首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 815 毫秒
1.
In previous experiments with many gibberellins (GAs) and GA derivatives applied to Lolium temulentum L., quite different structural requirements were evident for stem elongation on the one hand and for the promotion of flowering on the other. Whereas hydroxylation at carbons 12, 13 and 15 enhanced flowering relative to stem growth, the reverse was the case at carbon 3 (L.T. Evans et al. 1990, Planta 182, 97–106). The significance of hydroxylation at carbon 3 is examined in this paper. The application of inhibitors of 3β-hydroxylation, including C/D-ring-rearranged GAs, reduced stem growth but, in the case of the two acylcyclohexanediones, increased the flowering response when applied on the inductive long day. Later applications of the acylcyclohexanediones, made after floral initiation had occurred, were inhibitory to flowering, suggesting that subsequent inflorescence development requires 3β-hydroxylated GAs. Applications of the 3α-hydroxy epimers of GA1, GA3 and GA4 gave slightly less promotion of flowering in comparison with the 3β-hydroxy GAs, but far less promotion of stem elongation, except in the case of 3-epi-GA4, which was comparable to GA4. The 3α-hydroxy epimer of 2,2-dimethyl GA4 gave less promotion of flowering than its 3β-hydroxy epimer but almost no promotion of stem elongation. The 3α-hydroxy epimers of GA3 and 2,2-dimethyl GA4 did not act as competitive inhibitors of the stem elongation elicited by GA3 and 2,2-dimethyl GA4, respectively. These results extend the differences in GA structure which favour flowering as opposed to stem elongation, and indicate that 3-hydroxylation and its epimeric configuration are of much greater importance to stem elongation than to flower initiation in Lolium.  相似文献   

2.
Shoots of mature grafted propagules of Picea abies (L.) Karst. metabolized [3H]gibberellin A4 (GA4) to at least 14 acidic substances, two of which were tentatively identified by gas-liquid radiochromatography as GA2 (possibly an artifact) and GA34. [3H]GA9 was converted into a number of metabolites, one of which was chromatographically similar to, but not identical with, GA4. Metabolism was maximally 61 and 57% over 48 hours for GA4 and GA9, respectively, and was correlated with the rate of change (i.e. increase followed by decrease) in endogenous GA-like substances as shoot elongation progressed. Propagules covered with a clear plastic film, a treatment which promotes flowering, metabolized [3H]GA4 more slowly than did control plants in the open. Inasmuch as a GA4/7 mixture can also promote flowering in P. abies, the retarded metabolism of [3H]GA4 may reflect the manner in which trees under plastic metabolize endogenous GA-like substances. If so, then the stimulating effect of this cultural treatment on flowering may come about through an increased level of endogenous, less polar GA-like substances.  相似文献   

3.
Plants of Lolium temulentum L. cv. Ceres grown under short days (SDs) can be induced to initiate inflorescences either by exposure to one long day (LD) or by single applications of some gibberellins (GAs), which also enhance the flowering response to one LD. Single doses of up to 25 μg per plant of C-16, 17-dihydro-GA5 were about as effective as GA5 for promoting flowering after one LD but inhibited stem elongation by up to 40% over three weeks. The promotion of flowering but not the inhibition of elongation by 16, 17-dihydro-GA5 was reduced in SDs or in LDs low in far-red (FR) radiation. With shoot apices cultured in vitro, 16, 17-dihydro-GA5 was more florigenic than GA3 for apices excised after one LD of 14 h or more, but less florigenic for apices excised from plants in shorter days. 16, 17-Dihydro-GA5 was ineffective compared with GA1, GA3 and GA5 for α-amylase production by half-seeds of Lolium, a response concordant with its effect on stem elongation. As with GA5, 16, 17-dihydro derivatives of GA1, GA3, GA20 and several other GAs were more effective for flowering and less effective for stem elongation than the GAs from which they were derived. Hydroxylation at C-17 and/or C-16 generally reduced the effectiveness of 16, 17-dihydro-GA5 for flowering. These results extend the known features of GA structure which favour flowering relative to stem elongation in L. temulentum. Moreover, C-16, 17-dihydro-GA5 mimics, in its daylength- and wavelength-dependence and lack of stem elongation, characteristics of the LD stimulus in L. temulentum.  相似文献   

