首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The rate at which a plant species is attacked by invertebrate herbivores has been hypothesized to depend on plant species richness, yet empirical evidence is scarce. Current theory predicts higher herbivore damage in monocultures than in species-rich mixtures. We quantified herbivore damage by insects and molluscs to plants in experimental plots established in 2002 from a species pool of 60 species of Central European Arrhenatherum grasslands. Plots differed in plant species richness (1, 2, 4, 8, 16, 60 species), number of functional groups (1, 2, 3, 4), functional group and species composition. We estimated herbivore damage by insects and molluscs at the level of transplanted plant individuals (“phytometer” species Plantago lanceolata, Trifolium pratense, Rumex acetosa) and of the entire plant community during 2003 and 2004. In contrast to previous studies, our design allows specific predictions about the relative contributions of functional diversity, plant functional identity, and species richness in relation to herbivory. Additionally, the phytometer approach is new to biodiversity-herbivory studies, allowing estimates of species-specific herbivory rates within the larger biodiversity-ecosystem functioning context. Herbivory in phytometers and experimental communities tended to increase with plant species richness and the number of plant functional groups, but the effects were rarely significant. Herbivory in phytometers was in some cases positively correlated with community biomass or leaf area index. The most important factor influencing invertebrate herbivory was the presence of particular plant functional groups. Legume (grass) presence strongly increased (decreased) herbivory at the community level. The opposite pattern was found for herbivory in T. pratense phytometers. We conclude that (1) plant species richness is much less important than previously thought and (2) plant functional identity is a much better predictor of invertebrate herbivory in temperate grassland ecosystems.  相似文献   

2.
Several components of the diversity of plant communities, such as species richness, species composition, number of functional groups and functional composition, have been shown to directly affect the performance of exotic species. Exotics can also be affected by herbivores of the native plant community. However, these two possible mechanisms limiting invasion have never been investigated together. The aim of this study was to investigate the relationships between plant diversity, herbivory and performance of two annual exotics, Conyza bonariensis and C. canadensis, in Mediterranean annual communities. We wanted to test whether herbivory of these exotics was influenced either by species richness, functional-group richness or functional-group composition. We also studied the relationship between herbivory on the exotic species and their performance. Herbivory increased with increasing species and functional-group richness for both Conyza species. These patterns are interpreted as reflecting a greater number of available herbivore niches in a richer, more complex, plant community. The identities of functional groups also affected Conyza herbivory, which decreased in the presence of Asteraceae or Fabaceae and increased in the presence of Poaceae. Increasing herbivory had consequences for vegetative and demographic parameters of both invasive species: survival, final biomass and net fecundity decreased with increasing herbivory, leading to a loss of reproductive capacity. We conclude that communities characterised by a high number of grass species instead of Asteraceae or Fabaceae may be more resistant to invasion by the two Conyza species, in part due to predation by native herbivores.  相似文献   

3.
Increasing plant diversity has long been hypothesized to negatively affect levels of invertebrate herbivory due to a lower number of specialist insect herbivores in more diverse sites, but studies of natural systems have been rare. We used a planned comparison to study herbivory in a set of 19 semi-natural montane grasslands managed as hay meadows. Herbivory was measured in transects through the plant communities, and in individuals of Plantago lanceolata and Trifolium pratense that were transplanted into each meadow. In addition, plant community biomass and arthropod abundances were determined in the grasslands. Before the first mowing in June, mean herbivory levels correlated negatively with plant species richness, as predicted by theory, but they were also significantly affected by plant community biomass and plant community composition. After mowing, herbivory levels were only significantly related to plant community composition. Damage levels in the transplants were lower than herbivory levels in the established plant communities. Most insect herbivores were generalists and not specialists. The number of insect herbivores and spiders were positively correlated and tended to increase with increasing plant species richness. Herbivory levels were correlated negatively with spider abundances. We conclude that while the predicted negative relationship between plant species richness and insect herbivory can be found in grasslands, the underlying mechanism involves generalist rather than specialist herbivores. Our data also suggest a role of natural enemies in generalist herbivore activities.Electronic Supplementary Material Supplementary material is available to authorised users in the online version of this article at .  相似文献   

