首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Interestingly, young and highly active people with lower limb amputation appear to maintain a similar trunk and upper body stability during walking as able-bodied individuals. Understanding the mechanisms underlying how this stability is achieved after lower-leg amputation is important to improve training regimens for improving walking function in these patients. This study quantified how superior (i.e., head, trunk, and pelvis) and inferior (i.e., thigh, shank, and feet) segments of the body respond to continuous visual or mechanical perturbations during walking. Nine persons with transtibial amputation (TTA) and 12 able-bodied controls (AB) walked on a 2 m×3 m treadmill in a Computer Assisted Rehabilitation Environment (CAREN). Subjects were perturbed by continuous pseudo-random mediolateral movements of either the treadmill platform or the visual scene. TTA maintained a similar local and orbital stability in their superior body segments as AB throughout both perturbation types. However, for their inferior body segments, TTA subjects exhibited greater dynamic instability during perturbed walking. In TTA subjects, these increases in instability were even more pronounced in their prosthetic limb compared to their intact leg. These findings demonstrate that persons with unilateral lower leg amputation maintain upper body stability in spite of increased dynamic instability in their impaired lower leg. Thus, transtibial amputation does significantly impair sensorimotor function, leading to substantially altered dynamic movements of their lower limb segments. However, otherwise relatively healthy patients with unilateral transtibial amputation appear to retain sufficient remaining sensorimotor function in their proximal and contralateral limbs to adequately compensate for their impairment.  相似文献   

2.
Understanding how lower-limb amputation affects walking stability, specifically in destabilizing environments, is essential for developing effective interventions to prevent falls. This study quantified mediolateral margins of stability (MOS) and MOS sub-components in young individuals with traumatic unilateral transtibial amputation (TTA) and young able-bodied individuals (AB). Thirteen AB and nine TTA completed five 3-min walking trials in a Computer Assisted Rehabilitation ENvironment (CAREN) system under each of three test conditions: no perturbations, pseudo-random mediolateral translations of the platform, and pseudo-random mediolateral translations of the visual field. Compared to the unperturbed trials, TTA exhibited increased mean MOS and MOS variability during platform and visual field perturbations (p<0.010). AB exhibited increased mean MOS during visual field perturbations and increased MOS variability during both platform and visual field perturbations (p<0.050). During platform perturbations, TTA exhibited significantly greater values than AB for mean MOS (p<0.050) and MOS variability (p<0.050); variability of the lateral distance between the center of mass (COM) and base of support at initial contact (p<0.005); mean and variability of the range of COM motion (p<0.010); and variability of COM peak velocity (p<0.050). As determined by mean MOS and MOS variability, young and otherwise healthy individuals with transtibial amputation achieved lateral stability similar to that of their able-bodied counterparts during unperturbed and visually-perturbed walking. However, based on mean and variability of MOS, unilateral transtibial amputation was shown to have affected lateral walking stability during platform perturbations.  相似文献   

3.
Understanding how humans maintain stability when walking, particularly when exposed to perturbations, is key to preventing falls. Here, we quantified how imposing continuous, pseudorandom anterior-posterior (AP) and mediolateral (ML) oscillations affected the control of dynamic walking stability. Twelve subjects completed five 3-minute walking trials in the Computer Assisted Rehabilitation ENvironment (CAREN) system under each of 5 conditions: no perturbation (NOP), AP platform (APP) or visual (APV) or ML platform (MLP) or visual (MLV) oscillations. We computed AP and ML margins of stability (MOS) for each trial. Mean MOS(ml) were consistently slightly larger during all perturbation conditions than during NOP (p≤0.038). Mean MOS(ap) for the APP, MLP and MLV oscillations were significantly smaller than during NOP (p<0.0005). Variability of both MOS(ap) and MOS(ml) was significantly greater during the MLP and MLV oscillations than during NOP (p<0.0005). We also directly quantified how the MOS on any given step affected the MOS on the following step using first-return plots. There were significant changes in step-to-step MOS(ml) dynamics between experimental conditions (p<0.0005). These changes suggested that subjects may have been trying to control foot placement, and consequently stability, during the perturbation conditions. Quantifying step-to-step changes in margins of dynamic stability may be more useful than mean MOS in assessing how individuals control walking stability.  相似文献   

