首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
Despite significant advances in scaffold design, manufacture, and development, it remains unclear what forces these scaffolds must withstand when implanted into the heavily loaded environment of the knee joint. The objective of this study was to fully quantify the dynamic contact mechanics across the tibial plateau of the human knee joint during gait and stair climbing. Our model consisted of a modified Stanmore knee simulator (to apply multi-directional dynamic forces), a two-camera motion capture system (to record joint kinematics), an electronic sensor (to record contact stresses on the tibial plateau), and a suite of post-processing algorithms. During gait, peak contact stresses on the medial plateau occurred in areas of cartilage–cartilage contact; while during stair climb, peak contact stresses were located in the posterior aspect of the plateau, under the meniscus. On the lateral plateau, during gait and in early stair-climb, peak contact stresses occurred under the meniscus, while in late stair-climb, peak contact stresses were experienced in the zone of cartilage–cartilage contact. At 45% of the gait cycle, and 20% and 48% of the stair-climb cycle, peak stresses were simultaneously experienced on both the medial and lateral compartment, suggesting that these phases of loading warrant particular consideration in any simulation intended to evaluate scaffold performance. Our study suggests that in order to design a scaffold capable of restoring ‘normal’ contact mechanics to the injured knees, the mechanics of the intended site of implantation should be taken into account in any pre-clinical testing regime.  相似文献   

2.
It has been suggested that the repetitive nature of altered joint tissue loading which occurs after anterior cruciate ligament (ACL) rupture can contribute to the development of osteoarthritis (OA). However, changes in dynamic knee joint contact stresses after ACL rupture have not been quantified for activities of daily living. Our objective was to characterize changes in dynamic contact stress profiles that occur across the tibial plateau immediately after ACL transection. By subjecting sensor-augmented cadaveric knees to simulated gait, and analyzing the resulting contact stress profiles using a normalized cross-correlation algorithm, we tested the hypothesis that common changes in dynamic contact stress profiles exist after ACL injury. Three common profiles were identified in intact knees, occurring on the: (I) posterior lateral plateau, (II) posterior medial plateau, and (III) central region of the medial plateau. In ACL-transected knees, the magnitude and shape of the common dynamic stress profiles did not change, but their locations on the tibial plateau and the number of knees identified for each profile changed. Furthermore, in the ACL transected knees, a unique common contact stress profile was identified in the posterior region of the lateral plateau near the tibial spine. This framework can be used to understand the regional and temporal changes in joint mechanics after injury.  相似文献   

3.
Studies of the load transfer role of the meniscus have been limited to static experimental and analytical approaches. The objective of this study was to develop an experimental technique to allow the contact pressures on the tibial plateau of cadaveric knees to be measured under dynamic physiological loads. Accordingly, we adapted a load-controlled knee joint simulator to accept a cadaveric sheep knee, programmed the simulator with sheep gait kinematics data, and utilized a pressure sensor array to measure the contact pressure distribution on the lateral tibial plateau during gait. The technique was applied to six sheep knees that were tested intact and after meniscectomy. Meniscectomy resulted in a 267% increase in average contact pressure, a 117% increase in peak contact pressure, and an 80% decrease in contact area, all measured at the point of maximum peak contact stress in the gait cycle. It is envisaged that the experimental model herein developed will allow for the screening of candidate materials prior to more expensive and time-consuming animal models.  相似文献   

4.
Injuries to the anterior cruciate ligament (ACL) and menisci commonly lead to early onset osteoarthritis. Treatments that can restore normative cartilage loading patterns may mitigate the risk of osteoarthritis, though it is unclear whether such a goal is achievable through conservative rehabilitation. We used musculoskeletal simulation to predict cartilage and ligament loading patterns during walking in intact, ACL deficient, menisci deficient, and ACL-menisci deficient knees. Stochastic simulations with varying coordination strategies were then used to test whether neuromuscular control could be modulated to restore normative knee mechanics in the pathologic conditions. During early stance, a 3 mm increase in anterior tibial translation was predicted in the ACL deficient knee. Mean cartilage contact pressure increased by 18% and 24% on the medial and lateral plateaus, respectively, in the menisci deficient knee. Variations in neuromuscular coordination were insufficient to restore normative cartilage contact patterns in either the ACL or menisci deficient knees. Elevated cartilage contact pressures in the pathologic knees were observed in regions where cartilage wear patterns have previously been reported. These results suggest that altered cartilage tissue loading during gait may contribute to region-specific degeneration patterns, and that varying neuromuscular coordination in isolation is unlikely to restore normative knee mechanics.  相似文献   