4.
Biodiversity-ecosystem function experiments test how species diversity influences fundamental ecosystem processes. Historically, arthropod driven functions, such as herbivory and pest-control, have been thought to be influenced by direct and indirect associations among species. Although a number of studies have evaluated how plant diversity affects arthropod communities and arthropod-mediated ecosystem processes, it remains unclear whether diversity effects on arthropods are sufficiently consistent over time such that observed responses can be adequately predicted by classical hypotheses based on associational effects. By combining existing results from a long-term grassland biodiversity experiment (Jena Experiment) with new analyses, we evaluate the consistency of consumer responses within and across taxonomic, trophic, and trait-based (i.e. vertical stratification) groupings, and we consider which changes in arthropod community composition are associated with changes in consumer-mediated ecosystem functions.Overall, higher plant species richness supported more diverse and complex arthropod communities and this pattern was consistent across multiple years. Vegetation-associated arthropods responded more strongly to changes in plant species richness than ground-dwelling arthropods. Additionally, increases in plant species richness were associated with shifts in the species-abundance distributions for many, but not all taxa. For example, highly specialized consumers showed a decrease in dominance and an increase in the number of rare species with increasing plant species richness. Most ecosystem processes investigated responded to increases in plant species richness in the same way as the trophic group mediating the process, e.g. both herbivory and herbivore diversity increase with increasing plant species richness. In the Jena Experiment and other studies, inconsistencies between predictions based on classic hypotheses of associational effects and observed relationships between plant species richness and arthropod diversity likely reflect the influence of multi-trophic community dynamics and species functional trait distributions. Future research should focus on testing a broader array of mechanisms to unravel the biological processes underlying the biodiversity-ecosystem functioning relationships.  相似文献   

5.
Philip G. Hahn  John L. Orrock 《Oikos》2015,124(4):497-506
Past and present human activities, such as historic agriculture and fire suppression, are widespread and can create depauperate plant communities. Although many studies show that herbivory on focal plants depends on the density of herbivores or the composition of the surrounding plant community, it is unclear whether anthropogenic changes to plant communities alter herbivory. We tested the hypothesis that human activities that alter the plant community lead to subsequent changes in herbivory. At 20 sites distributed across 80 300 hectares, we conducted a field experiment that manipulated insect herbivore access (full exclosures and pseudo‐exclosures) to four focal plant species in longleaf pine woodlands with different land‐use histories (post‐agricultural sites or non‐agricultural sites) and degrees of fire frequency (frequent and infrequent). Plant cover, particularly herbaceous cover, was lower in post‐agricultural and fire suppressed woodlands. Density of the dominant insect herbivore at our site (grasshoppers) was positively related to plant cover. Herbivore access reduced biomass of the palatable forb Solidago odora in frequently burned post‐agricultural sites and in infrequently burned non‐agricultural woodlands and increased mortality of another forb (Pityopsis graminifolia), but did not affect two other less palatable species (Schizachyrium scoparium and Tephrosia virginiana). Herbivory on S. odora exhibited a hump‐shaped response to plant cover, with low herbivory at low and high levels of plant cover. Herbivore density had a weak negative effect on herbivory. These findings suggest that changes in plant cover related to past and present human activities can modify damage rates on focal S. odora plants by altering grasshopper foraging behavior rather than by altering local grasshopper density. The resulting changes in herbivory may have the potential to limit natural recovery or restoration efforts by reducing the establishment or performance of palatable plant species.  相似文献   

6.
The resistance of a plant community against herbivore attack may depend on plant species richness, with monocultures often much more severely affected than mixtures of plant species. Here, we used a plant–herbivore system to study the effects of selective herbivory on consumption resistance and recovery after herbivory in 81 experimental grassland plots. Communities were established from seed in 2002 and contained 1, 2, 4, 8, 16 or 60 plant species of 1, 2, 3 or 4 functional groups. In 2004, pairs of enclosure cages (1 m tall, 0.5 m diameter) were set up on all 81 plots. One randomly selected cage of each pair was stocked with 10 male and 10 female nymphs of the meadow grasshopper, Chorthippus parallelus. The grasshoppers fed for 2 months, and the vegetation was monitored over 1 year. Consumption resistance and recovery of vegetation were calculated as proportional changes in vegetation biomass. Overall, grasshopper herbivory averaged 6.8%. Herbivory resistance and recovery were influenced by plant functional group identity, but independent of plant species richness and number of functional groups. However, herbivory induced shifts in vegetation composition that depended on plant species richness. Grasshopper herbivory led to increases in herb cover at the expense of grasses. Herb cover increased more strongly in species-rich mixtures. We conclude that selective herbivory changes the functional composition of plant communities and that compositional changes due to selective herbivory depend on plant species richness.  相似文献   