4.
Combinations of far-red light (FR) (4 min) and gibberellic acid (GA3), given at the beginning of a daily 12-h dark period in a growth room, were used to study floral induction in four maturity genotypes of the milo group of sorghum (Sorghum bicolor (L.) Moench). The 12-h dark period without GA3 application or FR induced flowering in only the early genotype; FR hastened initiation in the early genotype, while GA3 hastened floral initiation in the two intermidiate-flowering genotypes. GA3 and FR together had a strong synergistic effect, hastening floral initiation by 30 to more than 80 d in the early and intermediate genotypes. Red light (R) did not hasten flowering; FR preceded by R gave the same effect as FR alone. GA3 promoted stem elongation equally whether floral initiation occurred or not; thus, its effect on stem elongation was independent of floral initiation. The capacity of GA3 to induce flowering in sorghum, a short-day plant, seems to be enhanced by phytochrome being in the PR form at the beginning of the night when GA3 was applied.Abbreviations FR far-red light - GA(s) gibberellin(s) - GA3 gibberellic acid - R red light  相似文献   

5.
The most common dwarfing genes in wheat, Rht-B1b and Rht-D1b, classified as gibberellin-insensitive (GAI) dwarfing genes due to their reduced response to exogenous GA, have been verified as encoding negative regulators of gibberellin signaling. In contrast, the response of gibberellin-responsive (GAR) dwarfing genes, such as Rht12, to exogenous GA is still unclear and the role of them, if any, in GA biosynthesis or signaling is unknown. The responses of Rht12 to exogenous GA3 were investigated on seedling vigour, spike phenological development, plant height and other agronomic traits, using F2∶3 and F3∶4 lines derived from a cross between Ningchun45 and Karcagi-12 in three experiments. The application of exogenous GA3 significantly increased coleoptile length and seedling leaf 1 length and area. While there was no significant difference between the dwarf and the tall lines at the seedling stage in the responsiveness to GA3, plant height was significantly increased, by 41 cm (53%) averaged across the three experiments, in the GA3-treated Rht12 dwarf lines. Plant height of the tall lines was not affected significantly by GA3 treatment (<10 cm increased). Plant biomass and seed size of the GA3-treated dwarf lines was significantly increased compared with untreated dwarf plants while there was no such difference in the tall lines. GA3-treated Rht12 dwarf plants with the dominant Vrn-B1 developed faster than untreated plants and reached double ridge stage 57 days, 11 days and 50 days earlier and finally flowered earlier by almost 7 days while the GA3-treated tall lines flowering only 1–2 days earlier than the untreated tall lines. Thus, it is clear that exogenous GA3 can break the masking effect of Rht12 on Vrn-B1 and also restore other characters of Rht12 to normal. It suggested that Rht12 mutants may be deficient in GA biosynthesis rather than in GA signal transduction like the GA-insensitive dwarfs.  相似文献   

6.
In Citrus, gibberellic acid (GA3) applied at the floral bud inductive period significantly reduces flowering intensity. This effect is being used to improve the fruit set of parthenocarpic cultivars that tend to flower profusely. However, the molecular mechanisms involved in the process remain unclear. To contribute to the knowledge of this phenomenon, adult trees of ‘Salustiana’ sweet orange were sprayed at the floral bud inductive period with 40?mg?L?1 of GA3 and the expression pattern of flowering genes was examined up to the onset of bud sprouting. Trees sprayed with paclobutrazol (PBZ, 2,000?mg L?1), a gibberellin biosynthesis inhibitor, were used to confirm the effects, and untreated trees served as control. Bud sprouting, flowering intensity, and developed shoots were evaluated in the spring. GA3 significantly reduced the number of flowers per 100 nodes by 72% compared to the control, whereas PBZ increased the number by 123%. Data of the expression pattern of flowering genes in leaves of GA3-treated trees revealed that this plant growth regulator inhibited flowering by repressing relative expression of the homolog of FLOWERING LOCUS T, CiFT, whereas PBZ increased flowering by boosting its expression. The activity of the homologs TERMINAL FLOWER 1, FLOWERING LOCUS C, SUPPRESSOR OF OVEREXPRESSION OF CONSTANS 1, and APETALA1 was not affected by the treatments. The number of flowers per inflorescence, in both leafy and leafless inflorescences, was not altered by GA3 but increased with PBZ; the latter paralleled LEAFY relative expression. These results suggest that GA3 inhibits flowering in Citrus by repressing CiFT expression in leaves.  相似文献   

