首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Cytochrome c oxidase from Saccharomyces cerevisiae is composed of nine subunits. Subunits I, II and III are products of mitochondrial genes, while subunits IV, V, VI, VII, VIIa and VIII are products of nuclear genes. To investigate the role of cytochrome c oxidase subunit VII in biogenesis or functioning of the active enzyme complex, a null mutation in the COX7 gene, which encodes subunit VII, was generated, and the resulting cox7 mutant strain was characterized. The strain lacked cytochrome c oxidase activity and haem a/a3 spectra. The strain also lacked subunit VII, which should not be synthesized owing to the nature of the cox7 mutation generated in this strain. The amounts of remaining cytochrome c oxidase subunits in the cox7 mutant were examined. Accumulation of subunit I, which is the product of the mitochondrial COX1 gene, was found to be decreased relative to other mitochondrial translation products. Results of pulse-chase analysis of mitochondrial translation products are consistent with either a decreased rate of translation of COX1 mRNA or a very rapid rate of degradation of nascent subunit I. The synthesis, stability or mitochondrial localization of the remaining nuclear-encoded cytochrome c oxidase subunits were not substantially affected by the absence of subunit VII. To investigate whether assembly of any of the remaining cytochrome c oxidase subunits is impaired in the mutant strain, the association of the mitochondrial-encoded subunits I, II and III with the nuclear-encoded subunit IV was investigated.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
Here, relationships between alterations in tissue-specific content, protein structure, activity, and/or assembly of respiratory complexes III and IV induced by mutations in corresponding genes and various human pathologies are reviewed. Cytochrome bc(1) complex and cytochrome c oxidase (COX) deficiencies have been detected in a heterogeneous group of neuromuscular and non-neuromuscular diseases in childhood and adulthood, presenting a number of clinical phenotypes of variable severity. Such disorders can be caused by mutations located either in mitochondrial genes or in nuclear genes encoding structural subunits of the complexes or corresponding assembly factors/chaperones. Of the defects in mitochondrial DNA genes, mutations in cytochrome b subunit of complex III, and in structural subunits I-III of COX have been described to date. As to defects in nuclear DNA genes, mutations in genes encoding the complexes assembly factors such as the BCS1L protein for complex III; and SURF-1, SCO1, SCO2, and COX10 for complex IV have been identified so far.  相似文献   

4.
Myogenesis induces mitochondrial proliferation, a decrease in reactive oxygen species (ROS) production, and an increased reliance upon oxidative phosphorylation. While muscles typically possess 20%-40% excess capacity of cytochrome c oxidase (COX), undifferentiated myoblasts have only 5%-20% of the mitochondrial content of myotubes and muscles. We used two muscle lines (C2C12, Sol8) and 3T3-L1 pre-adipocytes to examine if changes in COX regulation or activity with differentiation cause a shift in metabolic phenotype (i.e., more oxidative, less glycolytic, less ROS). COX activity in vivo can be suppressed by its inhibitor, nitric oxide, or sub-optimal substrate (cytochrome c) concentrations. Inhibition of nitric oxide synthase via L-NAME had no effect on the respiration of adherent undifferentiated cells, although it did stimulate respiration of myoblasts in suspension. While cytochrome c content increased during differentiation, there was no correlation with respiratory rate or reliance on oxidative metabolism. There was no correlation between COX specific activity and oxidative metabolism between cell type or in relation to differentiation. These studies show that, despite the very low activities of COX, undifferentiated myoblasts and pre-adipocytes possess a reserve of COX capacity and changes in COX with differentiation do not trigger the shift in metabolic phenotype.  相似文献   

5.
6.
A new mechanism on regulation of mitochondrial energy metabolism is proposed on the basis of reversible control of respiration by the intramitochondrial ATP/ADP ratio and slip of proton pumping (decreased H+/e- stoichiometry) in cytochrome c oxidase (COX) at high proton motive force delta p. cAMP-dependent phosphorylation of COX switches on and Ca2+-dependent dephosphorylation switches off the allosteric ATP-inhibition of COX (nucleotides bind to subunit IV). Control of respiration via phosphorylated COX by the ATP/ADP ratio keeps delta p (mainly delta psi(m)) low. Hormone induced Ca2+-dependent dephosphorylation results in loss of ATP-inhibition, increase of respiration and delta p with consequent slip in proton pumping. Slip in COX increases the free energy of reaction, resulting in increased rates of respiration, thermogenesis and ATP-synthesis. Increased delta psi(m) stimulates production of reactive oxygen species (ROS), mutations of mitochondrial DNA and accelerates aging. Slip of proton pumping without dephosphorylation and increase of delta p is found permanently in the liver-type isozyme of COX (subunit VIaL) and at high intramitochondrial ATP/ADP ratios in the heart-type isozyme (subunit VIaH). High substrate pressure (sigmoidal v/s kinetics), palmitate and 3,5-diiodothyronine (binding to subunit Va) increase also delta p, ROS production and slip but without dephosphorylation of COX.  相似文献   

