首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
《Fungal biology》2022,126(10):623-630
Papaya (Carica papaya L.) is among the most important tropical fruits produced in Brazil and is grown in nearly every state. However, several diseases can affect papaya production. Anthracnose stands out among these diseases due to high postharvest yield losses. Previous studies identified Colletotrichum magna (invalid name) and Colletotrichum gloeosporioides causing anthracnose of papaya in Brazil, but species identification was inadequate due to reliance on nuclear ribosomal internal transcribed space (nrITS) and glutamine synthetase (GS) sequences. Thus, the diversity of Colletotrichum spp. causing papaya anthracnose in Brazil may be underestimated. The present study aims to identify the Colletotrichum species associated with papaya anthracnose in Brazil based on broad geographical sampling and multilocus phylogenetic analysis, as well as to assess the prevalence and aggressiveness of the species found. Here, we report C. chrysophilum, C. fructicola, C. gloeosporioides, C. karsti, C. okinawense, C. plurivorum, C. queenslandicum, C. siamense, C. theobromicola, Colletotrichum truncatum causing papaya anthracnose in Brazil. We are also synonymizing Colletotrichum corchorum-capsularis under C. truncatum. Colletotrichum okinawense was the most prevalent species in general and in most sampled locations, and with C. truncatum represents the most aggressive species.  相似文献   

2.
Guava (Psidium guajava) fruit is vulnerable to postharvest diseases, such as anthracnose. In the present study, molecular characterisation and pathogenicity of Colletotrichum associated with antharcnose disease of guava fruit were conducted. From anthracnose lesion of guava, 20 isolates were successfully recovered. Based on colony colours, conidia, appressoria and presence or absence of setae, and ITS regions and ß-tubulin gene sequences, the isolates were identified as Colletotrichum gloeosporioides. Phylogenetic analysis based on combined data-sets using neighbour-joining method showed that C. gloeosporioides isolates did not group with C. gloeosporioides epitype strain, and thus the isolates were referred to as C. gloeosporioides species complex or C. gloeosporioides sensu lato. Pathogenicity tests using wounded treatment showed that C. gloeosporioides isolates from guava were pathogenic causing anthracnose on the fruits. The present study showed that C. gloeosporioides sensu lato is the most common species causing antharcnose disease of guava fruit.  相似文献   

3.
Members of the genus Colletotrichum include some of the most economically important fungal pathogens in the world. Accurate diagnosis is critical to devising disease management strategies. Two species, Colletotrichum gloeosporioides and C. truncatum, are responsible for anthracnose disease in papaya (Carica papaya L.) and bell pepper (Capsicum annuum L.) in Trinidad. The ITS1–5.8S–ITS2 region of 48 Colletotrichum isolates was sequenced, and the ITS PCR products were analyzed by PCR-RFLP analysis. Restriction site polymorphisms generated from 11 restriction enzymes enabled the identification of specific enzymes that were successful in distinguishing between C. gloeosporioides and C. truncatum isolates. Species-specific restriction fragment length polymorphisms generated by the enzymes AluI, HaeIII, PvuII, RsaI, and Sau3A were used to consistently resolve C. gloeosporioides and C. truncatum isolates from papaya. AluI, ApaI, PvuII, RsaI, and SmaI reliably separated isolates of C. gloeosporioides and C. truncatum from bell pepper. PvuII, RsaI, and Sau3A were also capable of distinguishing among the C. gloeosporioides isolates from papaya based on the different restriction patterns that were obtained as a result of intra-specific variation in restriction enzyme recognition sites in the ITS1–5.8S–ITS2 rDNA region. Of all the isolates tested, C. gloeosporioides from papaya also had the highest number of PCR-RFLP haplotypes. Cluster analysis of sequence and PCR-RFLP data demonstrated that all C. gloeosporioides and C. truncatum isolates clustered separately into species-specific clades regardless of host species. Phylograms also revealed consistent topologies which suggested that the genetic distances for PCR-RFLP-generated data were comparable to that of ITS sequence data. ITS PCR-RFLP fingerprinting is a rapid and reliable method to identify and differentiate between Colletotrichum species.  相似文献   