7.
Herbivory through gastropods has among others been proposed as a potential factor responsible for the river corridor distribution of plant species, which is a well known but poorly understood ecological pattern. Since floodplains are characterised by seasonally changing abiotic conditions, viz. floods during winter and spring and severe summer drought that are unsuitable for gastropods they may present safe habitats for highly palatable plant species.In the present study we compared species composition of gastropods and vegetation of twelve grassland sites situated within three floodplain compartments along the Upper Rhine. Additionally, we studied the palatability of 7 days and 25 days old seedlings of five typical floodplain plant species and five mesic grassland species to the slug Deroceras reticulatum in laboratory experiments.Our results showed that both vegetation and gastropod community composition but not gastropod diversity and abundance differed between floodplain compartments. Owing to omnivory of most gastropods the similarity structure of sites based on plants and gastropods was not significantly correlated. In general, slug herbivory significantly reduced survival and biomass of 7 days old seedlings, but responses were species-specific. In contrast, with the exception of Arabis nemorensis, Viola pumila and Taraxacum sect. Ruderalia biomass of 25 days old seedlings was not significantly affected by slug herbivory. Although the response of floodplain plant species as a group to slug herbivory did not differ from common grassland species, our results suggest that gastropods may potentially influence the distribution pattern of the highly palatable river corridor species Arabis nemorensis and Viola pumila. However, further research is needed to estimate the damage to river corridor plants through gastropod herbivory and its effect on competitive relationships under natural conditions.  相似文献   

8.
Close spatial relationships between plant species are often important for defense against herbivory. The associational plant defense may have important implications for plant community structure, species diversity, and species coexistence. An increasing number of studies have focused on associational plant defense against herbivory at the scale of the individual plant and its nearest neighbors. However, the average neighborhood effects between plant species at the scale of whole plant communities have received almost no attention. The aims of this study were to determine patterns of spatial relationship between different plant species that can provide effective defense against herbivory. We conducted a manipulative experiment using sheep and three native plant species with different palatability. Consumption of palatable plants by herbivores was largest when the three plant species were isolated in three patches and independent of each other. A homogenous and spatially equal neighbor relationship between the three species did not reduce the risk of herbivory of palatable species compared to isolation of these species, but it reduced the total intake of all plant species. The palatable species was subject to less herbivory in a complex spatial neighborhood of several plant species. High complexity of spatial neighborhood resulted in herbivores passively reducing selectivity, thereby reducing the probability of damage to palatable species in the community, or making inaccurate judgments in foraging selectivity between and within patches, thereby reducing the vulnerability of palatable plants and even the whole plant community. We conclude that compelling herbivores to passively reduce the magnitude of foraging selectivity by establishing spatially complex neighborhoods between plant species is a compromise and optimal spatial strategy by plants to defend themselves again herbivory. This may contribute not only to maintenance of plant species diversity but also to a stable coexistence between herbivores and plants in grassland ecosystems.  相似文献   

9.
Our goal was to disentangle the effects of stress removal and disturbance on plant communities of a Mediterranean rangeland, La Crau (southeastern France). We compared undisturbed reference steppe vegetation with vegetation impacted by changes in land use such as earlier phases of cultivation (dating back 20 years) and/or current water infiltrations (revealed by the presence of Brachypodium ph?nicoïdes), since the establishment of adjacent hay meadows. We considered plots with and without brambles (Rubus ulmifolius), an indigenous shrub species that had colonized the area after the land-use changes. We monitored the composition and measured the taxonomic richness and richness of functional groups, evenness and similarities of plant communities. The species richness of the undisturbed community was significantly higher than that of all disturbed plant communities. Although cultivation led to the dominance of ruderal species, the removal of water stress had a stronger negative impact, enabling the establishment of herbaceous competitor species such as B. ph?nicoïdes. The dominance of this species resulted in a significant decline in species richness and evenness after water stress removal. The presence of brambles correlating with former cultivation and/or current water infiltration did not have a significant impact on plant species richness in the vicinity of bramble bushes, although it significantly modified the composition of the adjacent herbaceous vegetation. Our study highlights again the low resilience of Mediterranean dry grasslands after disturbance. While both the disturbance and the water stress removal resulted in changes within the plant community, our findings reveal a stronger impact of the water stress removal. Water infiltration led to decreased plant species richness and evenness because the greater availability of water favored competitor species over the stress-tolerant xeric species. Therefore, for restoring the original steppe species richness, the priority will be to control water infiltrations, even before any scrub-clearing is undertaken to control bramble colonization.  相似文献   