5.
The knowledge of articular cartilage contact biomechanics in the knee joint is important for understanding the joint function and cartilage pathology. However, the in vivo tibiofemoral articular cartilage contact biomechanics during gait remains unknown. The objective of this study was to determine the in vivo tibiofemoral cartilage contact biomechanics during the stance phase of treadmill gait. Eight healthy knees were magnetic resonance (MR) scanned and imaged with a dual fluoroscopic system during gait on a treadmill. The tibia, femur and associated cartilage were constructed from the MR images and combined with the dual fluoroscopic images to determine in vivo cartilage contact deformation during the stance phase of gait. Throughout the stance phase of gait, the magnitude of peak compartmental contact deformation ranged between 7% and 23% of the resting cartilage thickness and occurred at regions with thicker cartilage. Its excursions in the anteroposterior direction were greater in the medial tibiofemoral compartment as compared to those in the lateral compartment. The contact areas throughout the stance phase were greater in the medial compartment than in the lateral compartment. The information on in vivo tibiofemoral cartilage contact biomechanics during gait could be used to provide physiological boundaries for in vitro testing of cartilage. Also, the data on location and magnitude of deformation among non-diseased knees during gait could identify where loading and later injury might occur in diseased knees.  相似文献   

6.
To understand the mechanical consequences of knee injury requires a detailed analysis of the effect of that injury on joint contact mechanics during activities of daily living. Three-dimensional (3D) knee joint geometric models have been combined with knee joint kinematics to dynamically estimate the location of joint contact during physiological activities—using a weighted center of proximity (WCoP) method. However, the relationship between the estimated WCoP and the actual location of contact has not been defined. The objective of this study was to assess the relationship between knee joint contact location as estimated using the image-based WCoP method, and a directly measured weighted center of contact (WCoC) method during simulated walking. To achieve this goal, we created knee specific models of six human cadaveric knees from magnetic resonance imaging. All knees were then subjected to physiological loads on a knee simulator intended to mimic gait. Knee joint motion was captured using a motion capture system. Knee joint contact stresses were synchronously recorded using a thin electronic sensor throughout gait, and used to compute WCoC for the medial and lateral plateaus of each knee. WCoP was calculated by combining knee kinematics with the MRI-based knee specific model. Both metrics were compared throughout gait using linear regression. The anteroposterior (AP) location of WCoP was significantly correlated with that of WCoC on both tibial plateaus in all specimens (p<0.01, 95% confidence interval of Pearson?s coefficient r>0), but the correlation was not significant in the mediolateral (ML) direction for 4/6 knees (p>0.05). Our study demonstrates that while the location of joint contact obtained from 3D knee joint contact model, using the WCoP method, is significantly correlated with the location of actual contact stresses in the AP direction, that relationship is less certain in the ML direction.  相似文献   

