首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
Three unique classes of carbohydrates were isolated from the hyphal cell walls of Phytophthora megasperma f.sp. glycinea (Pmg) and compared with other substances for their activity as elicitors of the phytoalexin glyceollin in soybean tissues. Glucomannans extracted from cell walls with soybean β-1,3-endoglucanase were purified and proved to be the most active elicitors yet reported. They were approximately 10 times more active in soybean cotyledons than the heterogeneous β-glucan elicitor fraction extracted from Pmg walls. In addition, the glucomannan fraction gave race-specific elicitor activity in soybean hypocotyls. Pronase was found to be a suitable reagent for the mild extraction of glycopeptides from Pmg cell walls. All of the carbohydrates isolated from Pmg cell walls possessed significant elicitor activity, but other glucans, a glucomannan and mannan from other sources, were much less active. Chitin and chitosan, reported to function as elicitors in other plants, had low activity in soybean cotyledons. Arachidonic acid was inactive, despite its previously observed elicitor activity in potato tubers. The results indicated that, for Pmg, the carbohydrate elicitor most probably involved in the initiation of phytoalexinmediated defense during fungus infection of soybean plants is the glucomannan fraction liberated by endoglucanase.  相似文献   

2.
Tobacco (Nicotiana tabacum) mesophyll protoplasts synthesize six basic proteins (a, a′, a1, b, b′, and c) which are undetectable in the leaf and whose synthesis is reduced by auxin (Y Meyer, L Aspart, Y Chartier [1984] Plant Physiol 75: 1027-1033). Polypeptides a, a′, and a1 were shown to have similar mobilities on two-dimensional electrophoresis as one 1,3-β-glucanase and two chitinases from tobacco mosaic virus-infected leaves. In immunoblotting experiments, polypeptide a was recognized by specific antibodies raised against the 1,3-β-glucanase and a′ and a1 reacted with anti-chitinase antibodies. Similarly, b and b′ comigrated with osmotin and its neutral counterpart, two proteins characteristic of salt-adapted tobacco cells, and reacted with anti-osmotin antibodies. In addition it has been shown that 1,3-β-glucanase and chitinase activities increased at the same time as a, a′, and a1 accumulated in cultivated protoplasts. Finally, polypeptide c was also detected in tobacco mosaic virus-infected leaves but could not be identified as any of the pathogenesis-related proteins characterized so far in tobacco. Thus, cultivated tobacco protoplasts synthesize and accumulate typical stress proteins.  相似文献   

3.
We describe the isolation of a cDNA clone of β1,3-glucanase mRNA from Nicotiana tabacum L. cv. `Havana 425' and its use to measure the kinetics of mRNA accumulation in cultured tobacco tissues treated with the plant hormones auxin and cytokinin. Northern blot analysis showed that the tissues contain a single ˜1.6 kb-sized β1,3-glucanase mRNA. The levels of β1,3-glucanase and β1,3-glucanase mRNA increase by up to seven- and 20-fold, respectively, over a 7-day period in tissues subcultured on hormone-free medium and medium containing auxin or cytokinin added separately. Over the same interval of time, the content of both the enzyme and its mRNA remains at a constant low level in tissues subcultured on medium containing both auxin and cytokinin. The results show that auxin and cytokinin block β1,3-glucanase production at the level of the mRNA.  相似文献   

4.
Mechanically isolated mesophyll cells of Zinnia elegans L. cv Envy differentiate to tracheary elements when cultured in inductive medium containing 0.5 micromolar α-naphthaleneacetic acid and 0.5 micromolar benzyladenine. The cells do not differentiate when cultured in medium in which the concentration of auxin and/or cytokinin has been reduced to 0.005 micromolar. Cells require an initial 24-hour exposure to inductive cytokinin and 56-hour exposure to inductive auxin for differentiation at 72 hours of culture. Freshly isolated Zinnia cells can be maintained in medium having low concentrations of both auxin and cytokinin for only 1 day without significant loss of potential to differentiate upon transfer to inductive medium. Initial culture for up to 2 days in medium having high auxin and low cytokinin, or low auxin and high cytokinin, allows full differentiation on the third day after transfer to inductive medium and potentiates the early differentiation of some cells.  相似文献   