4.
Colletotrichum gloeosporoides has been described as the causal agent of Colletotrichum leaf disease of rubber in Sri Lanka and other parts of the world since 1905. A study carried out on vegetative and reproductive characteristics of 52 isolates from Colletotrichum leaf disease lesions on Hevea brasiliensis in Sri Lanka revealed that only 18 isolates belong to Colletotrichum gloeosporioides. The remaining 34 isolates represented C. aculatum indicating that C. acutatum is the main cause of Colletotrichum leaf disease in Sri Lanka.This revised version was published online in October 2005 with corrections to the Cover Date.  相似文献   

5.
Colletotrichum spp. cause anthracnose in various fruits post‐harvest and are a particularly important problem in tropical and subtropical fruits. The disease in fruits of avocado, guava, papaya, mango and passion fruit has been reported to be caused by C. gloeosporioides, and in banana by C. musae. In subtropical and temperate crops such apple, grape, peach and kiwi, the disease is caused by C. acutatum. The variation in pathogenic, morphological, cultural and molecular characteristics of Brazilian isolates of Colletotrichum acutatum Simmonds and isolates from post‐harvest decays of avocado, banana, guava, papaya, mango and passion fruit was evaluated. The fruits were inoculated with mycelium of C. acutatum, Colletotrichum spp. and C. musae on a disc of potato dextrose agar. The morphological, cultural and molecular characteristics studied were conidia morphology, colony growth at different temperatures, colony coloration and PCR with primers CaInt2 and ITS4 for C. acutatum and CgInt and ITS4 for C. gloeosporioides. C. acutatum was pathogenic to avocado, guava, papaya, mango and passion fruit, but it was not pathogenic to banana. The morphological, cultural and molecular studies indicated that the avocado, papaya, mango and passion fruit isolates were C. gloeosporioides. The natural guava isolate was identified as C. acutatum, which had not been found previously to produce anthracnose symptoms on guava in Brazil.  相似文献   

6.
The objective of this study was to identify the causal agent of anthracnose disease of cassava in Thailand. The study was carried out by collecting cassava samples with anthracnose symptoms from various planting areas including 10 districts of eight provinces in Thailand. One hundred and thirty‐six Colletotrichum samples were isolated from cassava anthracnose lesions on leaves, petioles and stems. Thirty‐eight single‐spore isolates were subsequently obtained and cultured on half potato dextrose agar for morphological and molecular characterizations. All 38 isolates were pathogenic with varying degrees of virulence when tested on detached leaves of Kasetsart 50, a susceptible cassava cultivar. Based on their growth habit, colony morphology, conidial morphology and the internal transcribed spacer sequences similarity to that of Colletotrichum accessions in the GenBank, one isolate was identified as C. capsici, one as C. lindemuthianum, two as Caeschynomene, four as Cboninense and 28 Cgloeosporioides species complex. Geographically, the cosmopolitan C. gloeosporioides species complex was found in all regions, but other species were found only in particular regions. This is, so far, the first report of Colletotrichum complex species associated with cassava anthracnose in Thailand.  相似文献   

7.
Isolates of Colletotrichum acutatum, C. fragariae and C. gloeosporioides pathogenic to strawberry plants were examined by sequence analysis of the 5.8S‐ITS region. Phylogenetic relationships among isolates of Colletotrichum are, for the most part, congruent with the molecular groups established in earlier works. 5.8S‐ITS sequence analysis showed a high level of genetic divergence within C. acutatum. Isolates of this species clustered into two very distinct clusters with further subdivision. The divergences between C. fragariae and C. gloeosporioides were too low to distinguish them as separate species. On the basis of the sequence data, specific primers were designed both to identify isolates belonging to the genus Colletotrichum, and to distinguish isolates of the species C. acutatum. The specificity of these primers was validated by testing a wide range of strawberry isolates of Colletotrichum, non‐strawberry isolates of Colletotrichum and other fungi used as controls. Although the 5.8S‐ITS sequences were not polymorphic enough to allow the construction of C. gloeosporioides‐specific primers, specific PCR amplification followed by an MvnI digestion provides a tool to specifically identify strawberry isolates of C. gloeosporioides.  相似文献   