7.
In this report, B9 treatment had no effect on the growing of rosette biennialScrophularia vernalis L.; it inhibited or slowed stem elongation. Applications of GA3 to B9 treated plants produced a significant increase of stem elongation, in relation to GA3 treated plants. Plants treated with only GA3 failed to flower; otherwise, the flowering of vernalized plants was not altered by GA3. Thus, B9 effect on flowering was tested by using GA3. B9 by itself induced flowering, it increased inflorescence formation in vernalized plants without altering stem growth pattern in the most of cases. The induction or the stimulation of flowering brought about by B9 was not reversed by GA3; we may thus hypothesize that flowering by B9 oannot be traced back to gibberellin biosynthesis.  相似文献   

8.
A Gibberellin-Deficient Brassica Mutant-rosette   总被引:4,自引:3,他引:1  
A single-gene mutant (rosette [ros/ros]) in which shoot growth and development are inhibited was identified from a rapid cycling line of Brassica rapa (syn campestris). Relative to normal plants, the mutant germinated slowly, had delayed or incomplete floral development, and reduced leaf, petiole, and internode growth. The exogenous application of GA3 by foliar spray or directly to the shoot tip of rosette resulted in rapid flowering, bolting (shoot elongation), and viable seed production. Shoots of rosette contained endogenous levels of total gibberellin (GA)-like substances (`Tan-ginbozu' dwarf rice assay) of about one-tenth of that of the normal rapid-cycling line of B. rapa which consisted almost entirely of a very nonpolar, GA-like substance which yielded GA1 and GA3 upon mild acid hydrolysis. In a normal rapid-cycling B. rapa line, the nonpolar putative GA1 and GA3 conjugates were present, but additionally, free GA1 and GA3 were abundant and identified by gas chromatography-mass spectrometry-selected ion monitoring. The quantities of free GA1 and GA3 in the normal line and in rosette were quantified by GC-MS-SIM using [2H2]GA1 as an internal standard. Fourteen-day-old rosette and normal seedlings contained 5.3 and 23.2 ng GA1 per plant, respectively. At day 21 the rosette plants contained 7.7 and 26.1 nanograms per plant of GA1 and GA3, while normal plants contained 31.1 and 251.5 nanograms per plant, respectively. Thus, normal plants contained from four to ten times higher levels of total GA-like substances, GA1, or GA3, than rosette. The ros allele results in reduced GA level, yielding the rosette phenotype whose delayed germination and flowering, and reduced shoot growth responses indicate a probable role for endogenous GA1 and GA3 in the regulation of these processes in Brassica.  相似文献   

9.
The application of gibberellic acid (GA3) to the non-rosette long-day plant Lemna gibba G3 at concentrations from 0.1 to 100 mg/l did not induce flowering on short days and inhibited flowering on long days at concentrations of 1 mg/l and higher. On both short and long days GA3 concentrations above 1 mg/l caused a decrease in frond size and fresh and dry weight, but an increase in the rate of frond production and thus an increase in the # VF (number of vegetative fronds). Identical results were obtained when gibberellin A7 was used instead of GA3.  相似文献   