10.
The addition of nutrients has been shown to decrease the species richness of plant communities. Herbivores feed on dominant plant species and should release subdominant species from competitive exclusion at high levels of nutrient availability with a severe competitive regime. Therefore, the effects of nutrients and invertebrate herbivory on the structure and diversity of plant communities should interact. To test this hypothesis, we used artificial plant communities in microcosms with different levels of productivity (applying fertilizer) and herbivory (adding different numbers of the snail, Cepaea hortensis, and the grasshopper, Chorthippus parallelus). For analyses, we assigned species to three functional groups: grasses, legumes and (non-leguminous) herbs. With the addition of nutrients aboveground biomass increased and species richness of plants decreased. Along the nutrient gradient, species composition shifted from a legume-dominated community to a community dominated by fast-growing annuals. But only legumes showed a consistent negative response to nutrients, while species of grasses and herbs showed idiosyncratic patterns. Herbivory had only minor effects, and bottom–up control was more important than top–down control. With increasing herbivory the biomass of the dominant plant species decreased and evenness increased. We found no interaction between nutrient availability and invertebrate herbivory. Again, species within functional groups showed no consistent responses to herbivory. Overall, the use of the functional groups grasses, legumes and non-leguminous herbs was of limited value to interpret the effects of nutrients and herbivory during our experiments.  相似文献   

11.
The role of unpalatable plant species as biological antiherbivore refuges for palatable species is well-documented at community level particularly in harsh environments. In productive sub-humid temperate grassland subjected to domestic grazing, we examined the protective effect of Eryngium horridum on plant community structure and floristic composition, and evaluated whether these changes impacted on a number of morphological traits of grasses, related to grazing resistance. We also investigated, for a palatable grass species (Stipa neesiana) the existence of morphological differences between protected and unprotected plants and if this eventual variation was either plastic or genetic. The study consisted of a field survey where we compared paired patches, with and without E. horridum, and a greenhouse experiment where we evaluated individuals of S. neesiana coming from both patch types over a 11 months period. Patches dominated by E. horridum had lower richness and cover of forbs than patches without the forb, and similar richness but greater cover of cool-season tussock palatable grasses, which suggests a protective role on the latter. Grasses in these patches also had longer blades and sheaths and lower specific leaf area. The morphological differences of S. neesiana individuals collected from both patch types disappeared after 11 months growth in a common environment which revealed significant phenotypic plasticity in this species. These results suggest the existence of plant-to-plant facilitation in a productive ecosystem not only at community level, through changes in species richness and the promotion of palatable grasses, but also at population level, through plastic changes in aboveground morphological traits. Both facilitation and plasticity, would contribute to the persistence of threatened palatable grasses in the heavy grazed productive ecosystems.  相似文献   

12.
13.
Interspecific facilitation contributes to the assembly of desert plant communities. However, we know little of how desert communities invaded by exotic species respond to facilitation along regional-scale aridity gradients. These measures are essential for predicting how desert plant communities might respond to concomitant plant invasion and environmental change. Here, we evaluated the potential for Bromus tectorum (a dominant invasive plant species) and the broader herbaceous plant community to form positive associations with native shrubs along a substantial aridity gradient across the Great Basin, Mojave, and San Joaquin Deserts in North America. Along this gradient, we sampled metrics of abundance and performance for B. tectorum, all native herbaceous species combined, all exotic herbaceous species combined, and the total herbaceous community using 180 pairs of shrub and open microsites. Across the gradient, B. tectorum formed strong positive associations with native shrubs, achieving 1.6–2.2 times greater abundance, biomass, and reproductive output under native shrubs than away from shrubs, regardless of relative aridity. In contrast, the broader herbaceous community was not positively associated with native shrubs. Interestingly, increasing B. tectorum abundance corresponded to decreasing native abundance, native species richness, exotic species richness, and total species richness under but not away from shrubs. Taken together, these findings suggest that native shrubs have considerable potential to directly (by increasing abundance and performance) and indirectly (by increasing competitive effects on neighbors) facilitate B. tectorum invasion across a large portion of the non-native range.  相似文献   