4.
Understanding how humans remain stable during challenging locomotor activities is critical to developing effective tests to diagnose patients with increased fall risk. This study determined if different continuous low-amplitude perturbations would induce specific measureable changes in measures of dynamic stability during walking. We applied continuous pseudo-random oscillations of either the visual scene or support surface in either the anterior-posterior or mediolateral directions to subjects walking in a virtual environment with speed-matched optic flow. Floquet multipliers and short-term local divergence exponents both increased (indicating greater instability) during perturbed walking. These responses were generally much stronger for body movements occurring in the same directions as the applied perturbations. Likewise, subjects were more sensitive to both visual and mechanical perturbations applied in the mediolateral direction than to those applied in the anterior-posterior direction, consistent with previous experiments and theoretical predictions. These responses were likewise consistent with subjects' anecdotal perceptions of which perturbation conditions were most challenging. Contrary to the Floquet multipliers and short-term local divergence exponents, which both increased, long-term local divergence exponents decreased during perturbed walking. However, this was consistent with specific changes in the mean log divergence curves, which indicated that subjects' movements reached their maximum local divergence limits more quickly during perturbed walking. Overall, the Floquet multipliers were less sensitive, but reflected greater specificity in their responses to the different perturbation conditions. Conversely, the short-term local divergence exponents exhibited less specificity in their responses, but were more sensitive measures of instability in general.  相似文献   

5.
The alignment of a lower limb prosthesis affects the way load is transferred to the residual limb through the socket, and this load is critically important for the comfort and function of the prosthesis. Both magnitude and duration of the moment are important factors that may affect the residual limb health. Moment impulse is a well-accepted measurement that incorporates both factors via moment–time integrals. The aim of this study was to investigate the effect of alignment changes on the socket reaction moment impulse in transtibial prostheses. Ten amputees with transtibial prostheses participated in this study. The socket reaction moment impulse was measured at a self-selected walking speed using a Smart Pyramid™ in 25 alignment conditions, including a nominal alignment (clinically aligned by a prosthetist), as well as angle malalignments of 2°, 4° and 6° (abduction, adduction, extension and flexion) and translation malalignments of 5 mm, 10 mm and 15 mm (lateral, medial, anterior and posterior). The socket reaction moment impulse of the nominal alignment was compared for each condition. The relationship between the alignment and the socket reaction moment impulse was clearly observed in the coronal angle, coronal translation and sagittal translation alignment changes. However, this relationship was not evident in the sagittal angle alignment changes. The results of this study suggested that the socket reaction moment impulse could potentially serve as a valuable parameter to assist the alignment tuning process for transtibial prostheses. Further study is needed to investigate the influence of the socket reaction moment impulse on the residual limb health.  相似文献   

6.
Evaluating the effects of load carriage on gait balance stability is important in various applications. However, their quantification has not been rigorously addressed in the current literature, partially due to the lack of relevant computational indices. The novel Dynamic Gait Measure (DGM) characterizes gait balance stability by quantifying the relative effects of inertia in terms of zero-moment point, ground projection of center of mass, and time-varying foot support region. In this study, the DGM is formulated in terms of the gait parameters that explicitly reflect the gait strategy of a given walking pattern and is used for computational evaluation of the distinct balance stability of loaded walking. The observed gait adaptations caused by load carriage (decreased single support duration, inertia effects, and step length) result in decreased DGM values (p < 0.0001), which indicate that loaded walking motions are more statically stable compared with the unloaded normal walking. Comparison of the DGM with other common gait stability indices (the maximum Floquet multiplier and the margin of stability) validates the unique characterization capability of the DGM, which is consistently informative of the presence of the added load.  相似文献   