5.
NADH oxidation by plasma membrane vesicles purified from hypocotyls of etiolated soybean seedlings by two-phase partition was stimulated 2- to 3-fold by auxins, indole-3-acetic acid, 2,4-dichlorophenoxy acetic acid (2,4-D), and α-naphthaleneacetic acid. The stimulation was concentration dependent in the presence or absence of detergent with a maximum for 2,4-D at 1 micromolar. The NADH oxidation activity was solubilized with the zwitterionic detergent CHAPS and purified by ion exchange chromatography and gel filtration approximately 2000-fold over the total homogenate. Both the partially purified fraction and an active band from nondenaturing gel electrophoresis revealed the same three bands when analyzed by denaturing gel electrophoresis. When obtained from plasma membrane vesicles from the region of rapid cell elongation, the NADH oxidase complex retained auxin responsiveness throughout purification (3- to 5-fold stimulation by 1 micromolar 2,4-D).  相似文献   

6.
The competence of pedicel explants of tobacco (Nicotiana tabacum L. cv Samsun) to regenerate flower buds in response to auxin was manipulated by preincubating excised tissues in the absence of auxin. When exposed to 1 micromolar 1-naphthaleneacetic acid, these tissues formed fewer buds than controls that were not preincubated. The number of buds eventually formed correlated with the 1-naphthaleneacetic acid concentration in the tissue 6 hours after the start of hormone application. The internal concentrations in pretreated explants were lower than in tissues that were not pretreated due to diminished uptake per milligram fresh weight and increased hormone conjugation. The change in the developmental state induced by auxin deprivation had a dual effect on bud regeneration: (a) the pretreatment caused fewer buds to be formed at any 1-naphthaleneacetic acid concentration tested, and (b) a higher auxin concentration in the medium was required to get a maximum bud number on precultured explants. An increase of the 1-naphthaleneacetic acid concentration in the medium led to an elevated hormone level in freshly cut as well as in preincubated tissues. It was concluded that the developmental state of the tissue directly affects the maximum number of buds that can be regenerated. Apart from that there is an indirect effect exerted via modulation of the ratio between external and internal auxin concentration. The change in this ratio can be compensated for by an adjustment of the auxin concentration in the medium.  相似文献   

7.
The acidic, extracellular, glucan endo-1,3-β-glucosidases (EC 3.2.1.39; β-1,3-glucanases), pathogenesis-related proteins-2, -N, and -O (i.e. PR-2, PR-N, and PR-O) were purified from Nicotiana tabacum (tobacco) and their partial amino acid sequences determined. Based on these data, complementary DNA (cDNA) clones encoding the proteins were isolated. Additional cDNAs were isolated that encoded proteins approximately 90% identical with PR-2, PR-N, and PR-O. Although the proteins encoded by these cDNAs have not been identified, their deduced amino acid sequences have slightly basic or neutral calculated isoelectric points, as well as carboxy-terminal extensions. These physical characteristics are shared by the vacuolar form of β-1,3-glucanase and other vacuolar localized analogs of PR proteins, suggesting that the unidentified proteins may be similarly localized. A preliminary evolutionary model that separates the β-1,3-glucanase gene family from tobacco into at least five distinct subfamilies is proposed. The expression of β-1,3-glucanase messenger RNAs (mRNAs) in response to infection by tobacco mosaic virus was examined. Messages for the acidic glucanases were induced similarly to the mRNAs for other PR proteins. However, the basic glucanase showed a different response, suggesting that different isoforms are differentially regulated by tobacco mosaic virus infection at the mRNA level.  相似文献   