10.
为探讨GA_3和Spd对杜鹃(Rhododendron simsii)开花花期和开花品质的影响,研究了外源GA_3和Spd对杜鹃开花期光合特性和抗氧化系统的变化。结果表明,外源GA_3对花期有显著的提前作用,Spd对花期有明显的延迟作用,但两者均使花期延长、花径增大且成花率提高。GA_3和Spd处理提高了花期叶片的光合色素含量和净光合速率(Pn)、气孔导度(Gs)和胞间CO_2浓度(Ci);GA_3处理提高了叶片的蒸腾速率(Tr),而Spd使叶片的Tr下降,两者均有效缓解了末花期叶绿素含量的下降。GA_3和Spd处理显著降低了花瓣MDA含量,提高了抗氧化酶SOD、POD和CAT活性,并减缓了末花期SOD的下降,有效延缓了衰老进程,延长花期。以1 600 mg L~(–1) GA_3和0.10 mmol L~(-1) Spd处理效果较好,能有效提高杜鹃花的观赏品质。  相似文献   

11.
CCC, uniconazol, ancymidol, prohexadione-calcium (BX-112), and CGA 163′935, which represent three groups of gibberellin (GA) biosynthesis inhibitors, were applied as a soil drench to Sorghum bicolor cultivars 58M (phyB-1, phytochrome B-deficient mutant) and 90M (phyB-2, equivalent phenotypically to wild type, PHYB, except for small differences in flowering dates). The inhibitors that block steps before GA12 (CCC, uniconazol, and ancymidol) lowered the concentrations of all endogenous early-C13α-hydroxylation pathway GAs found in sorghum: GA12, GA53, GA44, GA19, GA20, GA1, and GA8. In contrast, the inhibitors that block the conversion of GA20→ GA1, (CGA 163′935 and BX-112) drastically reduced GA1 and GA8 levels, but they either did not change or caused accumulation of intermediates from GA12 to GA20. Combinations of pre-GA12 inhibitors and GA3 plus GA1 strongly reduced GAs other than GA1 and GA3. Each of these compounds inhibited shoot growth in both cultivars and delayed floral initiation in 90M. Floral initiation of 58M was also delayed by CCC, uniconazol, and ancymidol but not by CGA 163`935 and BX-112. This separation of shoot elongation from floral initiation in sorghum is novel. Both inhibition of shoot growth and delayed floral initiation were almost completely relieved by a mixture of GA3 and GA1 in both 58M and 90M. This observation, plus the much lower levels of endogenous GA3 than of GA1 observed in these experiments, implies that GA1 is the major endogenous GA active in shoot elongation. CGA 163′935 and BX-112 also failed to promote tillering in 58M, whereas inhibitors active before GA12 did so. The possibility that the GA20→ GA1 inhibitors fail to block flowering and promote tillering in 58M because biosynthetic intermediates between GA12 and GA20 accumulate and/or because 58M is altered in GA metabolism in this same region of the biosynthetic pathway is discussed. Received April 7, 1998; accepted July 31, 1998  相似文献   

12.
Flowering can be modified by gibberellins (GAs) in Pharbitis nil Chois. in a complex fashion depending on GA type, dosage, and the timing of treatment relative to a single inductive dark period. Promotion of flowering occurs when GAs are applied 11 to 17 hours before a single inductive dark period. When applied 24 hours later the same GA dosage is inhibitory. Thus, depending on their activity and the timing of application there is an optimum dose for promotion of flowering by any GA, with an excessive dose resulting in inhibition. Those GAs highly promotory for flowering at low doses are also most effective for stem elongation (2,2-dimethyl GA4 GA32 > GA3 > GA5 > GA7 > GA4). However, the effect of GAs on stem elongation contrasts markedly with that on flowering. A 10- to 50-fold greater dose is required for maximum promotion of stem elongation, and the response is not influenced by time of application relative to the inductive dark period. These differing responses of flowering and stem elongation raise questions about the use of relatively stable, highly bioactive GAs such as GA3 to probe the flowering response. It is proposed that the `ideal' GAs for promoting flowering may be highly bioactive but with only a short lifetime in the plant and, hence, will have little or no effect on stem elongation.  相似文献   

