首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.

Objectives

Scarred vocal folds result in irregular vibrations during phonation due to stiffness of the vocal fold mucosa. To date, a completely satisfactory corrective procedure has yet to be achieved. We hypothesize that a potential treatment option for this disease is to replace scarred vocal folds with organotypic mucosa. The purpose of this study is to regenerate vocal fold mucosa using a tissue-engineered structure with autologous oral mucosal cells.

Study Design

Animal experiment using eight beagles (including three controls).

Methods

A 3 mm by 3 mm specimen of canine oral mucosa was surgically excised and divided into epithelial and subepithelial tissues. Epithelial cells and fibroblasts were isolated and cultured separately. The proliferated epithelial cells were co-cultured on oriented collagen gels containing the proliferated fibroblasts for an additional two weeks. The organotypic cultured tissues were transplanted to the mucosa-deficient vocal folds. Two months after transplantation, vocal fold vibrations and morphological characteristics were observed.

Results

A tissue-engineered vocal fold mucosa, consisting of stratified epithelium and lamina propria, was successfully fabricated to closely resemble the normal layered vocal fold mucosa. Laryngeal stroboscopy revealed regular but slightly small mucosal waves at the transplanted site. Immunohistochemically, stratified epithelium expressed cytokeratin, and the distributed cells in the lamina propria expressed vimentin. Elastic Van Gieson staining revealed a decreased number of elastic fibers in the lamina propria of the transplanted site.

Conclusion

The fabricated mucosa with autologous oral mucosal cells successfully restored the vocal fold mucosa. This reconstruction technique could offer substantial clinical advantages for treating intractable diseases such as scarring of the vocal folds.  相似文献   

2.
Sound for the human voice is produced via flow-induced vocal fold vibration. The vocal folds consist of several layers of tissue, each with differing material properties 1. Normal voice production relies on healthy tissue and vocal folds, and occurs as a result of complex coupling between aerodynamic, structural dynamic, and acoustic physical phenomena. Voice disorders affect up to 7.5 million annually in the United States alone 2 and often result in significant financial, social, and other quality-of-life difficulties. Understanding the physics of voice production has the potential to significantly benefit voice care, including clinical prevention, diagnosis, and treatment of voice disorders.Existing methods for studying voice production include in vivo experimentation using human and animal subjects, in vitro experimentation using excised larynges and synthetic models, and computational modeling. Owing to hazardous and difficult instrument access, in vivo experiments are severely limited in scope. Excised larynx experiments have the benefit of anatomical and some physiological realism, but parametric studies involving geometric and material property variables are limited. Further, they are typically only able to be vibrated for relatively short periods of time (typically on the order of minutes).Overcoming some of the limitations of excised larynx experiments, synthetic vocal fold models are emerging as a complementary tool for studying voice production. Synthetic models can be fabricated with systematic changes to geometry and material properties, allowing for the study of healthy and unhealthy human phonatory aerodynamics, structural dynamics, and acoustics. For example, they have been used to study left-right vocal fold asymmetry 3,4, clinical instrument development 5, laryngeal aerodynamics 6-9, vocal fold contact pressure 10, and subglottal acoustics 11 (a more comprehensive list can be found in Kniesburges et al. 12)Existing synthetic vocal fold models, however, have either been homogenous (one-layer models) or have been fabricated using two materials of differing stiffness (two-layer models). This approach does not allow for representation of the actual multi-layer structure of the human vocal folds 1 that plays a central role in governing vocal fold flow-induced vibratory response. Consequently, one- and two-layer synthetic vocal fold models have exhibited disadvantages 3,6,8 such as higher onset pressures than what are typical for human phonation (onset pressure is the minimum lung pressure required to initiate vibration), unnaturally large inferior-superior motion, and lack of a "mucosal wave" (a vertically-traveling wave that is characteristic of healthy human vocal fold vibration).In this paper, fabrication of a model with multiple layers of differing material properties is described. The model layers simulate the multi-layer structure of the human vocal folds, including epithelium, superficial lamina propria (SLP), intermediate and deep lamina propria (i.e., ligament; a fiber is included for anterior-posterior stiffness), and muscle (i.e., body) layers 1. Results are included that show that the model exhibits improved vibratory characteristics over prior one- and two-layer synthetic models, including onset pressure closer to human onset pressure, reduced inferior-superior motion, and evidence of a mucosal wave.  相似文献   