7.
Eucaryotic cells contain at least two general classes of oxygen-regulated nuclear genes: aerobic genes and hypoxic genes. Hypoxic genes are induced upon exposure to anoxia while aerobic genes are down-regulated. Recently, it has been reported that induction of some hypoxic nuclear genes in mammals and yeast requires mitochondrial respiration and that cytochrome-c oxidase functions as an oxygen sensor during this process. In this study, we have examined the role of the mitochondrion and cytochrome-c oxidase in the expression of yeast aerobic nuclear COX genes. We have found that the down-regulation of these genes in anoxic cells is reflected in reduced levels of their subunit polypeptides and that cytochrome-c oxidase subunits I, II, III, Vb, VI, VII, and VIIa are present in promitochondria from anoxic cells. By using nuclear cox mutants and mitochondrial rho(0) and mit(-) mutants, we have found that neither respiration nor cytochrome-c oxidase is required for the down-regulation of these genes in cells exposed to anoxia but that a mitochondrial genome is required for their full expression under both normoxic and anoxic conditions. This requirement for a mitochondrial genome is unrelated to the presence or absence of a functional holocytochrome-c oxidase. We have also found that the down-regulation of these genes in cells exposed to anoxia and the down-regulation that results from the absence of a mitochondrial genome are independent of one another. These findings indicate that the mitochondrial genome, acting independently of respiration and oxidative phosphorylation, affects the expression of the aerobic nuclear COX genes and suggest the existence of a signaling pathway from the mitochondrial genome to the nucleus.  相似文献   

8.
9.
To identify nuclear functions required for cytochrome c oxidase biogenesis in yeast, recessive nuclear mutants that are deficient in cytochrome c oxidase were characterized. In complementation studies, 55 independently isolated mutants were placed into 34 complementation groups. Analysis of the content of cytochrome c oxidase subunits in each mutant permitted the definition of three phenotypic classes. One class contains three complementation groups whose strains carry mutations in the COX4, COX5a, or COX9 genes. These genes encode subunits IV, Va, and VIIa of cytochrome c oxidase, respectively. Mutations in each of these structural genes appear to affect the levels of the other eight subunits, albeit in different ways. A second class contains nuclear mutants that are defective in synthesis of a specific mitochondrial-encoded cytochrome c oxidase subunit (I, II, or III) or in both cytochrome c oxidase subunit I and apocytochrome b. These mutants fall into 17 complementation groups. The third class is represented by mutants in 14 complementation groups. These strains contain near normal amounts of all cytochrome c oxidase subunits examined and therefore are likely to be defective at some step in holoenzyme assembly. The large number of complementation groups represented by the second and third phenotypic classes suggest that both the expression of the structural genes encoding the nine polypeptide subunits of cytochrome c oxidase and the assembly of these subunits into a functional holoenzyme require the products of many nuclear genes.  相似文献   

10.
Strains of the yeast Saccharomyces cerevisiae disrupted in YCOX4, the nuclear gene encoding cytochrome c oxidase subunit IV, do not assemble a functional or spectrally visible oxidase. We report the characterization of a yeast strain, RM1, expressing a mutated YCOX4 gene which is temperature sensitive for respiration at 37 degrees C, but incorporates cytochrome aa3 over all growth temperatures. The mutant enzyme is less stable than the wild type, with subunit IV readily proteolyzed without gross denaturation of the complex but with a concomitant loss of oxidase activity. When grown fermentatively at 37 degrees C, cytochrome c oxidase from the mutant strain had a turnover number of less than 3% of the normal complex, while Km values and subunit levels were comparable to normal. Thus alterations in subunit IV can perturb the enzyme structure and alter its catalytic rate, implying a role for this subunit in cytochrome c oxidase function as distinct from assembly.  相似文献   