7.
Local dynamic stability has been assessed by the short-term local divergence exponent (λS), which quantifies the average rate of logarithmic divergence of infinitesimally close trajectories in state space. Both increased and decreased local dynamic stability at faster walking speeds have been reported. This might pertain to methodological differences in calculating λS. Therefore, the aim was to test if different calculation methods would induce different effects of walking speed on local dynamic stability. Ten young healthy participants walked on a treadmill at five speeds (60%, 80%, 100%, 120% and 140% of preferred walking speed) for 3 min each, while upper body accelerations in three directions were sampled. From these time-series, λS was calculated by three different methods using: (a) a fixed time interval and expressed as logarithmic divergence per stride-time (λSa), (b) a fixed number of strides and expressed as logarithmic divergence per time (λSb) and (c) a fixed number of strides and expressed as logarithmic divergence per stride-time (λSc). Mean preferred walking speed was 1.16±0.09 m/s. There was only a minor effect of walking speed on λSa. λSb increased with increasing walking speed indicating decreased local dynamic stability at faster walking speeds, whereas λSc decreased with increasing walking speed indicating increased local dynamic stability at faster walking speeds. Thus, the effect of walking speed on calculated local dynamic stability was significantly different between methods used to calculate local dynamic stability. Therefore, inferences and comparisons of studies employing λS should be made with careful consideration of the calculation method.  相似文献   

8.
Many children with cerebral palsy walk with diminished knee extension during terminal swing, at speeds much slower than unimpaired children. Treatment of these gait abnormalities is challenging because the factors that extend the knee during normal walking, over a range of speeds, are not well understood. This study analyzed a series of three-dimensional, muscle-driven dynamic simulations to determine whether the relative contributions of individual muscles and other factors to angular motions of the swing-limb knee vary with walking speed. Simulations were developed that reproduced the measured gait dynamics of seven unimpaired children walking at self-selected, fast, slow, and very slow speeds (7 subjects×4 speeds=28 simulations). In mid-swing, muscles on the stance limb made the largest net contribution to extension of the swing-limb knee at all speeds examined. The stance-limb hip abductors, in particular, accelerated the pelvis upward, inducing reaction forces at the swing-limb hip that powerfully extended the knee. Velocity-related forces (i.e., Coriolis and centrifugal forces) also contributed to knee extension in mid-swing, though these contributions were diminished at slower speeds. In terminal swing, the hip flexors and other muscles on the swing-limb decelerated knee extension at the subjects’ self-selected, slow, and very slow speeds, but had only a minimal net effect on knee motions at the fastest speeds. Muscles on the stance limb helped brake knee extension at the subjects’ fastest speeds, but induced a net knee extension acceleration at the slowest speeds. These data—which show that the contributions of muscular and velocity-related forces to terminal-swing knee motions vary systematically with walking speed—emphasize the need for speed-matched control subjects when attempting to determine the causes of a patient's abnormal gait.  相似文献   

9.
Restoring functional gait speed is an important goal for rehabilitation post-stroke. During walking, transferring of one’s body weight between the limbs and maintaining balance stability are necessary for independent functional gait. Although it is documented that individuals post-stroke commonly have difficulties with performing weight transfer onto their paretic limbs, it remains to be determined if these deficits contributed to slower walking speeds. The primary purpose of this study was to compare the weight transfer characteristics between slow and fast post-stroke ambulators. Participants (N = 36) with chronic post-stroke hemiparesis walked at their comfortable and maximal walking speeds on a treadmill. Participants were stratified into 2 groups based on their comfortable walking speeds (≥0.8 m/s or <0.8 m/s). Minimum body center of mass (COM) to center of pressure (COP) distance, weight transfer timing, step width, lateral foot placement relative to the COM, hip moment, peak vertical and anterior ground reaction forces, and changes in walking speed were analyzed. Results showed that slow walkers walked with a delayed and deficient weight transfer to the paretic limb, lower hip abductor moment, and more lateral paretic limb foot placement relative to the COM compared to fast walkers. In addition, propulsive force and walking speed capacity was related to lateral weight transfer ability. These findings demonstrated that deficits in lateral weight transfer and stability could potentially be one of the limiting factors underlying comfortable walking speeds and a determinant of chronic stroke survivors’ ability to increase walking speed.  相似文献   