14.
Riparian Plant Restoration in Summer-Dry Riverbeds of Southeastern Spain   总被引:2,自引:0,他引:2  
An evaluation was made of the development of two experimental plots where restoration of dominant riparian plant species was conducted in December 1991 along two semiarid Mediterranean summer‐dry watercourses. An overall comparison was made of the vegetation structure, species cover, floral composition, and species richness of the plots restored using vegetation from nearby undisturbed plots along the same watercourse. The monitoring was performed in October 1993, October 1995, September 1997, and October 1999. In the restored zones previously rooted cuttings of the species most representative of these communities were planted, using the undisturbed zones as vegetation models. Climatological conditions (particularly the rainfall regime during the planting period) substantially favored the success of the planting establishment. The results show that a simple planting technique accompanied by monitoring during the first year is adequate to achieve success in establishment of planting species. It is necessary to take precautions against herbivory of small plants of Chamaerops humilis, Ficus carica, and Retama sphaerocarpa. The planting itself causes some disturbance in the soil that may alter the species composition, giving an advantage to ruderal species over others. More time is needed to attain coverage, frequency, and species composition comparable with that of undisturbed zones.  相似文献   

15.
Nutrient cycling in terrestrial ecosystems is affected by various factors such as plant diversity and insect herbivory. While several studies suggest insect herbivory to depend on plant diversity, their interacting effect on nutrient cycling is unclear. In a greenhouse experiment with grassland microcosms of one to six plant species of two functional groups (grasses and legumes), we tested the influence of plant species richness (diversity) and functional composition on plant community biomass production, insect foliar herbivory, soil microbial biomass, and nutrient concentrations in throughfall. To manipulate herbivory, zero, three or six generalist grasshoppers (Chorthippus parallelus) were added to the plant communities. Increasing plant species richness increased shoot biomass and grasshopper performance, without significantly affecting root biomass or insect herbivory. Plant functional composition affected all of these parameters, e.g. legume communities showed the highest shoot biomass, the lowest grasshopper performance and suffered the least herbivory. Nutrient concentrations (dissolved mineral N, PO4‐P, SO4‐S) and pH in throughfall increased with herbivory. PO4‐P and pH increases were positively affected by plant diversity, especially under high herbivore pressure. Plant functional composition affected several throughfall variables, sometimes fully explaining diversity effects. Increasing plant diversity tended to increase soil microbial biomass, but only under high herbivore pressure. Faeces quantities strongly correlated with changes in pH and PO4‐P; frass may therefore be an important driver of throughfall pH and a main source of PO4‐P released from living plants. Our results indicate that insect herbivory may significantly influence fast nutrient cycling processes in natural communities, particularly so in managed grasslands.  相似文献   

16.
Large wild ungulates are a major biotic factor shaping plant communities. They influence species abundance and occurrence directly by herbivory and plant dispersal, or indirectly by modifying plant‐plant interactions and through soil disturbance. In forest ecosystems, researchers’ attention has been mainly focused on deer overabundance. Far less is known about the effects on understory plant dynamics and diversity of wild ungulates where their abundance is maintained at lower levels to mitigate impacts on tree regeneration. We used vegetation data collected over 10 years on 82 pairs of exclosure (excluding ungulates) and control plots located in a nation‐wide forest monitoring network (Renecofor). We report the effects of ungulate exclusion on (i) plant species richness and ecological characteristics, (ii) and cover percentage of herbaceous and shrub layers. We also analyzed the response of these variables along gradients of ungulate abundance, based on hunting statistics, for wild boar (Sus scrofa), red deer (Cervus elaphus) and roe deer (Capreolus capreolus). Outside the exclosures, forest ungulates maintained higher species richness in the herbaceous layer (+15%), while the shrub layer was 17% less rich, and the plant communities became more light‐demanding. Inside the exclosures, shrub cover increased, often to the benefit of bramble (Rubus fruticosus agg.). Ungulates tend to favour ruderal, hemerobic, epizoochorous and non‐forest species. Among plots, the magnitude of vegetation changes was proportional to deer abundance. We conclude that ungulates, through the control of the shrub layer, indirectly increase herbaceous plant species richness by increasing light reaching the ground. However, this increase is detrimental to the peculiarity of forest plant communities and contributes to a landscape‐level biotic homogenization. Even at population density levels considered to be harmless for overall plant species richness, ungulates remain a conservation issue for plant community composition.  相似文献   