13.
Talon M  Zeevaart JA 《Plant physiology》1990,92(4):1094-1100
Stem growth and flowering in the long-day plant Silene armeria L. are induced by exposure to a minimum of 3 to 6 long days (LD). Stem growth continues in subsequent short days (SD), albeit at a reduced rate. The growth retardant tetcyclacis inhibited stem elongation induced by LD, but had no effect on flowering. This indicates that photoperiodic control of stem growth in Silene is mediated by gibberellins (GA). The objective of this study was to analyze the effects of photoperiod on the levels and distribution of endogenous GAs in Silene and to determine the nature of the photoperiodic after-effect on stem growth in this plant. The GAs identified in extracts from Silene by full-scan combined gas chromatography-mass spectrometry (GC-MS), GA12, GA53, GA44, GA17, GA19, GA20, GA1, GA29, and GA8, are members of the early 13-hydroxylation pathway. All of these GAs were present in plants under SD as well as under LD conditions. The GA53 level was highest in plants in SD, and decreased in plants transferred to LD conditions. By contrast, GA19, GA20, and GA1 initially increased in plants transferred to LD, and then declined. Likewise, when Silene plants were returned from LD to SD, there was an increase in GA53, and a decrease in GA19, GA20, and GA1 which ultimately reached levels similar to those found in plants kept in SD. Thus, measurements of GA levels in whole shoots of Silene as well as in individual parts of the plant suggest that the photoperiod modulates GA metabolism mainly through the rate of conversion of GA53. As a result of LD induction, GA1 accumulates at its highest level in shoot tips which, in turn, results in stem elongation. In addition, LD also appear to increase the sensitivity of the tissue to GA, and this effect is presumably responsible for the photoperiodic after-effect on stem elongation in Silene.  相似文献   

14.
Changes in endogenous gibberellin-like substances (GAs) and related compounds in the shoot apices of Lolium temulentum during and after flower induction by one long day was examined for plants grown in three consecutive years. The total GA level in the shoot apical tissue was high (up to 42 micrograms per gram dry weight, or 3 × 10−5 molar GA3 equivalents), increasing several-fold on the day after the long day and then declining. Of the many GA-like substances present, the putative polyhydroxylated components—with HPLC retention times between those of GA8 (three hydroxyls) and GA32 (four hydroxyls), and accounting for about a quarter of the total GA activity—were most consistent and striking in their changes. Their level in the apices increased 3- to 5-fold on the day after the long day and then subsided. When various GAs were applied to plants in noninductive short days, flower initiation was induced by several, most notably by GA32, GA5, 2,2-dimethyl GA4, GA3, and GA7. GA32 was most like one long day in eliciting a strong flowering response while having little effect on stem growth, whereas GA1 had the opposite effect. It is suggested that highly hydroxylated C-19 GAs may play a central role in the induction of flowering in this long-day plant.  相似文献   

15.
Photoperiod Control of Gibberellin Levels and Flowering in Sorghum   总被引:9,自引:0,他引:9       下载免费PDF全文
Regulation of rhythmic peaks in levels of endogenous gibberellins (GAs) by photoperiod was studied in the short-day monocot sorghum (Sorghum bicolor [L.] Moench). Comparisons were made between three maturity (Ma) genotypes: 58M (Ma1Ma1, Ma2Ma2, phyB-1phyB-1, and Ma4Ma4 [a phytochrome B null mutant]); 90M (Ma1Ma1, Ma2Ma2, phyB-2phyB-2, and Ma4Ma4); and 100M (Ma1Ma1, Ma2Ma2, PHYBPHYB, and Ma4Ma4). Plants were grown for 14 d under 10-, 14-, 16-, 18-, and 20-h photoperiods, and GA levels were assayed by gas chromatography-mass spectrometry every 3 h for 24 h. Under inductive 10-h photoperiods, the peak of GA20 and GA1 levels in 90M and 100M was shifted from midday, observed earlier with 12-h photoperiods, to an early morning peak, and flowering was hastened. In addition, the early morning peaks in levels of GA20 and GA1 in 58M under conditions allowing early flowering (10-, 12-, and 14-h photoperiods) were shifted to midday by noninductive (18- and 20-h) photoperiods, and flowering was delayed. These results are consistent with the possibility that the diurnal rhythm of GA levels plays a role in floral initiation and may be one way by which the absence of phytochrome B causes early flowering in 58M under most photoperiods.  相似文献   