8.
Blackberry anthracnose, caused by Colletotrichum spp., is an important disease of cultivated blackberry in the world. In Colombia, it is the number one limiting factor for commercial production. This study was conducted to determine the species of Colletotrichum infecting blackberry plants as well as the organ distribution, pathogenicity and response to benomyl of the isolated strains. Sixty isolates from stems (n = 20), thorns (n = 20) and inflorescences (n = 20) were identified as Colletotrichum acutatum and Colletotrichum gloeosporioides by a species‐specific polymerase chain reaction (PCR). Both Colletotrichum species were found in the same plant but on different organs. Colletotrichum gloeosporioides species predominated in thorn lesions (n = 16) and C. acutatum in stems (n = 15) and inflorescence (n = 15). Pathogenicity assays on detached blackberry organs demonstrated differences between the two species with an average period of lesion development of 8.7 days for C. gloeosporioides and 10.3 days for C. acutatum. Wound inoculated organs had 90% disease development compared to 17.5% in non‐wounded. All C. acutatum isolates (n = 34) were benomyl tolerant, whereas C. gloeosporioides isolates (n = 26) were 30.7% sensitive and 69.2% moderately tolerant. Phylogenetic analysis with ITS sequences of a subset of 18 strains showed that strains classified as Cgloeosporioides had 100% identity to Colletotrichum kahawae, which belongs to the C. gloeosporioides species complex, whereas C. acutatum strains clustered into two different groups, with high similarity to the A2 and the A4 molecular groups. These data demonstrate for the first time the differential distribution of both species complexes in blackberry plant organs and further clarifies the taxonomy of the strains.  相似文献   

9.
Colletotrichum spp. are causal agents of anthracnose disease in chili fruits and other tropical crops. The disease is increasing in chili fruits in Thailand and significantly reduces fruit quality and fruit production. Forty-eight isolates of Colletotrichum spp. associated with chili anthracnose were collected from different areas of Thailand during 2010–2015. Based on morphological characteristic identification, 10 isolates were shown to belong to the C. gloeosporioides species complex, 24 isolates belong to the C. acutatum species complex and 14 isolates to C. capsici. For molecular identification, two primer sets, ITS1/ITS4 and ACT528/ACT738, were used for amplification of the internal transcribed spacer of rRNA gene (ITS1–5.8S–ITS2) and partial region actin gene (ACT), respectively. The phylogenetic analysis of individual and combined ITS region and actin nucleotide sequences identified the collected isolates into 4 species: C. gloeosporioides, C. siamense, C. acutatum and C. capsici. The pathogenicity test demonstrated that all four species were pathogenic on intact unwounded and healthy fruits. These results indicated that C. capsici, C. acutatum, C. gloeosporioides and C. siamense were the causal agents of chili anthracnose disease.  相似文献   

10.
Twenty‐six isolates of Colletotrichum kahawae, the causal agent of coffee berry disease, from coffee in Africa, and 25 isolates, mostly of Colletotrichum gloeosporioides, from coffee and other tropical perennial crops, were examined for the ability to metabolize citrate and tartrate and their molecular genetic variability was assessed using restriction fragment length polymorphisms (RFLP) and variable number tandem repeats (VNTR). Twenty‐four isolates of C. kahawae were also assessed using amplified fragment length polymorphisms (AFLP). Vegetative compatibility within a collection of nine isolates, including two of C. gloeosporioides was also assessed. All isolates of C. kahawae from across Africa failed to metabolize citrate or tartrate, but all other isolates metabolized one or both. Colletotrichum kahawae isolates also showed minimal variability using the molecular techniques with two isolates from Cameroon showing slightly different banding patterns in RFLP analysis. All other isolates had variable VNTR and RFLP banding patterns. AFLP analysis failed to detect variability within 12 isolates from Kenya, but did detect differences between isolates from other countries. Five isolates from Kenya were vegetatively compatible but differed from two from Cameroon and from two C. gloeosporioides isolates. Results demonstrate some geographic variability within C. kahawae isolates, although this is small, probably due to the relatively young age of C. kahawae populations. The biochemical and molecular techniques used showed clear differences from other Colletotrichum isolates, and can be used to distinguish the species. Lack of citrate and tartrate metabolism provides a readily applicable diagnostic method.  相似文献   