3.
Klemuk SA  Riede T  Walsh EJ  Titze IR 《PloS one》2011,6(11):e27029
Vocal production requires active control of the respiratory system, larynx and vocal tract. Vocal sounds in mammals are produced by flow-induced vocal fold oscillation, which requires vocal fold tissue that can sustain the mechanical stress during phonation. Our understanding of the relationship between morphology and vocal function of vocal folds is very limited. Here we tested the hypothesis that vocal fold morphology and viscoelastic properties allow a prediction of fundamental frequency range of sounds that can be produced, and minimal lung pressure necessary to initiate phonation. We tested the hypothesis in lions and tigers who are well-known for producing low frequency and very loud roaring sounds that expose vocal folds to large stresses. In histological sections, we found that the Panthera vocal fold lamina propria consists of a lateral region with adipocytes embedded in a network of collagen and elastin fibers and hyaluronan. There is also a medial region that contains only fibrous proteins and hyaluronan but no fat cells. Young's moduli range between 10 and 2000 kPa for strains up to 60%. Shear moduli ranged between 0.1 and 2 kPa and differed between layers. Biomechanical and morphological data were used to make predictions of fundamental frequency and subglottal pressure ranges. Such predictions agreed well with measurements from natural phonation and phonation of excised larynges, respectively. We assume that fat shapes Panthera vocal folds into an advantageous geometry for phonation and it protects vocal folds. Its primary function is probably not to increase vocal fold mass as suggested previously. The large square-shaped Panthera vocal fold eases phonation onset and thereby extends the dynamic range of the voice.  相似文献   

4.
The vocal folds are known to be mechanically anisotropic due to the microstructural arrangement of fibrous proteins such as collagen and elastin in the lamina propria. Even though this has been known for many years, the biomechanical anisotropic properties have rarely been experimentally studied. We propose that an indentation procedure can be used with uniaxial tension in order to obtain an estimate of the biomechanical anisotropy within a single specimen. Experiments were performed on the lamina propria of three male and three female human vocal folds dissected from excised larynges. Two experiments were conducted: each specimen was subjected to cyclic uniaxial tensile loading in the longitudinal (i.e., anterior–posterior) direction, and then to cyclic indentation loading in the transverse (i.e., medial–lateral) direction. The indentation experiment was modeled as contact on a transversely isotropic half-space using the Barnett–Lothe tensors. The longitudinal elastic modulus E L was computed from the tensile test, and the transverse elastic modulus E T and longitudinal shear modulus G L were obtained by inverse analysis of the indentation force-displacement response. It was discovered that the average of E L /E T was 14 for the vocal ligament and 39 for the vocal fold cover specimens. Also, the average of E L /G L , a parameter important for models of phonation, was 28 for the vocal ligament and 54 for the vocal fold cover specimens. These measurements of anisotropy could contribute to more accurate models of fundamental frequency regulation and provide potentially better insights into the mechanics of vocal fold vibration.  相似文献   