16.
Significant male and female flowering (cone bud production) by girdled branches of 6-year-old Douglas fir (Pseudotsuga menziesii (Mirb. Franco) seedlings was promoted by applications (mid-April to June) of 1.6 or 3.2 mg per branch (in total) of certain non-polar gibberellins (GA's). Girdling alone was ineffective. When tested alone, a mixture of GA4/7 was most effective. GA9 less so, while GA5 and the more polar GA3 were essentially ineffective. For female cone buds GA4/7+ GA9 were synergistically effective, but for male cone buds GA4/7 alone was best. The auxin naphthaleneacetic acid (NAA) was not tested alone, but at low dosage (0.175 mg/branch in total) NAA enhanced the flowering efficacy of GA's for both sexes; at a high dosage (0.875 mg/branch in total) male cone bud production was further enhanced, but only at the expense of females. For female flowering the best treatment (90% frequency of flowering 6.8 cone buds/branch), was GA4/7+ GA9+ low NAA; for male flowering, it was GA4/7+ high NAA (30% frequency and 4.2 cone buds/branch. Frequency of flowering for controls was 18% and 0%, average number of cone buds/branch was 0.9 and 0, for females and males, respectively. The successful treatments did not affect promordia initiation, rather they caused the differentiation of previously initiated, but undetermined, lateral primordia into cone and latent buds at the expense of vegetative bud differentiation. The lack of success reported by earlier workers in promoting flowering in Pinaceae species by GA's appears to be the unfortunate result of selecting GA3 for initial testing. The practical implications of this early and enhanced flowering by non-polar GA's seedlings of a commercially important conifer are discussed in relation to accelerating the processes of tree improvement.  相似文献   

17.
Recently, it was found that stem elongation and flowering of stock Matthiola incana (L.) R. Br. are promoted by exogenous gibberellins (GAs), including GA4, and also by acylcyclohexanedione inhibitors of GA biosynthesis, such as prohexadione‐calcium (PCa) and trinexapac‐ethyl (TNE). Here, because it was unclear how GA biosynthetic inhibitors could promote stem elongation and flowering, their effect on GA biosynthesis has been examined by quantifying endogenous GA levels; also, the sensitivity of stem elongation and flowering to various GAs in combination with the inhibitors was examined. Stem elongation and flowering were most effectively promoted by GA4 when combined with PCa and, next in order, by 2,2‐dimethyl‐GA4, PCa, GA4+TNE, TNE, GA9+PCa and by GA4. There was little or no promotion by GA1, GA3, GA9, GA13, GA20 and 3‐epi‐2,2‐dimethyl‐GA4. Both the promotive effects of the acylcyclohexanediones on stem elongation and flowering, particularly when applied with GA4, and the fact that TNE caused a build‐up of endogenous GA4 imply that one effect of TNE at the lower dose involved an inhibition of 2β‐hydroxylation of GA4 rather than an inhibition of 20‐oxidation and 3β‐hydroxylation of GAs which were precursors of GA4. Overall, these results indicate that: (1) GAs with 3β‐OH and without 13‐OH groups (e.g. GA4) are the most important for stem elongation and flowering in M. incana; (2) growth promotion rather than inhibition can result if an acylcyclohexanedione acts predominantly to slow 2β‐hydroxylation and so slows inactivation of active gibbberellins, including GA4. It follows that a low dose of an acylcyclohexanedione can be a ‘growth enhancer’ for any applied GA that is liable to inactivation by 2β‐hydroxylation.  相似文献   