17.
Herbivores exert a strong influence on the species composition and richness of plant communities, but the magnitude of their effect on belowground communities remains poorly understood. While an increasing number of studies acknowledge the importance of documenting belowground effects of herbivores, very few of these evaluate variation in the strength of the response from aboveground to belowground communities. Our study documents the long-term consequences of sustained deer herbivory for plant and arthropod communities adjacent to 15 exclosures that have been in place since 1996. We hypothesized that herbivory would alter the composition and diversity of communities, but the strength of the effects of herbivory would weaken from plants, to leaf-litter invertebrates, and to belowground microarthropod communities. First, we found that herbivory negatively impacted plant seedling and sapling abundance and performance, reduced the abundance of ants and the taxonomic richness of arthropods in the litter layer and reduced the richness of soil microarthropod communities. Second, in contrast to our hypothesis, the magnitude of effect size did not vary among trophic levels, indicating that effects of deer herbivory cascade from plants to the leaf-litter and soil arthropod communities with equal strength. While much recent research has focused on how specific traits of plants may mediate the effects of herbivory on associated species, our results suggest that indirect effects of herbivory might influence many components of belowground communities.  相似文献   

18.
Diverse communities of bacteria inhabit plant leaves and roots and those bacteria play a crucial role for plant health and growth. Arabidopsis thaliana is an important model to study plant pathogen interactions, but little is known about its associated bacterial community under natural conditions. We used 454 pyrosequencing to characterize the bacterial communities associated with the roots and the leaves of wild A. thaliana collected at 4 sites; we further compared communities on the outside of the plants with communities in the endophytic compartments. We found that the most heavily sequenced bacteria in A. thaliana associated community are related to culturable species. Proteobacteria, Actinobacteria, and Bacteroidetes are the most abundant phyla in both leaf and root samples. At the genus level, sequences of Massilia and Flavobacterium are prevalent in both samples. Organ (leaf vs root) and habitat (epiphytes vs endophytes) structure the community. In the roots, richness is higher in the epiphytic communities compared to the endophytic compartment (P = 0.024), while the reverse is true for the leaves (P = 0.032). Interestingly, leaf and root endophytic compartments do not differ in richness, diversity and evenness, while they differ in community composition (P = 0.001). The results show that although the communities associated with leaves and roots share many bacterial species, the associated communities differ in structure.  相似文献   

19.
Loss of plant biodiversity can result in reduced abundance and diversity of associated species with implications for ecosystem functioning. In ecosystems low in plant species diversity, such as Neotropical mangrove forests, it is thought that genetic diversity within the dominant plant species could play an important role in shaping associated communities. Here, we used a manipulative field experiment to study the effects of maternal genotypic identity and genetic diversity of the red mangrove Rhizophora mangle on the composition and richness of associated soil bacterial communities. Using terminal restriction fragment length polymorphism (T‐RFLP) community fingerprinting, we found that bacterial community composition differed among R. mangle maternal genotypes but not with genetic diversity. Bacterial taxa richness, total soil nitrogen, and total soil carbon were not significantly affected by maternal genotypic identity or genetic diversity of R. mangle. Our findings show that genotype selection in reforestation projects could influence soil bacterial community composition. Further research is needed to determine what impact these bacterial community differences might have on ecosystem processes, such as carbon and nitrogen cycling.  相似文献   

20.
Defoliation through herbivory is well known to affect target plants and their associated belowground properties, but the response of plants and their soil environment to defoliation of their neighbours is less well understood. We performed a controlled shade‐house experiment involving three plant species that colonize New Zealand floodplains during primary succession, i.e. a palatable N2‐fixing shrub (Carmichaelia odorata), a palatable deciduous small tree (Fuchsia excorticata) and a less palatable evergreen tree (Weinmannia racemosa). All species were grown in large pots for 40 months both singly and in two species pairs, and either one or both of the species grown in pairs were clipped to simulate herbivory. Responses of growth and foliar nutrient status to clipping varied strongly among species, with Carmichaelia having the largest response and Fuchsia having the smallest. Carmichaelia also enhanced soil microbial biomass and activity, and foliar N concentrations of Weinmannia. However, this did not translate to a net positive effect; instead Carmichaelia competitively reduced growth and foliar P concentrations of both other species. Most effects of Carmichaelia on the soil microflora, and growth and nutrient status of its neighbours, disappeared when Carmichaelia was clipped. Further, the effect of clipping Carmichaelia had a stronger impact on growth, soil activity and nutrient status of the other two species than did the clipping of those species. These results contradict expectations that N2‐fixing plants should promote growth of other species in pioneer communities or that defoliation of N2‐fixers exacerbate positive effects; in our study, defoliation of Carmichaelia merely mitigated the negative effects that it had on other species. They also suggest that interplay of competition and differential herbivory among coexisting plants has important implications for soil microflora and processes, relative nutrient acquisition and stoichiometry of coexisting plant species, and potentially plant community development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号