8.
An immunological assay has been used to investigate the synthesis of (1→3,1→4)-β-glucanase (EC 3.2.1.73) isoenzymes from isolated barley aleurone layers and scutella. Enzyme release from both tissues is enhanced by 1 micromolar gibberellic acid and 10 millimolar Ca2+, although increases induced by gibberellic acid are observed only in the presence of Ca2+. Isoenzyme I is synthesized predominantly in the scutellum, while isoenzyme II is synthesized exclusively in the aleurone. A third, putative isoenzyme III has been detected in significant proportions in scutellar secretions and may also be secreted from aleurone layers. Both gibberellic acid and Ca2+ appear to preferentially enhance isoenzyme II secretion from the aleurone and isoenzyme III secretion from scutella. The patterns of isoenzyme secretion are suggestive of tissue-specific differences in expression of the genes which code for (1→3,1→4)-β-glucanase isoenzymes. Qualitatively similar results were obtained with barley cultivars harvested in Australia and North America.  相似文献   

9.
The report documents how the development of α-amylase activity in detached cotyledons of Pisum sativum cv Alaska is accelerated 2- to 12-fold during incubation with 1 micromolar to 10 micromolar 2,4-dichlorophenoxyacetic acid, 2,4,5-trichlorophenoxyacetic acid, or with 4-chloroindoleacetic acid, an endogenous auxin from Pisum sativum. It seems probable that auxin from the embryonic axis induces α-amylase in the attached cotyledons during germination.  相似文献   

10.
Macromolecules may transfer between the cytoplasm and the nucleus only through specific gates—the nuclear pore complexes (NPCs). Translocation of nucleic acids and large proteins requires the presence of a nuclear localization signal (NLS) within the transported molecule. This NLS is recognized by a class of soluble transport receptors termed karyopherins α and β. We previously characterized the expression pattern of the tomato karyopherin α1 (LeKAPα1) promoter in transformed tobacco plants. Expression of LeKAPα1 was mainly observed in growing tissues where cell division and extension is rapid. The expression pattern of LeKAPα1 resembled that of auxin-responsive genes. This led us to suggest that auxin participates in the regulation of LeKAPα1 expression. Here we characterized the correlation between auxin level and the activity of the LeKAPα1 promoter. To this end, transgenic tobacco plants carrying the GUS reporter gene under the control of the LeKAPα1 promoter were treated with various levels of exogenous auxin. We also studied transgenic plants in which we increased the endogenous levels of auxin. For this, we expressed in plants both the LeKAPα1 promoter-GUS reporter and the Agrobacterium tumefaciens iaaM gene, which increases the endogenous levels of auxin. The results indicate that the auxin indole-3-acetic acid (IAA) can induce LeKAPα1 expression. We also identified that the sites and levels of LeKAPα1 expression correlated with the endogenous pathways of polar auxin transport.Key words: auxin, karyopherin α1, nuclear pore complex, TYLCV, plant virus  相似文献   

11.
Addition of an elicitor preparation from cell walls of Phytophthora megasperma f. sp. glycinea (Pmg elicitor) to a newly established cell suspension culture of Catharanthus roseus induced extracellular free 2,3-dihydroxybenzoic acid, suggesting its role in pathogen defense. The same substance also accumulated intracellularly in a bound form. Treatment of the crude Pmg elicitor preparation with trypsin abolished elicitor activity, suggesting that the active fraction is proteinaceous. The cells became more sensitive to low but not to elevated elicitor concentrations when they were pretreated with 2,6-dichloroisonicotinic (DCIA) or 5-chlorosalicylic (5CSA) acid for about 1 day before addition of the elicitor. This indicates that the elicitor reception/transduction system becomes improved by these compounds known to be related to systemic acquired resistance against plant pathogens. The newly established cell line initially accumulated also the indole alkaloid ajmalicine, a process enhanced by Pmg elicitor. This potency was lost during subculturing for about 1 year and was also not restored by preincubation with DCIA or 5CSA. In contrast, elicitation of 2,3-dihydroxybenzoic acid synthesis was undiminished, suggesting that the Pmg elicitor perception system was still functioning and not the cause for the decline in elicited indole alkaloid production.  相似文献   