11.
12.
13.
From the amino acid sequence of yeast cytochrome c oxidase subunit VIII published previously (Power, S. D., Lochrie, M.A., Patterson, T.E., and Poyton, R.C. (1984) J. Biol. Chem. 259, 6571-6574), we have synthesized a pair of oligonucleotide probes and used them to identify COX8, its structural gene. By genomic Southern blot analysis and disruption of the COX8 chromosomal locus, we have shown that this gene is present in one copy per haploid genome and that its product, subunit VIII, is essential for maximal levels of cellular respiration and cytochrome c oxidase activity. Alignment of the amino acid sequence predicted from the DNA sequence of COX8 with the determined amino acid sequence of subunit VIII indicates that mature subunit VIII is derived from a larger precursor that extends from both the NH2 and COOH termini of the mature polypeptide. Thus, like many other nuclear coded mitochondrial proteins, subunit VIII is derived from a precursor which carries a leader peptide. In addition, this precursor, like that for yeast cytochrome c oxidase subunit VIIa, appears to carry a four-amino acid "trailer peptide" at its COOH terminus.  相似文献   

14.
Two genes encoding cytochrome c oxidase subunits, Cox2a and Cox2b, are present in the nuclear genomes of apicomplexan parasites and show sequence similarity to corresponding genes in chlorophycean algae. We explored the presence of COX2A and COX2B subunits in the cytochrome c oxidase of Toxoplasma gondii. Antibodies were raised against a synthetic peptide containing a 14-residue fragment of the COX2A polypeptide and against a hexa-histidine-tagged recombinant COX2B protein. Two distinct immunochemical stainings localized the COX2A and COX2B proteins in the parasite's mitochondria. A mitochondria-enriched fraction exhibited cyanide-sensitive oxygen uptake in the presence of succinate. T. gondii mitochondria were solubilized and subjected to Blue Native Electrophoresis followed by second dimension electrophoresis. Selected protein spots from the 2D gels were subjected to mass spectrometry analysis and polypeptides of mitochondrial complexes III, IV and V were identified. Subunits COX2A and COX2B were detected immunochemically and found to co-migrate with complex IV; therefore, they are subunits of the parasite's cytochrome c oxidase. The apparent molecular mass of the T. gondii mature COX2A subunit differs from that of the chlorophycean alga Polytomella sp. The data suggest that during its biogenesis, the mitochondrial targeting sequence of the apicomplexan COX2A precursor protein may be processed differently than the one from its algal counterpart.  相似文献   

15.
The COX6 gene encodes subunit VI of cytochrome c oxidase. Previously, this gene and its mRNAs were characterized, and its expression has been shown to be subject to glucose repression/derepression. In this study we have examined the effects of heme and the HAP1 (CYP1) and HAP2 genes on the expression of COX6. By quantitating COX6 RNA levels and assaying beta-galactosidase activity in yeast cells carrying COX6-lacZ fusion genes, we have found that COX6 is regulated positively by heme and HAP2, but is unaffected by HAP1. Through 5' deletion analysis we have also found that the effects of heme and HAP2 on COX6 are mediated by sequences between 135 and 590 base pairs upstream of its initiation codon. These findings identify COX6 as the fourth respiratory protein gene that is known to be regulated positively by heme and HAP2. The other three, CYC1, COX4, and COX5a, encode iso-1-cytochrome c, cytochrome c oxidase subunit IV, and an isolog, Va, of cytochrome c oxidase subunit V, respectively. Thus, it appears that the biogenesis of two interacting proteins, cytochrome c and cytochrome c oxidase, in the mitochondrial respiratory chain, are under the control of common factors.  相似文献   

16.
Respiring mitochondria require many interactions between nuclear and mitochondrial genomes. Although mitochondrial DNA (mtDNA) from the gorilla and the chimpanzee are able to restore oxidative phosphorylation in a human cell, mtDNAs from more distant primate species are functionally incompatible with human nuclear genes. Using microcell-mediated chromosome and mitochondria transfer, we introduced and maintained a functional orangutan mtDNA in a human nuclear background. However, partial oxidative phosphorylation function was restored only in the presence of most orangutan chromosomes, suggesting that human oxidative phosphorylation-related nuclear-coded genes are not able to replace many orangutan ones. The respiratory capacity of these hybrids was decreased by 65%-80%, and cytochrome c oxidase (COX) activity was decreased by 85%-95%. The function of other respiratory complexes was not significantly altered. The translation of mtDNA-coded COX subunits was normal, but their steady-state levels were approximately 10% of normal ones. Nuclear-coded COX subunits were loosely associated with mitochondrial membranes, a characteristic of COX assembly-defective mutants. Our results suggest that many human nuclear-coded genes not only cannot replace the orangutan counterparts, but also exert a specific interference at the level of COX assembly. This cellular model underscores the precision of COX assembly in mammals and sheds light on the nature of nuclear-mtDNA coevolutionary constraints.  相似文献   