10.
To facilitate stable walking, humans must generate appropriate motor patterns and effective corrective responses to perturbations. Yet most EMG analyses do not address the continuous nature of muscle activation dynamics over multiple strides. We compared muscle activation dynamics in young and older adults by defining a multivariate state space for muscle activity. Eighteen healthy older and 17 younger adults walked on a treadmill for 2 trials of 5 min each at each of 5 controlled speeds (80–120% of preferred). EMG linear envelopes of v. lateralis, b. femoris, gastrocnemius, and t. anterior of the left leg were obtained. Interstride variability, local dynamic stability (divergence exponents), and orbital stability (maximum Floquet multipliers; FM) were calculated. Both age groups exhibited similar preferred walking speeds (p=0.86). Amplitudes and variability of individual EMG linear envelopes increased with speed (p<0.01) in all muscles but gastrocnemius. Older adults also exhibited greater variability in b. femoris and t. anterior (p<0.004). When comparing continuous multivariate EMG dynamics, older adults demonstrated greater local and orbital instability of their EMG patterns (p<0.01). We also compared how muscle activation dynamics were manifested in kinematics. Local divergence exponents were strongly correlated between kinematics and EMG, independent of age and walking speed, while variability and max FM were not. These changes in EMG dynamics may be related to increased neuromotor noise associated with aging and may indicate subtle deterioration of gait function that could lead to future functional declines.  相似文献   

11.
The aim of this study was to investigate muscle?s energy patterns and spectral properties of diabetic neuropathic individuals during gait cycle using wavelet approach. Twenty-one diabetic patients diagnosed with peripheral neuropathy, and 21 non-diabetic individuals were assessed during the whole gait cycle. Activation patterns of vastus lateralis, medial gastrocnemius and tibialis anterior were studied by means of bipolar surface EMG. The signal?s energy and frequency were compared between groups using t-test. The energy was compared in each frequency band (7–542 Hz) using ANOVAs for repeated measures for each group and each muscle. The diabetic individuals displayed lower energies in lower frequency bands for all muscles and higher energies in higher frequency bands for the extensors? muscles. They also showed lower total energy of gastrocnemius and a higher total energy of vastus, considering the whole gait cycle. The overall results suggest a change in the neuromuscular strategy of the main extensor muscles of the lower limb of diabetic patients to compensate the ankle extensor deficit to propel the body forward and accomplish the walking task.  相似文献   

12.
Static ESS conditions are developed for the frequency evolution of a two-species haploid system by analyzing the stability of the corresponding dynamics for two pairs of strategies. A dynamic strong stability concept is introduced and shown to be equivalent to the ESS conditions in all cases where a regularity assumption is satisfied.  相似文献   

13.
Repetitive falls degrade the quality of life of elderly people and of patients suffering of various neurological disorders. In order to prevent falls while walking, one should rely on relevant early indicators of impaired dynamic balance. The local dynamic stability (LDS) represents the sensitivity of gait to small perturbations: divergence exponents (maximal Lyapunov exponents) assess how fast a dynamical system diverges from neighbor points. Although numerous findings attest the validity of LDS as a fall risk index, reliability results are still sparse. The present study explores the intrasession and intersession repeatability of gait LDS using intraclass correlation coefficients (ICC) and standard error of measurement (SEM). Ninety-five healthy individuals performed 5 min treadmill walking in two sessions separated by 9 days. Trunk acceleration was measured with a 3D accelerometer. Three time scales were used to estimate LDS: over 4–10 strides (λ4–10), over one stride (λ1) and over one step (λ0.5). The intrasession repeatability was assessed from three repetitions of either 35 strides or 70 strides taken within the 5 min tests. The intersession repeatability compared the two sessions, which totalized 210 strides. The intrasession ICCs (70-strides estimates/35-strides estimates) were 0.52/0.18 for λ4–10 and 0.84/0.77 for λ1 and λ0.5. The intersession ICCs were around 0.60. The SEM results revealed that λ0.5 measured in medio-lateral direction exhibited the best reliability, sufficient to detect moderate changes at individual level (20%). However, due to the low intersession repeatability, one should average several measurements taken on different days in order to better approximate the true LDS.  相似文献   