11.
Coffee blister spot has been associated with species from the Colletotrichum genus, but there is no information on the variability of isolates present on leaf lesions. This study evaluated a population of Colletotrichum gloeosporioides strains from blister spot lesions in Coffea arabica. Colletotrichum spp. isolates were collected from blister spot lesions on leaves of coffee trees from Catuaí and Topázio cultivars (Coffea arabica). Monosporic cultures were obtained from colonies with sporulation. A pathogenicity test was carried out by inoculation of pathogens on the leaves of young coffee plants. C. gloeosporioides strains were characterized by morphologial, cytological and physiological analyses. The molecular analysis was carried out using Inter‐Retrotransposon Amplified Polymorphism (IRAP) markers. C. gloeosporioides strains showed no pathogenicity on coffee plants and presented a wide variability in all traits evaluated. The presence of sexual strains, formation of CATs (conidial anastomosis tubes) among conidial strains and high mycelial compatibility among strains observed suggest the occurrence of sexual and asexual recombination. The role of these C. gloeosporioides strains on the lesions of coffee plant leaves is unclear.  相似文献   

12.
Colletotrichum gloeosporioides is a weak pathogen of coffee that infects ripe berries at dark red stage causing necrotic lesions, but only penetrates up to the second superficial layers of the pericarp at the rose and pink stages. C. kahawae, the causal agent of coffee berry disease (CBD) and responsible for 70–80% of crop loss, infects berries at any stage of development. When green berries are first inoculated with C. kahawae and then at 2, 72 or 96 h later with C. gloeosporioides, the necrotic lesions were significantly larger than in the controls, and were much more evident when the berries were incubated at the optimum growth temperature of 28 °C for C. gloeosporioides. Isolations from the lesions induced by the first inoculations with C. kahawae followed by inoculation with C. gloeosporioides revealed that all or most of the time the recovered isolates of the latter. Thus, C. gloeosporioides can overwhelm C. kahawae under conditions of higher environmental temperature and humidity and may enhance the CBD infection process under field conditions.  相似文献   

13.
Genetic diversity among 37 isolates of the sorghum anthracnose pathogen Colletotrichum graminicola, from four geographically distinct regions of Brazil, was evaluated by RAPD and RFLP-PCR markers and virulence characters on a set of 10 differential sorghum genotypes. Twenty-two races were identified and race 13B was the most frequent, but present in only two regions. RAPD analysis revealed 143 polymorphic bands that grouped the isolates according to their geographic origin, but not by their virulence phenotypes. RFLP with HaeIII, MspI, HinfI, HhaI, HpaII, EcoRI, HindIII, PstI, RsaI, Taq I, and AluI enzymes over ITS domains and 5.8 rDNA genes of C. graminicola did not show differences among the isolates, indicating high conservation of these restriction sites. Molecular polymorphism was observed among isolates belonging to the same race. No association between virulence phenotypes and molecular profiles was observed.  相似文献   

14.
Anthracnose, caused by Colletotrichum gloeosporioides Penz., is the most severe foliar disease of water yam (Dioscorea alata) worldwide. Population genetic analyses can yield useful insights into the evolutionary potential of C. gloeosporioides and thus lead to the development of appropriate disease management strategies. The genetic structure of C. gloeosporioides populations from yam and non‐yam hosts in three agroecological zones of Nigeria was investigated. Microsatellite‐primed polymerase chain reaction (MP‐PCR), virulence phenotyping using five putative D. alata differentials, cross‐inoculation tests, and the presence/absence of a Glomerella teleomorph in yam fields were used to infer the evolutionary potential of C. gloeosporioides on yam. We observed high genotypic diversity (GD = 0.99 to 1.00) for populations from all hosts and agroecological zones, with multiple pathogen genotypes in individual anthracnose lesions. Genetic differentiation was low among pathogen populations from different hosts (GST = 0.10, θ = 0.034), and agroecological zones (GST = 0.04, θ = 0.018), indicating limited host differentiation and significant gene flow. No evidence was found for the existence of C. gloeosporioides f. sp. alatae reported in previous studies. The fungus was recovered from several non‐yam host species commonly found in yam fields but non‐yam isolates caused only mild to moderate symptoms on yam. Eighteen C. gloeosporioides virulence phenotypes were identified among 217 isolates but there was a weak correlation (r = 0.02, P = 0.40) between virulence phenotype and MP‐PCR haplotype. Consistent with the above findings, we observed for the first time the Glomerella teleomorph on anthracnose‐infected yam plants in Nigeria, indicating that sexual recombination might play an important role in anthracnose epidemics on yam. The implications of these findings for C. gloeosporioides evolutionary potential and anthracnose resistance breeding are discussed.  相似文献   