5.
Tao C  Jiang JJ 《Journal of biomechanics》2007,40(10):2191-2198
The stress information during phonation in the vocal folds is helpful in understanding the etiologies of vocal trauma and its related vocal diseases, such as nodules. In this paper, a self-oscillating finite-element model, which combines aerodynamic properties, tissue mechanics, airflow-tissue interactions, and vocal fold collisions, was used to simulate the vocal fold vibration during phonation. The spatial and temporal characteristics of mechanical stress in the vocal folds were predicted by this model. Temporally, it was found that mechanical stress periodically undulates with vibration of the vocal folds and that vocal fold impact causes a jump in the normal stress value. Spatially, the normal stress is significantly higher on the vocal fold surface than inside of the vocal folds. At the midpoint of the medial surface, the peak-to-peak amplitude of the normal stress reaches its maximum value. Using different lung pressures (0-1.5kPa) to drive the self-oscillating model, we found that lower lung pressure can effectively decrease the mechanical stress in the vocal folds. This study supports the fatigue damage hypothesis of vocal trauma. With this hypothesis and the numerical simulation in this study, the clinical observations of vocal fold trauma risk can be explained. This implies the mechanical stress predicted by this self-oscillating model could be valuable for predicting, preventing, and treating vocal fold injury.  相似文献   

6.
Li L  Teller S  Clifton RJ  Jia X  Kiick KL 《Biomacromolecules》2011,12(6):2302-2310
Resilin, the highly elastomeric protein found in specialized compartments of most arthropods, possesses superior resilience and excellent high-frequency responsiveness. Enabled by biosynthetic strategies, we have designed and produced a modular, recombinant resilin-like polypeptide bearing both mechanically active and biologically active domains to create novel biomaterial microenvironments for engineering mechanically active tissues such as blood vessels, cardiovascular tissues, and vocal folds. Preliminary studies revealed that these recombinant materials exhibit promising mechanical properties and support the adhesion of NIH 3T3 fibroblasts. In this Article, we detail the characterization of the dynamic mechanical properties of these materials, as assessed via dynamic oscillatory shear rheology at various protein concentrations and cross-linking ratios. Simply by varying the polypeptide concentration and cross-linker ratios, the storage modulus G' can be easily tuned within the range of 500 Pa to 10 kPa. Strain-stress cycles and resilience measurements were probed via standard tensile testing methods and indicated the excellent resilience (>90%) of these materials, even when the mechanically active domains are intercepted by nonmechanically active biological cassettes. Further evaluation, at high frequencies, of the mechanical properties of these materials were assessed by a custom-designed torsional wave apparatus (TWA) at frequencies close to human phonation, indicating elastic modulus values from 200 to 2500 Pa, which is within the range of experimental data collected on excised porcine and human vocal fold tissues. The results validate the outstanding mechanical properties of the engineered materials, which are highly comparable to the mechanical properties of targeted vocal fold tissues. The ease of production of these biologically active materials, coupled to their outstanding mechanical properties over a range of compositions, suggests their potential in tissue regeneration applications.  相似文献   

7.
In voice research, in vitro tensile stretch experiments of vocal fold tissues are commonly employed to determine the tissue biomechanical properties. In the standard stretch-release protocol, tissue deformation is computed from displacements applied to sutures inserted through the thyroid and arytenoid cartilages, with the cartilages assumed to be rigid. Here, a non-contact optical method was employed to determine the actual tissue deformation of vocal fold lamina propria specimens from three excised human larynges in uniaxial tensile tests. Specimen deformation was found to consist not only of deformation of the tissue itself, but also deformation of the cartilages, as well as suture alignment and tightening. Stress-stretch curves of a representative load cycle were characterized by an incompressible Ogden model. The initial longitudinal elastic modulus was found to be considerably higher if determined based on optical displacement measurements than typical values reported in the literature. The present findings could change the understanding of the mechanics underlying vocal fold vibration. Given the high longitudinal elastic modulus the lamina propria appeared to demonstrate a substantial level of anisotropy. Consequently, transverse shear could play a significant role in vocal fold vibration, and fundamental frequencies of phonation should be predicted by beam theories accounting for such effects.  相似文献   