14.
To gain insight into the mechanical determinants of walking energetics, we investigated the effects of aging and arm swing on the metabolic cost of stabilization. We tested two hypotheses: (1) elderly adults consume more metabolic energy during walking than young adults because they consume more metabolic energy for lateral stabilization, and (2) arm swing reduces the metabolic cost of stabilization during walking in young and elderly adults. To test these hypotheses, we provided external lateral stabilization by applying bilateral forces (10% body weight) to a waist belt via elastic cords while young and elderly subjects walked at 1.3m/s on a motorized treadmill with arm swing and with no arm swing. We found that the external stabilizer reduced the net rate of metabolic energy consumption to a similar extent in elderly and young subjects. This reduction was greater (6-7%) when subjects walked with no arm swing than when they walked normally (3-4%). When young or elderly subjects eliminated arm swing while walking with no external stabilization, net metabolic power increased by 5-6%. We conclude that the greater metabolic cost of walking in elderly adults is not caused by a greater cost of lateral stabilization. Moreover, arm swing reduces the metabolic cost of walking in both young and elderly adults likely by contributing to stability.  相似文献   

15.
Cyclists with unilateral transtibial amputation (CTA) provide a unique model to study integration of the neuromuscular and bicycle systems while having the option to modify this integration via the properties of the prosthesis. This study included eight CTA and nine intact cyclists. The cyclists pedaled on a stationary bicycle with instrumented force pedals. The CTA group pedaled with a stiff or flexible prosthetic foot during a simulated time trial and a low difficulty condition. During the time trial condition, pedaling with the flexible foot resulted in force and work asymmetries of 11.4% and 30.5%, the stiff foot displayed 11.1% and 21.7%, and the intact group displayed 4.3% and 4.2%, respectively. Similar trends were shown in the low difficulty condition. These data suggest foot stiffness has an effect on cycling symmetry in amputees.  相似文献   

16.
Dynamic stability requirements have never been quantified when long-term manual wheelchair users transfer themselves in a seated position from an initial surface to a target surface, a functional task commonly referred to as sitting pivot transfers (SPTs). Ten individuals with spinal cord injury (SCI), who rely on a manual wheelchair for mobility, underwent a comprehensive biomechanical SPT assessment. SPTs performed toward a target seat of same height (even) and a seat 10cm higher than the initial seat (uneven), repeated three times for each task, were assessed. A dynamic equilibrium model, continuously measuring the theoretical forces required to move the center of pressure to the limit of the base of support (destabilizing force) and to neutralize the kinetic energy and stop the displacement of the center of mass at the limit of the base of support (stabilizing force) at each instance during the performance of SPTs, was used to identify the phases of greatest instability during the SPT tasks. The greatest levels of instability were reached around the time the buttocks lost contact with the initial seat and around the time the buttocks landed on the target seat (pre- and post-lift transition phases). These transition periods, characterized by the lowest destabilizing force (424.7-487.1N) and the greatest stabilizing force (24.2-33.2N), confirmed the greatest level of instability. The height of the target seat had no significant effect (p=0.278-0.739) on dynamic postural stability requirements during the SPTs. During SPTs towards even and uneven target seats, the greatest postural instability occurs during the transition phases in individuals with complete motor thoracic SCI.  相似文献   

17.
The purpose of this study was to investigate the effects of imposing different degrees of forward trunk flexion during sitting pivot transfers on electromyographic activity at the leading and trailing upper limb muscles and on dynamic stability requirements. Thirty-two individuals with a spinal cord injury performed three types of sitting pivot transfers: natural technique, exaggerated forward trunk flexion and upright trunk position. Ground reaction forces, trunk kinematics, and bilateral electromyographic activity of eight upper limb muscles were recorded. Electromyographic data were analyzed using the area under the curve of the muscular utilization ratio. Dynamic stability requirements of sitting pivot transfers were assess using a dynamic equilibrium model. Compared to the natural strategy, significantly greater muscle activities were found for the forward trunk flexion condition at the anterior deltoid and both heads of the pectorialis major, whereas the upright trunk strategy yielded greater muscle activity at the latissimus dorsii and the triceps. The forward flexed condition was found to be more dynamically stable, with a lower stabilizing force, increased area of base of support and greater distance traveled. Thus, transferring with a more forward trunk inclination, even though it increases work of few muscles, may be a beneficial trade-off because increased dynamic stability of this technique and versatility in terms of potential distance of the transfer.  相似文献   