7.
The menisci play an important role in load distribution, load bearing, joint stability, lubrication, and proprioception. Partial meniscectomy has been shown to result in changes in the kinematics and kinetics at the knee during gait that can lead to progressive meniscal degeneration. This study examined changes in the strains within the menisci associated with kinematic and kinetic changes during the gait cycle. The gait changes considered were a 5 deg shift toward external rotation of the tibia with respect to the femur and an increased medial-lateral load ratio representing an increased adduction moment. A finite element model of the knee was developed and tested using a cadaveric specimen. The cadaver was placed in positions representing heel-strike and midstance of the normal gait, and magnetic resonance images were taken. Comparisons of the model predictions to boundaries digitized from images acquired in the loaded states were within the errors produced by a 1 pixel shift of either meniscus. The finite element model predicted that an increased adduction moment caused increased strains of both the anterior and posterior horns of the medial meniscus. The lateral meniscus exhibited much lower strains and had minimal changes under the various loading conditions. The external tibial rotational change resulted in a 20% decrease in the strains in the posterior medial horn and increased strains in the anterior medial horn. The results of this study suggest that the shift toward external tibial rotation seen clinically after partial medial meniscectomy is not likely to cause subsequent degenerative medial meniscal damage, but the consequence of this kinematic shift on the pathogenesis of osteoarthritis following meniscectomy requires further consideration.  相似文献   

8.
The hamstring muscles have been recognized as an important element in compensating for the loss of stability in the ACL-deficient knee, but it is still not clear whether the hamstring muscle force can completely compensate for the loss of ACL, and the consequences of increased hamstring muscle force. A two-dimensional anatomical knee model in the sagittal plane was developed to examine the effect of various levels of hamstring muscle activation on restraining anterior tibial translation in the ACL-deficient knee during level walking. The model included the tibiofemoral and patellofemoral joints, four major ligaments, the medial capsule, and five muscle units surrounding the knee. Simulations were conducted to determine anterior tibial translation and internal joint loading at a single selected position when the knee was under a peak external flexion moment during early stance phase of gait. Incremental hamstring muscle forces were applied to the modeled normal and the ACL-deficient knees. Results of simulations showed that the ACL injury increased the anterior tibial translation by 11.8mm, while 56% of the maximal hamstring muscle force could reduce the anterior translation of the tibia to a normal level during the stance phase of gait. The consequences of increased hamstring muscle force included increased quadriceps muscle force and joint contact force.  相似文献   

9.
Large knee adduction moments during gait have been implicated as a mechanical factor related to the progression and severity of tibiofemoral osteoarthritis and it has been proposed that these moments increase the load on the medial compartment of the knee joint. However, this mechanism cannot be validated without taking into account the internal forces and moments generated by the muscles and ligaments, which cannot be easily measured. Previous musculoskeletal models suggest that the medial compartment of the tibiofemoral joint bears the majority of the tibiofemoral load, with the lateral compartment unloaded at times during stance. Yet these models did not utilise explicitly measured muscle activation patterns and measurements from an instrumented prosthesis which do not portray lateral compartment unloading. This paper utilised an EMG-driven model to estimate muscle forces and knee joint contact forces during healthy gait. Results indicate that while the medial compartment does bear the majority of the load during stance, muscles provide sufficient stability to counter the tendency of the external adduction moment to unload the lateral compartment. This stability was predominantly provided by the quadriceps, hamstrings, and gastrocnemii muscles, although the contribution from the tensor fascia latae was also significant. Lateral compartment unloading was not predicted by the EMG-driven model, suggesting that muscle activity patterns provide useful input to estimate muscle and joint contact forces.  相似文献   

10.
The goal of this study is to quantify changes in knee joint contact behavior following varying degrees of the medial partial meniscectomy. A previously validated 3D finite element model was used to simulate 11 different meniscectomies. The accompanying changes in the contact pressure on the superior surface of the menisci and tibial plateau were quantified as was the axial strain in the menisci and articular cartilage. The percentage of medial meniscus removed was linearly correlated with maximum contact pressure, mean contact pressure, and contact area. The lateral hemi-joint was minimally affected by the simulated medial meniscectomies. The location of maximum strain and location of maximum contact pressure did not change with varying degrees of partial medial meniscectomy. When 60% of the medial meniscus was removed, contact pressures increased 65% on the remaining medial meniscus and 55% on the medial tibial plateau. These data will be helpful for assessing potential complications with the surgical treatment of meniscal tears. Additionally, these data provide insight into the role of mechanical loading in the etiology of post-meniscectomy osteoarthritis.  相似文献   