17.
The mitochondrial genomes of Chlamydomonad algae lack the cox2 gene that encodes the essential subunit COX II of cytochrome c oxidase. COX II is normally a single polypeptide encoded by a single mitochondrial gene. In this work we cloned two nuclear genes encoding COX II from both Chlamydomonas reinhardtii and Polytomella sp. The cox2a gene encodes a protein, COX IIA, corresponding to the N-terminal portion of subunit II of cytochrome c oxidase, and the cox2b gene encodes COX IIB, corresponding to the C-terminal region. The cox2a and cox2b genes are located in the nucleus and are independently transcribed into mRNAs that are translated into separate polypeptides. These two proteins assemble with other cytochrome c oxidase subunits in the inner mitochondrial membrane to form the mature multi-subunit complex. We propose that during the evolution of the Chlorophyte algae, the cox2 gene was divided into two mitochondrial genes that were subsequently transferred to the nucleus. This event was evolutionarily distinct from the transfer of an intact cox2 gene to the nucleus in some members the Leguminosae plant family.  相似文献   

18.
Cytochrome c oxidase biogenesis: new levels of regulation   总被引:1,自引:0,他引:1  
Eukaryotic cytochrome c oxidase (COX), the last enzyme of the mitochondrial respiratory chain, is a multimeric enzyme of dual genetic origin, whose assembly is a complicated and highly regulated process. COX displays a concerted accumulation of its constitutive subunits. Data obtained from studies performed with yeast mutants indicate that most catalytic core unassembled subunits are posttranslationally degraded. Recent data obtained in the yeast Saccharomyces cerevisiae have revealed another contribution to the stoichiometric accumulation of subunits during COX biogenesis targeting subunit 1 or Cox1p. Cox1p is a mitochondrially encoded catalytic subunit of COX which acts as a seed around which the full complex is assembled. A regulatory mechanism exists by which Cox1p synthesis is controlled by the availability of its assembly partners. The unique properties of this regulatory mechanism offer a means to catalyze multiple-subunit assembly. New levels of COX biogenesis regulation have been recently proposed. For example, COX assembly and stability of the fully assembled enzyme depend on the presence in the mitochondrial compartments of two partners of the oxidative phosphorylation system, the mobile electron carrier cytochrome c and the mitochondrial ATPase. The different mechanisms of regulation of COX assembly are reviewed and discussed.  相似文献   

19.
Mitochondria play a central role in apoptosis through release of cytochrome c and activation of caspases. In the present study, we showed that, in Jurkat human T cells, camptothecin-induced apoptosis is preceded by (i) an increase in cytochrome c and subunit IV of cytochrome c oxidase (COX IV) levels in mitochondria; and (ii) an elevation of the mitochondrial membrane potential (Delta(Psi)m). These events are followed by cytochrome c release into the cytosol, cytochrome c and COX IV depletion from mitochondria, externalization of phosphatidylserine (PS), disruption of Delta(Psi)m, caspase activation, poly(ADP-ribose)polymerase cleavage and DNA fragmentation. The pan-caspase inhibitor z-VAD.fmk blocked camptothecin-induced PS externalization, disruption of Delta(Psi)m and DNA fragmentation, suggesting that these events are mediated by caspase activation. In contrast, z-VAD did not prevent cytochrome c release, despite preventing cytochrome c and COX IV depletion from mitochondria. Together, these data suggest that mitochondrial cytochrome c and COX IV enrichment are early events preceding the onset of apoptosis and that cytochrome c release is upstream of caspase activation and loss of Delta(Psi)m. Furthermore, prevention by z-VAD of cytochrome c and COX IV depletion in mitochondria suggests the possibility that a caspase-like activity in mitochondria is involved in the proteolytic depletion of respiratory chain proteins. Activation of this activity may play an important role in drug-induced apoptosis.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号