18.
Human walking requires active neuromuscular control to ensure stability in the lateral direction, which inflicts a certain metabolic load. The magnitude of this metabolic load has previously been investigated by means of passive external lateral stabilization via spring-like cords. In the present study, we applied this method to test two hypotheses: (1) the effect of external stabilization on energy cost depends on the stiffness of the stabilizing springs, and (2) the energy cost for balance control, and consequently the effect of external stabilization on energy cost, depends on walking speed. Fourteen healthy young adults walked on a motor driven treadmill without stabilization and with stabilization with four different spring stiffnesses (between 760 and 1820 N m−1) at three walking speeds (70%, 100%, and 130% of preferred speed). Energy cost was calculated from breath-by-breath oxygen consumption. Gait parameters (mean and variability of step width and stride length, and variability of trunk accelerations) were calculated from kinematic data. On average external stabilization led to a decrease in energy cost of 6% (p<0.005) as well as a decrease in step width (24%; p<0.001), step width variability (41%; p<0.001) and variability of medio-lateral trunk acceleration (12.5%; p<0.005). Increasing stabilizer stiffness increased the effects on both energy cost and medio-lateral gait parameters up to a stiffness of 1260 N m−1. Contrary to expectations, the effect of stabilization was independent of walking speed (p=0.111). These results show that active lateral stabilization during walking involves an energetic cost, which is independent of walking speed.  相似文献   

19.
This study investigated the influence of gait speed on the control of mediolateral dynamic stability during gait initiation. Thirteen healthy young adults initiated gait at three self-selected speeds: Slow, Normal and Fast. The results indicated that the duration of anticipatory postural adjustments (APA) decreased from Slow to Fast, i.e. the time allocated to propel the centre of mass (COM) towards the stance-leg side was shortened. Likely as an attempt at compensation, the peak of the anticipatory centre of pressure (COP) shift increased. However, COP compensation was not fully efficient since the results indicated that the mediolateral COM shift towards the stance-leg side at swing foot-off decreased with gait speed. Consequently, the COM shift towards the swing-leg side at swing heel-contact increased from Slow to Fast, indicating that the mediolateral COM fall during step execution increased as gait speed rose. However, this increased COM fall was compensated by greater step width so that the margin of stability (the distance between the base-of-support boundary and the mediolateral component of the “extrapolated centre of mass”) at heel-contact remained unchanged across the speed conditions. Furthermore, a positive correlation between the mediolateral extrapolated COM position at heel-contact and step width was found, indicating that the greater the mediolateral COM fall, the greater the step width. Globally, these results suggest that mediolateral APA and step width are modulated with gait speed so as to maintain equivalent mediolateral dynamical stability at the time of swing heel-contact.  相似文献   

20.
The purpose of this study was to determine whether general fatigue induced by incremental maximal exercise test (IMET) affects gait stability and variability in healthy subjects. Twenty-two young healthy male subjects walked in a treadmill at preferred walking speed for 4 min prior (PreT) the test, which was followed by three series of 4 min of walking with 4 min of rest among them. Gait variability was assessed using walk ratio (WR), calculated as step length normalized by step frequency, root mean square (RMSratio) of trunk acceleration, standard deviation of medial-lateral trunk acceleration between strides (VARML), coefficient of variation of step frequency (SFCV), length (SLCV) and width (SWCV). Gait stability was assessed using margin of stability (MoS) and local dynamic stability (λs). VARML, SFCV, SLCV and SWCV increased after the test indicating an increase in gait variability. MoS decreased and λs increased after the test, indicating a decrease in gait stability. All variables showed a trend to return to PreT values, but the 20-min post-test interval appears not to be enough for a complete recovery. The results showed that general fatigue induced by IMET alters negatively the gait, and an interval of at least 20 min should be considered for injury prevention in tasks with similar demands.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号