11.
The knee is often a site of injury that can often lead to a chronic disease known as osteoarthritis (OA). The disease may be initiated, in part, by acute injuries to joint cartilage and its cells. In a recent study by this laboratory, using Flemish Giant rabbits, an impact compressive load on the tibial femoral joint was shown to cause significant levels of acute damage to chondrocytes in cartilage of the medial and lateral tibial plateaus. In the current study, using the same model, histological and mechanical data from the plateaus were documented at 6 and 12 months post impact, and compared to the unimpacted control limbs and a limb from unimpacted, control animals. The mechanical properties of cartilage were measured with indentation relaxation tests on the medial and lateral plateaus in regions covered and uncovered by the meniscus. The histological studies on impacted limbs showed surface lesions on both plateaus, thickening of the underlying subchondral bone at 12 months and numerous occult microcracks at the calcified cartilage–subchondral bone interface at 6 and 12 months, without significant changes in cartilage thickness or its mechanical properties versus controls. Yet, there was an increase in both the matrix and fiber moduli and a decrease in the permeability of uncovered, medial plateau cartilage in both limbs of impacted animals between 6 and 12 months post impact that was not documented in control animals.  相似文献   

12.
Comparison of kinematics in the healthy and ACL injured knee using MRI   总被引:3,自引:0,他引:3  
Magnetic Resonance Imaging (MRI) was used to examine the characteristics of abnormal motion in the injured knee by mapping tibiofemoral contact. Eleven healthy subjects and 20 subjects with a unilateral ACL injury performed a leg-press against resistance. MRI scans of both knees at 15 degrees intervals from 0 degrees to 90 degrees of flexion were used to record the tibiofemoral contact pattern. The tibiofemoral contact pattern of the injured knees was more posterior on the tibial plateau than the healthy knees, particularly in the lateral compartment. The tibiofemoral contact pattern of the loaded knees did not differ from the unloaded knees. The difference in the tibiofemoral contact pattern in the ACL injured knee was associated with more severe knee symptoms, irrespective of the passive anterior laxity of the knee.  相似文献   

13.
There is some debate in the literature regarding the role of quadriceps-hamstrings co-contraction in the onset and progression of knee osteoarthritis. Does co-contraction during walking increase knee contact loads, thereby causing knee osteoarthritis, or might it be a compensatory mechanism to unload the medial tibial condyle? We used a detailed musculoskeletal model of the lower limb to test the hypothesis that selective activation of lateral hamstrings and quadriceps, in conjunction with inhibited medial gastrocnemius, can actually reduce the joint contact force on the medial compartment of the knee, independent of changes in kinematics or external forces. “Baseline” joint loads were computed for eight subjects with moderate medial knee osteoarthritis (OA) during level walking, using static optimization to resolve the system of muscle forces for each subject?s scaled model. Holding all external loads and kinematics constant, each subject?s model was then perturbed to represent non-optimal “OA-type” activation based on mean differences detected between electromyograms (EMG) of control and osteoarthritis subjects. Knee joint contact forces were greater for the “OA-type” than the “Baseline” distribution of muscle forces, particularly during early stance. The early-stance increase in medial contact load due to the “OA-type” perturbation could implicate this selective activation strategy as a cause of knee osteoarthritis. However, the largest increase in the contact load was found at the lateral condyle, and the “OA-type” lateral activation strategy did not increase the overall (greater of the first or second) medial peak contact load. While “OA-type” selective activation of lateral muscles does not appear to reduce the medial knee contact load, it could allow subjects to increase knee joint stiffness without any further increase to the peak medial contact load.  相似文献   

