2+) responses and oscillations in HeLa cells that sometimes lasted over 1 h. The response is due to the activation of P2Ys, G-protein coupled ATP receptors, because the oscillations persisted for several minutes even in Ca(2+)-free solution, and suramin and PPADS, antagonists of ATP receptors, partially inhibited the response. The potency of these nucleotides varied with the culture or cell conditions, i.e. UTP was generally most potent but in some cases UDP was more potent; responses to UDP were variable while those to ATP were constant. In addition, Ca(2+) responses to ATP and UDP were additive. These findings suggested the existence of two or more subtypes of P2Ys in HeLa cells. RT-PCR experiments revealed the existence of P2Y(2), P2Y(4) and P2Y(6). Recovery from starvation (culture in FBS-free medium overnight and re-addition of FBS) increased the responses to UTP and UDP but not to ATP, suggesting that the number or activity of P2Y(6) and/or P2Y(4) receptors may increase with cell proliferation in HeLa cells.  相似文献   

20.
Extracellular nucleotides, such as ATP, UDP, and UTP, regulate pulmonary vascular tone through P2X and P2Y receptors. Recently, uridine adenosine tetraphosphate (Up(4)A) was reported as a novel endothelium-derived vasoconstrictive factor. Up(4)A contains both purine and pyrimidine moieties, which potentially activate P2X and P2Y receptors. The present study examined the effect of Up(4)A on contractility of isolated rat pulmonary artery. Up(4)A at 1-100 microM stimulated contraction in a concentration-dependent manner. Up(4)A was equipotent as UTP and UDP in the endothelium-denuded artery while much more effective than UTP and UDP in endothelium-intact preparations. The vasoconstrictor effect of Up(4)A was inhibited by suramin but not IP(5)I or desensitization of P2X receptors with alpha,beta-methylene-ATP (alpha,beta-Me-ATP). Up(4)A-induced contraction was also inhibited by pretreatment with thapsigargin, nitrendipine, or EGTA but unaffected by H1152. Furthermore, unlike ATP and UTP, Up(4)A did not induce relaxation of endothelium-intact preparations precontracted with phenylephrine. These results suggest that Up(4)A is a potent vasoconstrictor, but not a vasodilator, of the rat pulmonary artery. Up(4)A likely acts through a suramin-sensitive P2Y receptor. The contractile effect of Up(4)A involves the entry of extracellular Ca(2+) and release of Ca(2+) from intracellular stores but not Ca(2+) sensitization via the RhoA/Rho kinase pathway. Up(4)A, therefore, potentially plays an important role in the regulation of pulmonary vascular tone.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号