18.
Five GAs, GA1, GA3, GA19, GA20, and GA29, were identified in extracts from mature leaf and shoot apical meristem of flowering and non-flowering sugarcane (Saccharum spp. hybrids) by combined GC/MS. The presence of ABA was also confirmed.  相似文献   

19.
Sorghum bicolor genotypes, near isogenic with different alleles at the third maturity locus, were compared for development, for responsiveness to GA3 and a GA synthesis inhibitor, and occurrence and concentrations of endogenous GAs, IAA, and ABA. At 14 days the genotype 58M (ma3Rma3R) exhibited 2.5-fold greater culm height, 1.75-fold greater total height, and 1.38-fold greater dry weight than 90M (ma3ma3) or 100M (Ma3Ma3). All three genotypes exhibited similar shoot elongation in response to GA3, and 58M showed GA3-mediated hastening of floral initiation when harvested at day 18 or 21. Both 90M and 100M had exhibited hastening of floral initiation by GA3 previously, at later application dates. Tetcyclacis reduced height, promoted tillering, and delayed flowering of 58M resulting in plants which were near phenocopies of 90M and 100M. Based on bioassay activity, HPLC retention times, cochromatography with 2H2-labeled standards on capillary column GC and matching mass spectrometer fragmentation patterns (ions [m/z] and relative abundances), GA1, GA19, GA20, GA53, and GA3 were identified in extracts of all three genotypes. In addition, based on published Kovats retention index values and correspondence in ion masses and relative abundances, GA44 and GA17 were detected. Quantitation was based on recovery of coinjected, 2H2-labeled standards. In 14 day-old-plants, total GA-like bioactivity and GA1 concentrations (nanograms GA/gram dry weight) were two- to six-fold higher in 58M than 90M and 100M in leaf blades, apex samples, and whole plants while concentrations in culms were similar. Similar trends occurred if data were expressed on a per plant basis. GA1 concentrations for whole plants were about two-fold higher in 58M than 90M and 100M from day 7 to day 14. Concentrations of ABA and IAA did not vary between the genotypes. The results indicate the mutant allele ma3R causes a two- to six-fold increase in GA1 concentrations, does not result in a GA-receptor or transduction mutation and is associated with phenotypic characteristics that can be enhanced by GA3 and reduced by GA synthesis inhibitor. These observations support the hypothesis that the allele ma3R causes an overproduction of GAs which results in altered leaf morphology, reduced tillering, earlier flowering, and other phenotypic differences between 58M and 90M or 100M.  相似文献   

20.
The effects of Tris-(2-diethylaminoethyl)-phosphate trihydrochloride (SK&F 7997-A3) on the development of 4 varieties of Pisum sativum were investigated. The compound inhibited shoot elongation of all 4 varieties by as much as 50% or more when seeds were soaked in solutions of the inhibitor for 12 hours before planting. Seed treatment also affected flowering by causing an increase in the number of nodes to the first flower in the early varieties Little Marvel and Alaska. The number of nodes preceding the first flower in the late varieties Dwarf and Tall Telephone was not affected by high concentrations of SK&F 7997-A3, but low concentrations appeared to cause a slight reduction in the number of nodes to flower.

The inhibitor had little effect on growth when applied to established seedlings; some slight inhibition was noted when high doses were applied to the shoot tip.

SK&F 7997-A3 suppressed the growth response of dwarf and tall peas to exogenous GA3. The compound did not inhibit biosynthesis of gibberellin by Fusarium moniliformc when present in shaken liquid cultures at concentrations as high as 10 mg/ml. The inhibitor suppressed the action of applied GA3 on shoot elongation when the 2 chemicals were applied in 3 ways: 1) inhibitor on lowermost compound leaf and GA3 on shoot tip; 2) GA3 on lowermost leaf and inhibitor on shoot tip; and 3) soaking of seeds in the 2 compounds combined for 12 hours prior to planting. The third method of dual treatment yielded evidence that SK&F 7997-A3 interacts noncompetitively with GA3 in the regulation of shoot elongation.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号