8.
In human voice production (phonation), linear small-amplitude vocal fold oscillation occurs only under restricted conditions. Physiologically, phonation more often involves large-amplitude oscillation associated with tissue stresses and strains beyond their linear viscoelastic limits, particularly in the lamina propria extracellular matrix (ECM). This study reports some preliminary measurements of tissue deformation and failure response of the vocal fold ECM under large-strain shear The primary goal was to formulate and test a novel constitutive model for vocal fold tissue failure, based on a standard-linear cohesive-zone (SL-CZ) approach. Tissue specimens of the sheep vocal fold mucosa were subjected to torsional deformation in vitro, at constant strain rates corresponding to twist rates of 0.01, 0.1, and 1.0 rad/s. The vocal fold ECM demonstrated nonlinear stress-strain and rate-dependent failure response with a failure strain as low as 0.40 rad. A finite-element implementation of the SL-CZ model was capable of capturing the rate dependence in these preliminary data, demonstrating the model's potential for describing tissue failure. Further studies with additional tissue specimens and model improvements are needed to better understand vocal fold tissue failure.  相似文献   

9.
Within the human larynx, the ventricular folds serve primarily as a protecting valve during swallowing. They are located directly above the sound-generating vocal folds. During normal phonation, the ventricular folds are passive structures that are not excited to periodical oscillations. However, the impact of the ventricular folds on the phonation process has not yet been finally clarified.An experimental synthetic human larynx model was used to investigate the effect of the ventricular folds on the phonation process. The model includes self-oscillating vocal fold models and allows the comparison of the pressure distribution at multiple locations in the larynx for configurations with and without ventricular folds.The results indicate that the ventricular folds increase the efficiency of the phonation process by reducing the phonation threshold level of the pressure below the vocal folds. Two effects caused by the ventricular folds could be identified as reasons: (1) a decrease in the mean pressure level in the region between vocal and ventricular folds (ventricles) and (2) an increase in the glottal flow resistance.The reason for the first effect is a reduction of the pressure level in the ventricles due to the jet entrainment and the low static pressure in the glottal jet. The second effect results from an increase in the glottal flow resistance that enhances the aerodynamic energy transfer into the vocal folds. This effect reduces the onset threshold of the pressure difference across the glottis.  相似文献   

10.
A measurement setup combined with a Finite Element (FE) simulation is presented to determine the elasticity modulus of soft materials as a function of frequency. The longterm goal of this work is to measure in vitro the elasticity modulus of human vocal folds over a frequency range that coincides with the range of human phonation. The results will assist numerical simulations modeling the phonation process by providing correct material parameters. Furthermore, the measurements are locally applied, enabling to determine spatial differences along the surface of the material. In this work the method will be presented and validated by applying it to silicones with similar characteristics as human vocal folds.Three silicone samples with different consistency were tested over a frequency range of 20–250 Hz. The results of the pipette aspiration method revealed a strong frequency dependency of the elasticity modulus, especially below 100 Hz. In this frequency range the elasticity moduli of the samples varied between 5 and 27 kPa.  相似文献   

11.
The phase relationship between subglottic pressure and vocal fold length has been studied during sustained phonation in five subjects with normal larynx. Pressure was measured by tracheal puncture and vocal fold length was deduced from simultaneous measurement of translaryngeal impedance in the horizontal plane and transglottal light flux in the vertical plane. The pressure sine wave shows a phase lead of slightly less than 90 degrees relative to the length sine wave. Thus during sustained phonation the vocal apparatus behaves like a harmonic oscillator; the frequency of oscillation is determined by the mechanical parameters of the vibrating system; the source of periodic energy supply is the subglottal pressure wave.  相似文献   

12.
13.
A three-dimensional finite-element model was developed to simulate the complex movement of the laryngeal cartilages during vocal fold abduction and adduction. The model consists of cricoid and arytenoid cartilages, as well as the intralaryngeal muscles and vocal folds. The active and passive properties of the muscles were idealised by one-dimensional elements based on the Hill theory. Its controlling input value is a time dependent stimulation rate. Optimisation loops have been carried out for the arrangement of the individual stimulation rates. Since in vivo measurements are not feasible, the developed biomechanical model shall be used to analyse the force distribution within the laryngeal muscles during phonatory manoeuvres. Simulations of abduction and adduction in different pitches of voice lead to realistic tensions of the vocal folds. The model is a first step to analyse motional vocal fold diseases and to predict the consequences of phonosurgical interventions.  相似文献   