15.
During the period from 2010 to 2013 preharvest symptoms were detected on different cultivars of sweet orange in six orchards in Catania, Siracusa and Enna provinces, Southern Italy. A total of 56 monosporic fungal isolates were obtained, and among these, 44 were identified as Colletotrichum gloeosporioides and 12 as Ckarstii through morphological and molecular analysis. PCR with primers ITS1 and ITS4, primers TubGF1 and TubGR specific for β‐tubulin gene, primers GDF‐GDR, specific for Glyceraldehyde‐3‐phosphate dehydrogenase (GAPDH) gene, were used to confirm the identification of Colletotrichum isolates from citrus. The ITS1‐5.8S‐ITS2 region, a portion of approximately 500 bp of β‐tubulin gene and a fragment of 220 bp of GAPDH gene of the isolates were sequenced and analysed with the BLASTn program. Koch's postulates were fulfilled by pathogenicity tests carried out on fruit of ‘Tarocco Scirè’ and ‘Tarocco Nucellare’ with representative isolates of Cgloeosporioides and Ckarstii. Field surveys and pathogenicity tests revealed significant differences in fruit susceptibility between ‘Tarocco Scirè’ and ‘Tarocco Nucellare’ and in virulence between the fungal species. To our knowledge, this is the first report on the emergence of Colletotrichum spp. causing anthracnose in preharvest conditions.  相似文献   

16.
Ripe fruits of pepper (Capsicum annuum) are resistant to the anthracnose fungus, Colletotrichum gloeosporioides, whereas unripe-mature fruits are susceptible. A pepper esterase gene (PepEST) that is highly expressed during an incompatible interaction between the ripe fruit of pepper and C. gloeosporioides was previously cloned. Deduced amino acid sequence of PepEST cDNA showed homology to both esterases and lipases, and contained -HGGGF- and -GXSXG- motifs and a catalytic triad. Inhibition of PepEST activity by a specific inhibitor of serine hydrolase demonstrated that a serine residue is critical for the enzyme activity. Expression of PepEST gene was fruit-specific in response to C. gloeosporioides inoculation, and up-regulated by wounding or jasmonic acid treatment during ripening. PepEST mRNA and protein was differentially accumulated in ripe vs. unripe fruit from 24 h after inoculation when C. gloeosporioides isinvading into fruits. Immunochemical examination revealed that PepEST accumulation was localized inepidermal and cortical cell layers in infected ripe fruit, but rarely even in epidermal cells in infected unripe one. Over-expression of PepEST in transgenic Arabidopsis plants caused restriction of Alternaria brassicicola colonization by inhibition of spore production, resulting in enhanced resistance against A.brassicicola. These results suggest that PepEST is involved in the resistance of ripe fruit against C.gloeosporioides infection.These authors contributed equally to the work  相似文献   