12.
Lotan T  Fluhr R 《Plant physiology》1990,93(2):811-817
Antisera to acidic isoforms of pathogenesis-related proteins were used to measure the induction of these proteins in tobacco (Nicotiana tabacum) leaves. Endo-(1-4)-β-xylanase purified from culture filtrates of Trichoderma viride was a strong elicitor of pathogenesis-related protein synthesis in tobacco leaves. The synthesis of these proteins was localized to tissue at the area of enzyme application. The inhibitors of ethylene biosynthesis and ethylene action, 1-aminoethoxyvinylglycine and silver thiosulfate, inhibited accumulation of pathogenesis-related proteins induced by tobacco mosaic virus and α-aminobutyric acid, but did not inhibit elicitation by xylanase. Likewise, the induction of these proteins by the tobacco pathogen Pseudomonas syringae pv. tabaci was not affected by the inhibitors of ethylene biosynthesis and action. The leaf response to tobacco mosaic virus and α-aminobutyric acid was dependent on light in normal and photosynthetically incompetent leaves. In contrast, the response of leaves to xylanase was independent of light. Tobacco mosaic virus and α-aminobutyric acid induced concerted accumulation of pathogenesis-related proteins. However, xylanase elicited the accumulation of only a subset of these proteins. Specifically, the plant (1-3)-β-glucanases, which are normally a part of the concerted response, were underrepresented. These experiments have revealed the presence of a novel ethylene-independent pathway for pathogenesis-related protein induction that is activated by xylanase.  相似文献   

13.
Phenotypical alterations observed in rolB-transformed plants have been proposed to result from a rise in intracellular free auxin due to a RolB-catalyzed hydrolysis of auxin conjugates(J.J. Estruch, J. Schell, A. Spena [1991] EMBO J 10: 3125-3128).We have investigated this hypothesis in detail using tobacco (Nicotiana tabacum) mesophyll protoplasts isolated from plants transformed with the rolB gene under the control of its own promoter (BBGUS 6 clone) or the cauliflower mosaic virus 35S promoter (CaMVBT 3 clone). Protoplasts expressing rolB showed an increased sensitivity to the auxin-induced hyperpolarization of the plasma membrane when triggered with exogenous auxin. Because this phenotypical trait was homogeneously displayed over the entire population, protoplasts were judged to be a more reliable test system than the tissue fragments used in previous studies to monitor rolB gene effects on cellular auxin levels. Accumulation of free 1-[3H]-naphthaleneacetic acid (NAA) was equivalent in CaMVBT 3, BBGUS 6, and wild-type protoplasts, Naphthyl-[beta]-glucose ester, the major NAA metabolite in protoplasts, reached similar levels in CaMVBT 3 protoplasts, reached similar levels in CaMVBT 3 and normal protoplasts and was hydrolyzed at the same rate in BBGUS 6 and normal protoplasts. Furthermore, NAA accumulation and metabolism in BBGUS 6 protoplasts were independent of the rolB gene expression level. Essentially similar results were obtained with indoleacetic acid. Thus, it was concluded that the rolB-dependent behavior of transgenic tobacco protoplasts is not a consequence of modifying the intracellular auxin concentration but likely results from changes in the auxin perception pathway.  相似文献   

14.
The soluble invertase activity in etiolated Avena seedlings was highest at the apex of the coleoptile and much lower in the primary leaf, mesocotyl, and root. The activity in all parts of the seedling consisted of two invertases (I and II) which were separated by chromatography on diethylaminoethylcellulose. Both enzymes appeared to be acid invertases, but they differed in molecular size, pH optimum, and the kinetic parameters Km and Vmax of their action on sucrose, raffinose, and stachyose. Invertase II had low stability at pH 3.5 and below, and exhibited high sensitivity to Hg2+, with complete inhibition by 2 micromolar HgCl2. Segments of coleoptiles incubated in water lost about two-thirds of the total invertase activity after 16 hours. The loss of activity was due primarily to a decrease in the level of invertase II. The loss of invertase was decreased by indoleacetic acid, 2,4-dichlorophenoxyacetic acid, and α-naphthaleneacetic acid but not by β-naphthaleneacetic acid and p-chlorophenoxyisobutyric acid. Conditions that inhibited auxin-induced growth of the segments (20 millimolar CaCl2 and 200 millimolar mannitol) also blocked the auxin effect on invertase loss.  相似文献   