14.
Valgus or varus malpositioning of the tibial component of a total knee implant may cause increased propensity for loosening or implant wear and eventually may lead to revision surgery. The aim of this study was to determine the effect of valgus/varus malalignment on tibio-femoral mechanics during surgical trial reduction and simulated gait loading. In seven cadaver legs, posterior cruciate sparing total knee replacements were implanted and tibial inserts representing a neutral alignment and 3 degrees and 5 degrees varus and valgus alignments were sequentially inserted. Each knee with each insert was loaded in a manner representative of a trial reduction performed during knee surgery and loaded in a physiological knee simulator. Simulated gait performed on the simulator demonstrated that internal/external and adduction/abduction rotations showed statistical changes with some of the angled inserts at different points in the walking cycle. Neither medial/lateral nor anterior/posterior translations changed statistically during simulated walking. The pressure distribution and total load in the medial and lateral compartments of the tibial component changed significantly with as little as a 3 degrees variation in angulation when loaded in a manner representative of a trial reduction or with a knee simulator. These results support the need for precise surgical reconstruction of the mechanical axis of the knee and proper alignment of the tibial component. These results further demonstrate that tibial contact pressures measured during a trial reduction method may be predictive of contact mechanics at the higher loading seen in the knee simulator.  相似文献   

15.
In vivo knee contact forces are difficult to determine using numerical methods because there are more unknown forces than equilibrium equations available. We developed parametric methods for computing contact forces across the knee joint during the stance phase of level walking. Three-dimensional contact forces were calculated at two points of contact between the tibia and the femur, one on the lateral aspect of the tibial plateau, and one on the medial side. Muscle activations were parametrically varied over their physiologic range resulting in a solution space of contact forces. The obtained solution space was reasonably small and the resulting force pattern compared well to a previous model from the literature for kinematics and external kinetics from the same patient. Peak forces of the parametric model and the previous model were similar for the first half of the stance phase, but differed for the second half. The previous model did not take into account the transverse external moment about the knee and could not calculate muscle activation levels. Ultimately, the parametric model will result in more accurate contact force inputs for total knee simulators, as current inputs are not generally based on kinematics and kinetics inputs from TKR patients.  相似文献   

16.
Subtalar joint arthroereisis (SJA) has been introduced to control the hyperpronation in cases of flatfoot. The objective of this study is to evaluate the biomechanical consequence of SJA to restore the internal stress and load transfer to the intact state from the attenuated biomechanical condition induced by posterior tibial tendon dysfunction (PTTD). A three-dimensional finite element model of the foot and ankle complex was constructed based on clinical images of a healthy female (age 28 years, height 165 cm, body mass 54 kg). The boundary and loading condition during walking was acquired from the gait experiment of the model subject. Five sets of simulations (conditions) were completed: intact condition, mild PTTD, severe PTTD, mild PTTD with SJA, severe PTTD with SJA. The maximum von Mises stress of the metatarsal shafts and the load transfer along the midfoot during stance were analyzed. Generally, SJA deteriorated the joint force of the medial cuneonavicular and calcaneocuboid joints during late stance, while that of the metatarsocuneiform joints during early stance were over-corrected. Only the calcaneocuboid joint force at 45% stance demonstrated a trend of improvement. Besides, SJA exaggerated the increased stress of the metatarsals compared to the PTTD conditions, except that of the first metatarsal. Our study did not support the hypothesis that SJA can restore the internal load transfer and midfoot stress. SJA cannot compensate the salvage of midfoot stability attributed by PTTD and could be biomechanically insufficient to restore the biomechanical environment. Additional procedures such as orthotic intervention may be necessary.  相似文献   

17.
The role played by anatomical factors in ACL injury remains elusive. In this study, objective methods were used to characterize ACL volume, tibial slopes and notch geometry from ACL-injured and matched-control subjects. The study tested four hypotheses: (1) the medial tibial plateau slope is steeper posteriorly in the injured group compared to the non-injured group, (2) the lateral tibial plateau slope is steeper posteriorly in the injured group compared to the non-injured group, (3) the femoral intercondylar notch dimensions are smaller in the injured group compared to the non-injured group and (4) the ACL volume, tibial plateau slopes and intercondylar notch dimensions are all independent of each other. Fifty-four subjects were divided into two groups, those who had suffered a non-contact ACL injury and those who still had two healthy ACLs, matched to the injured subjects by gender, age, height and weight. The lateral tibial plateaus in the uninjured contralateral knees of the injured subjects had a significantly steeper posterior slope (1.8° vs. ?0.3°), a factor that potentially contributed to the ACL injury in the opposite knee. The intercondylar notch dimensions were found to be smaller in the injured subjects, potentially putting the ACL at risk of impingement, and intercondylar notch volume was correlated to ACL volume (r=0.58). Discriminant analysis showed that the notch width at the inlet was the best single predictor of ACL injury.  相似文献   