17.
Several molecular techniques have been used to differentiate species or genetic lineages of microorganisms prior to sequencing. Among them, BOX‐ and ERIC‐PCRs may provide specific banding patterns for different species, allowing its differentiation. Therefore, the objective of this study was to evaluate these techniques as a tool for differentiation of phylogenetic lineages belonging to the Colletotrichum gloeosporioides species complex associated with cassava anthracnose disease. Sets of BOX‐ and ERIC‐PCR primers were used to assess the differentiation of lineages belonging to the complex with 81 C. gloeosporioides sensu lato (s.l.) isolates from different cassava producing regions. Some were identified by sequencing, such as Colletotrichum fructicola, Colletotrichum tropicale, C. gloeosporioides s.s, Colletotrichum theobromicola, Colletotrichum siamense, Colletotrichum brevisporum and Colletotrichum sichuanensis. The primers were able to amplify DNA fragments from all isolates. The ERIC‐PCR presented a wider range of banding patterns in comparison to BOX‐PCR, providing better differentiation of the individuals, as well as a higher correlation with the phylogenetic data was obtained by ERIC‐PCR and the combined data set for “BOX‐/ERIC‐PCRs,” inferred by Mantel test. However, the use of concatenated data (BOX‐/ERIC‐PCRs) reduced the discriminatory capacity presented by ERIC‐PCR alone, probably due to the lowest resolution of BOX‐PCR. Therefore, ERIC‐PCR technique enabled efficient differentiation of isolates belonging to the C. gloeosporioides complex and can be used to analyse multiple isolates in a collection and also being an important tool as a guide in the decision‐making process prior to sequencing. Based on this methodology, it was possible to identify two new species associated with cassava anthracnose disease, C. brevisporum and C. sichuanensis, being the first report of these two species associated with cassava anthracnose disease in Brazil.  相似文献   

18.
Chilli anthracnose is a major problem in India and worldwide. In this study, we investigated the phylogenetic relationships of 52 fungal isolates associated with chilli anthracnose in southern India. All the 52 isolates were sequenced for partial ITS/5.8S rRNA and glyceraldehyde-3-phosphate dehydrogenase (gapdh) genes and showed affinities with Colletotrichum siamense and C. fructicola within Colletotrichum. gloeosporioides species complex. Further, a reduced subset of 17 selected isolates was made and in a maximum parsimony analysis of a multigene data-set including partial ITS/5.8S rRNA, actin (act), calmodulin (cal), chitin synthase (chs1), gapdh and β-tubulin (tub2) gene sequence data, these fungal isolates clustered with the type strain of C. fructicola, except for strain MTCC 3439 that showed phylogenetic affinities with C. siamense. The pathogenicity tests involving two representative isolates: UASB-Cg-14 and MTCC 3439, confirmed the involvement of C. fructicola and C. siamense in the development of disease symptoms on fresh chilli fruits. This is the first report of the association of C. fructicola and C. siamense in causing chilli anthracnose in India.  相似文献   

19.
During August 2010 and January 2011, 10 isolates of Colletotrichum were recovered from stem anthracnose lesions of Hylocereus polyrhizus in the states of Kedah and Penang, Malaysia. Based on the morphological characteristics of colony colour and appearance, and shapes of conidia as well as sequences of internal transcribed spacer regions (ITS), β‐tubulin, actin (ACT) and glyceraldehyde 3‐phosphate dehydrogenase (GAPDH), the fungus was identified as Colletotrichum truncatum. Pathogenicity test showed that C. truncatum isolates were pathogenic to the artificially inoculated H. polyrhizus stem. This is the first report of C. truncatum causing anthracnose on H. polyrhizus stems in Malaysia.  相似文献   

20.
Anthracnose Citrus disease has been associated with several symptoms worldwide and it is recently compromising Citrus production in the Mediterranean area. Four species complexes are mainly involved: Colletotrichum boninense, C. acutatum, C. gloeosporioides and C. truncatum. In this study, we investigated the genetic diversity of Colletotrichum spp. in Tunisia associated with wither‐tip of twigs on Citrus. Specific primers ITS4‐CgInt allowed the identification of Cgloeosporioides species complex in all the 54 isolates, sampled from three regions and four Citrus species. Overall, our genotypic analysis using 10 SSR markers showed a moderate diversity level in Tunisian C. gloeosporioides population and highlighted that C. gloeosporioides reproduce mainly clonally. In addition, heterothallic isolates were present in our population, suggesting that the pathogen population may undergo parasexual recombinations. The highest genetic diversity in C. gloeosporioides was recorded in Nabeul and on orange, which likely constitutes the area and the host of origin for the Citrus anthracnose disease in Tunisia. In addition, no population subdivision was detected at the geographic, host species or cultivars’ origin levels. However, our study identified two genetic subpopulations and indicated a rapid C. gloeosporioides population change at temporal scale that should be further examined over several consecutive growing seasons in order to understand its population dynamics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号