15.
The synthesis of Cd-binding peptides (CdBPs) was induced upon addition of 20 micromolar CdCl2 (nonphytotoxic level) to the nutrient solution of hydroponically grown tobacco seedlings (Nicotiana rustica var Pavonii). Amino acid analysis showed that the main components were γ-(Glu-Cys)3-Gly and γ-(Glu-Cys)4-Gly. Seedlings exposed to the metal for 1 week contained similar glutathione levels as found in the controls (about 0.18 micromole per gram fresh weight). If, as has been proposed, CdBPs are involved in Cd-detoxification by chelation, both metal and ligand must be localized in the same cellular compartment. To directly determine the localization of Cd and CdBPs, protoplasts and vacuoles were isolated from leaves of Cd-exposed seedlings. Purified vacuoles contained virtually all of the CdBPs and Cd found in protoplasts (104% ± 8 and 110% ± 8, respectively). CdBPs were associated with the vacuolar sap and not with the tonoplast membrane. Glutathione was observed in leaves and protoplasts but not in vacuoles. The probability that CdBPs are synthesized extravacuolarly and our finding that they and Cd are predominantly located in the vacuole suggest that these molecules might be involved in transport of Cd to the vacuole. Our results also suggest that a simple cytoplasmic chelator role for CdBPs in Cd tolerance cannot be assumed.  相似文献   

16.
Cell suspension cultures of parsley (Petroselinum crispum) accumulated coumarin phytoalexins and exhibited increased β-1,3-glucanase activity when treated with either a purified α-1,4-d-endopolygalacturonic acid lyase from Erwinia carotovora or oligogalacturonides solubilized from parsley cell walls by endopolygalacturonic acid lyase. Coumarin accumulation induced by the plant cell wall elicitor was preceded by increases in the activities of phenylalanine ammonia lyase (PAL), 4-coumarate:CoA ligase (4CL) and S-adenosyl-l-methionine:xanthotoxol O-methyltransferase (XMT). The time courses for the changes in these three enzyme activities were similar to those observed in cell cultures treated with a fungal glucan elicitor. The plant cell wall elicitor was found to act synergistically with the fungal glucan elicitor in the induction of coumarin phytoalexins. As much as a 10-fold stimulation in coumarin accumulation above the calculated additive response was observed in cell cultures treated with combinations of plant and fungal elicitors. The synergistic effect was also observed for the induction of PAL, 4CL, and XMT activities. These results demonstrate that plant cell wall elicitors induce at least two distinct biochemical responses in parsley cells and further support the role of oligogalacturonides as important regulators of plant defense.  相似文献   

17.
18.
19.
In vitro binding of 1-naphthaleneacetic acid (NAA) to particulate fractions from tobacco leaf protoplasts was studied. In freshly isolated protoplasts no specific binding could be detected, whereas it was present in particulate fractions from tobacco leaves. It is concluded that the NAA-binding-sites are probably located at the external face of the plasma membrane; they are destroyed during protoplast isolation by proteolytic enzymes in the cellulase and macerozyme preparations. After culturing the protoplasts for 3–4 d, the first cell divisions were observed and at the same time specific NAA-binding became detectable. The affinity constant for NAA was approx. 2·106 mol-1 and the number of binding sites increased during further culture.Abbreviations MES 4-morpholinoethanesulfonic acid - NAA 1-naphthaleneacetic acid  相似文献   

20.
Evans ML 《Plant physiology》1974,54(2):213-215
Research on the mode of action of auxin in the promotion of growth has shown that auxin treatment leads to hydrogen ion secretion and wall acidification. It has recently been reported that auxin stimulates cell wall β-galactosidase activity in Avena coleoptiles, presumably by causing cell wall acidification, since the pH optimum for the enzyme is about 5.0. It has been suggested that enhancement of β-galactosidase and/or other glycosidase activity mediates growth promotion by auxin or low pH. This hypothesis was tested by examining the effect of inhibitors of β-galactosidase and β-glucosidase. Severe inhibition of measureable β-galactosidase or β-glucosidase activity was found to have no effect on auxin- or acid-promoted growth. It is concluded that neither β-galactosidase nor β-glucosidase plays an important role in short term growth promotion by auxin or acid. The data do not rule out the possibility that some other cell wall glycosidase is involved in auxin or acid action.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号