18.
The anterior-posterior (AP) stability of the knee is an important aspect of functional performance. Studies have shown that the stability increases when compressive loads are applied, as indicated by reduced laxity, but the mechanism has not been fully explained. A test rig was designed which applied combinations of AP shear and compressive forces, and measured the AP displacements relative to the neutral position. Five knees were evaluated at compressive loads of 0, 250, 500, and 750 N, with the knee at 15° flexion. At each load, three cycles of shear force at ±100 N were applied. For the intact knee under load, the posterior tibial displacement was close to zero, due to the upward slope of the anterior medial tibial surface. The soft tissues were then resected in sequence to determine their role in AP laxity. After anterior cruciate ligament (ACL) resection, the anterior tibial displacement increased significantly even under load, highlighting its importance in stability. Meniscal resection further increased displacement but also the vertical displacement increased, implying the meniscus was providing a buffering effect. The PCL had no effect on any of the displacements under load. Plowing cartilage deformation and surface friction were negligible. This work highlighted the particular importance of the upward slope of the anterior medial tibial surface and the ACL to AP knee stability under load. The results are relevant to the design of total knees which reproduce anatomic knee stability behavior.  相似文献   

19.
Bearing surfaces of total condylar knees which are designed with a high degree of conformity to produce low stresses in the polyethylene tibial insert may be overconstrained. This study determines femoral and tibial bearing surface geometries which will induce the least destructive fatigue mechanisms in the polyethylene whilst conserving the laxity of the natural knee. Sixteen knee designs were generated by varying four parameters systematically to cover the range of contemporary knee designs. The parameters were the femoral frontal radius (30 or 70 mm), the difference between the femoral and tibial frontal radii (2 or 10 mm), the tibial sagittal radius (56 or 80 mm) and the posterior-distal transition angle (-8 or -20 degrees), which is the angle at which the small posterior arc of the sagittal profile transfers to the larger distal arc. Rigid body analyses determined the anterior-posterior and rotational motions as well as the contact points during the stance phase of gait for the different designs. In addition, a damage function which accumulated the fluctuating maximum shear stresses was used to predict the susceptibility to delamination wear of the polyethylene (damage score). This study predicted that of the 16 designs, the knee with a frontal radius of 70 mm, a difference in femoral and tibial frontal radii of 2 mm, a tibial sagittal radius of 80 mm and a posterior distal transition angle of -20 degrees would satisfy the conflicting needs of both resistance to delamination wear and natural kinematics.  相似文献   

20.

Objectives

This study aimed to investigate the pathology occurring at the calcified zone of articular cartilage (CZC) in the joints afflicted with post-traumatic osteoarthritis (PTOA).

Methods

Rats underwent bilateral anterior cruciate ligament (ACL) transection and medial meniscectomy to induce PTOA. Sham surgery was performed on another five rats to serve as controls. The rats were euthanized after four weeks of surgery and tibial plateaus were dissected for histology. The pathology of PTOA, CZC area and the tidemark roughness at six pre-defined locations on the tibial plateaus were quantified by histomorphometry.

Results

PTOA developed in the knees, generally more severe at the medial plateau than the lateral plateau, of rats in the experimental group. The CZC area was unchanged in the PTOA joints, but the topographic variations of CZC areas that presented in the control knees were reduced in the PTOA joints. The tidemark roughness decreased in areas of the medial plateau of PTOA joints and that was inversely correlated with the Mankin’s score of PTOA pathology.

Conclusion

Reduced tidemark roughness and unchanged CZC area differentiate PTOA from primary osteoarthritis, which is generally believed to have the opposite pathology at CZC, and may contribute to the distinct disease progression of the two entities of arthropathy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号