14.
The human vocal folds are a complex layering of cells and extracellular matrix. Vocal fold extracellular matrix uniquely contributes to the biomechanical viscoelasticity required for human phonation. We investigated the adhesion of vocal fold stellate cells, a novel cell type first cultured by our laboratory, and fibroblasts to eight vocal fold extracellular matrix components: elastin, decorin, fibronectin, hyaluronic acid, laminin and collagen types I, III and IV. Our data demonstrate that these cells adhere differentially to said substrates at 5 to 120 min. Cells were treated with hyaluronidase and Y-27632, a p160ROCK-specific inhibitor, to test the role of pericellular hyaluronan and Rho-ROCK activation in early and mature adhesion. Reduced adhesion resulted; greater inhibition of fibroblast adhesion was observed. We modulated the fibronectin affinity exhibited by both cell types using Nimesulide, an inhibitor of fibronectin integrin receptors alpha5beta1 and alphavbeta3. Our results are important in understanding vocal fold pathologies, wound healing, scarring, and in developing an accurate organotypic model of the vocal folds.  相似文献   

15.
Phonatory onsets of 17 normal subjects under usual speech conditions were investigated by measuring the cross-sectional area of the glottic aperture, using a photoelectric device. During a normal soft or breathy onset of phonation, the vocal fold vibration begins with an open glottis; the pattern of the optical signal is a sine wave of increasing amplitude with one to eight cycles before steady state oscillation is achieved. The first deflection of the base-line is either towards adduction or towards abduction. The classically assumed--since van den Berg et al. (1957)--retro-aspiration phenomenon, consisting in a narrowing of the glottic chink due to the accelerated air flow, according to Bernoulli's law, is incompatible with these observations. An aerodynamic study, with accurate calibration of the photoelectric transducer in one trained subject, as well as flux and subglottic pressure measurements, suggests that the gas flux (air as well as a helium-oxygen mixture) reaches the condition of turbulence at the level of the glottic nozzle, just before vocal folds are set into oscillatory motion. The setting in motion of the free edge of the vocal folds in normal soft or breathy onset of phonation can be explained by a sudden modification of flow conditions within the expiratory gas : the flow is laminar in the trachea and suddenly becomes turbulent at the level of the glottic nozzle. On the other hand, approximately normal atmospheric pressure values are attained due to a Bernoulli-effect at that level, allowing the vocal folds to oscillate sinusoidally about their vibration axes, corresponding to their virtual resting position, like a forced oscillator.  相似文献   

16.
A two-dimensional flexible channel model of the vocal folds coupled with an unsteady one-dimensional flow model is presented for an analysis of the mechanism of phonation. The vocal fold is approximated by springs and dampers distributed in the main flow direction that are enveloped with an elastic cover. In order to approximate three-dimensional collision of the vocal folds using the two-dimensional model, threshold values for the glottal width are introduced. The numerical results show that the collision plays an important role in speech sound, especially for higher resonant frequency components, because it causes the source sound to include high-frequency components.  相似文献   

17.
A three-dimensional finite-element model was developed to simulate the complex movement of the laryngeal cartilages during vocal fold abduction and adduction. The model consists of cricoid and arytenoid cartilages, as well as the intralaryngeal muscles and vocal folds. The active and passive properties of the muscles were idealised by one-dimensional elements based on the Hill theory. Its controlling input value is a time dependent stimulation rate. Optimisation loops have been carried out for the arrangement of the individual stimulation rates. Since in vivo measurements are not feasible, the developed biomechanical model shall be used to analyse the force distribution within the laryngeal muscles during phonatory manoeuvres. Simulations of abduction and adduction in different pitches of voice lead to realistic tensions of the vocal folds. The model is a first step to analyse motional vocal fold diseases and to predict the consequences of phonosurgical interventions.  相似文献   

18.
Vocal folds are used as sound sources in various species, but it is unknown how vocal fold morphologies are optimized for different acoustic objectives. Here we identify two main variables affecting range of vocal fold vibration frequency, namely vocal fold elongation and tissue fiber stress. A simple vibrating string model is used to predict fundamental frequency ranges across species of different vocal fold sizes. While average fundamental frequency is predominantly determined by vocal fold length (larynx size), range of fundamental frequency is facilitated by (1) laryngeal muscles that control elongation and by (2) nonlinearity in tissue fiber tension. One adaptation that would increase fundamental frequency range is greater freedom in joint rotation or gliding of two cartilages (thyroid and cricoid), so that vocal fold length change is maximized. Alternatively, tissue layers can develop to bear a disproportionate fiber tension (i.e., a ligament with high density collagen fibers), increasing the fundamental frequency range and thereby vocal versatility. The range of fundamental frequency across species is thus not simply one-dimensional, but can be conceptualized as the dependent variable in a multi-dimensional morphospace. In humans, this could allow for variations that could be clinically important for voice therapy and vocal fold repair. Alternative solutions could also have importance in vocal training for singing and other highly-skilled vocalizations.  相似文献   

19.
The authors test the hypothesis that vocal fold morphology and biomechanical properties covary with species‐specific vocal function. They investigate mule deer (Odocoileus hemionus) vocal folds, building on, and extending data on a related cervid, the Rocky Mountain elk (Cervus elaphus nelsoni). The mule deer, in contrast to the elk, is a species with relatively little vocal activity in adult animals. Mule deer and elk vocal folds show the typical three components of the mammalian vocal fold (epithelium, lamina propria and thyroarytenoid muscle). The vocal fold epithelium and the lamina propria were investigated in two sets of tensile tests. First, creep rupture tests demonstrated that ultimate stress in mule deer lamina propria is of the same magnitude as in elk. Second, cyclic loading tests revealed similar elastic moduli for the vocal fold epithelium in mule deer and elk. The elastic modulus of the lamina propria is also similar between the two species in the low‐strain region, but differs at strains larger than 0.3. Sex differences in the stress–strain response, which have been reported for elk and human vocal folds, were not found for mule deer vocal folds. The laminae propriae in mule deer and elk vocal folds are comparatively large. In general, a thick and uniformly stiff lamina propria does not self‐oscillate well, even when high subglottic pressure is applied. If the less stiff vocal fold seen in elk is associated with a differentiated lamina propria it would allow the vocal fold to vibrate at high tension and high subglottic pressure. The results of this study support the hypothesis that viscoelastic properties of vocal folds varies with function and vocal behavior. J. Morphol., 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

20.
In vitro engineering of mechanically active tissues requires the presentation of physiologically relevant mechanical conditions to cultured cells. To emulate the dynamic environment of vocal folds, a novel vocal fold bioreactor capable of producing vibratory stimulations at fundamental phonation frequencies is constructed and characterized. The device is composed of a function generator, a power amplifier, a speaker selector and parallel vibration chambers. Individual vibration chambers are created by sandwiching a custom-made silicone membrane between a pair of acrylic blocks. The silicone membrane not only serves as the bottom of the chamber but also provides a mechanism for securing the cell-laden scaffold. Vibration signals, generated by a speaker mounted underneath the bottom acrylic block, are transmitted to the membrane aerodynamically by the oscillating air. Eight identical vibration modules, fixed on two stationary metal bars, are housed in an anti-humidity chamber for long-term operation in a cell culture incubator. The vibration characteristics of the vocal fold bioreactor are analyzed non-destructively using a Laser Doppler Vibrometer (LDV). The utility of the dynamic culture device is demonstrated by culturing cellular constructs in the presence of 200-Hz sinusoidal vibrations with a mid-membrane displacement of 40 µm. Mesenchymal stem cells cultured in the bioreactor respond to the vibratory signals by altering the synthesis and degradation of vocal fold-relevant, extracellular matrix components. The novel bioreactor system presented herein offers an excellent in vitro platform for studying vibration-induced mechanotransduction and for the engineering of functional vocal fold tissues.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号